From 176aa03f28da04cc130a2adeea98525d55323612 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Al=C3=A1n=20Mu=C3=B1oz?= <alan.munoz@ed.ac.uk> Date: Mon, 9 Jan 2023 09:12:07 +0000 Subject: [PATCH] remove(ext): delete faiss and k2_major_median --- src/extraction/core/functions/cell.py | 32 --------------------------- 1 file changed, 32 deletions(-) diff --git a/src/extraction/core/functions/cell.py b/src/extraction/core/functions/cell.py index f367c40f..c3d99d27 100644 --- a/src/extraction/core/functions/cell.py +++ b/src/extraction/core/functions/cell.py @@ -13,7 +13,6 @@ import math import typing as t import bottleneck as bn -import faiss import numpy as np from scipy import ndimage @@ -121,37 +120,6 @@ def std(cell_mask, trap_image): return np.std(trap_image[cell_mask]) -def k2_major_median(cell_mask, trap_image): - """ - Finds the medians of the major cluster after clustering the pixels in the cell into two clusters. - - Parameters - ---------- - cell_mask: 2d array - Segmentation mask for the cell - trap_image: 2d array - - Returns - ------- - median: float - The median of the major cluster of two clusters - """ - if bn.anynan(trap_image): - cell_mask[np.isnan(trap_image)] = False - X = trap_image[cell_mask].reshape(-1, 1).astype(np.float32) - # cluster pixels in cell into two clusters - indices = faiss.IndexFlatL2(X.shape[1]) - # (n_clusters=2, random_state=0).fit(X) - _, indices = indices.search(X, k=2) - high_indices = np.argmax(indices, axis=1).astype(bool) - # find the median of pixels in the largest cluster - # high_masks = np.logical_xor( # Use casting to obtain masks - # high_indices.reshape(-1, 1), np.tile((0, 1), X.shape[0]).reshape(-1, 2) - # ) - major_median = bn.median(X[high_indices]) - return major_median - - def volume(cell_mask) -> float: """ Estimates the volume of the cell assuming it is an ellipsoid with the mask providing a cross-section through the median plane of the ellipsoid. -- GitLab