diff --git a/README.md b/README.md
index d2f3e2e2a82cc9de7e4cf656cd6d7492264f810d..c97ba1c0f9ed0bb961ba9cc9115128859290535d 100644
--- a/README.md
+++ b/README.md
@@ -130,7 +130,8 @@ seg_expt = SegmentedExperiment(expt)
 
 The initialization should take a few seconds, as it needs to align the images
 in time. 
- 
+
+#### Get a timelapse for a given trap
 From there, you can obtain a timelapse for a single trap as follows:
 ```python
 channels = [0] #Get only the first channel, this is also the default
@@ -149,10 +150,23 @@ timelapse = seg_expt.get_trap_timelapse(trap_id, tile_size=tile_size,
 This can take several seconds at the moment.
 For a speed-up: take fewer z-positions if you can.
 
-If you're not sure what your channel's index is, you can get the ordered
- list of channels in the experiment with:
+If you're not sure what indices to use:
+```python
+seg_expt.channels # Get a list of channels
+channel = 'Brightfield'
+ch_id = seg_expt.get_channel_index(channel)
+
+n_traps = seg_expt.n_traps # Get the number of traps 
+```
+
+#### Get the traps for a given time point
+Alternatively, if you want to get all the traps at a given timepoint:
+
 ```python
-expt.channels
+timepoint = 0
+seg_expt.get_traps_timepoints(timepoint, tile_size=96, channels=None, 
+                                z=[0,1,2,3,4])
 ```
 
 
+
diff --git a/core/experiment.py b/core/experiment.py
index f7acdd5a8a9546d0b85a9e7b7c9fbb25568ac08b..b340160d3b9017aad6eb9f49e218352cb73f7fec 100644
--- a/core/experiment.py
+++ b/core/experiment.py
@@ -116,7 +116,8 @@ class ExperimentOMERO(Experiment):
         self.name = self.dataset.getName()
 
         self._positions = {img.getName(): img.getId() for img in
-                           self.dataset.listChildren()}
+                           sorted(self.dataset.listChildren(),
+                                  key=lambda x: x.getName())}
 
         # Set up the current position as the first in the list
         self._current_position = self.get_position(self.positions[0])
@@ -248,9 +249,9 @@ class ExperimentLocal(Experiment):
         described above.
         :return:
         """
-        positions = [f.name for f in root_dir.iterdir()
+        positions = sorted([f.name for f in root_dir.iterdir()
                      if (re.search(r'pos[0-9]+$', f.name) and
-                         f.is_dir())]
+                         f.is_dir())])
         acq_file = glob.glob(os.path.join(str(root_dir), '*[Aa]cq.txt'))
         log_file = glob.glob(os.path.join(str(root_dir), '*[Ll]og.txt'))
         cache_file = glob.glob(os.path.join(str(root_dir), 'cache.config'))
diff --git a/core/segment.py b/core/segment.py
index 9ee8952f484491088af8176379a592dfe6757f07..726a2e31fe7b8701c65a66cf5a1f7979a8da9175 100644
--- a/core/segment.py
+++ b/core/segment.py
@@ -3,7 +3,6 @@ Includes splitting the image into traps/parts,
 cell segmentation, nucleus segmentation."""
 from skimage import feature
 import numpy as np
-from scipy.spatial import distance
 from pathlib import Path
 
 from core.traps import identify_trap_locations
@@ -12,6 +11,16 @@ trap_template_directory = Path(__file__).parent / 'trap_templates'
 trap_template = np.load(trap_template_directory / 'trap_bg_1.npy')
 
 
+def get_tile_shapes(x, tile_size, max_shape):
+    half_size = tile_size // 2
+    xmin = int(x[0] - half_size)
+    ymin = max(0, int(x[1] - half_size))
+    if xmin + tile_size > max_shape[0]:
+        xmin = max_shape[0] - tile_size
+    if ymin + tile_size > max_shape[1]:
+        ymin = max_shape[1] - tile_size
+    return xmin, xmin + tile_size, ymin, ymin + tile_size
+
 def align_timelapse_images(raw_data, channel=0, reference_reset_time=80,
                            reference_reset_drift=25):
     """
@@ -31,15 +40,21 @@ def align_timelapse_images(raw_data, channel=0, reference_reset_time=80,
     register before resetting the reference image.
     :param channel: index of the channel to use for image registration.
     """
-    ref = np.squeeze(raw_data[channel, 0, :, :, 0])
+
+    def centre(img, percentage=0.3):
+        y, x = img.shape
+        cropx = int(np.ceil(x * percentage))
+        cropy = int(np.ceil(y * percentage))
+        startx = int(x // 2 - (cropx // 2))
+        starty = int(y // 2 - (cropy // 2))
+        return img[starty:starty + cropy, startx:startx + cropx]
+
+    ref = centre(np.squeeze(raw_data[channel, 0, :, :, 0]))
     size_t = raw_data.shape[1]
-    # TODO take only a central region of the image
 
     drift = [np.array([0, 0])]
-    references = [0]
-    processed = 0
     for i in range(1, size_t):
-        img = np.squeeze(raw_data[channel, i, :, :, 0])
+        img = centre(np.squeeze(raw_data[channel, i, :, :, 0]))
 
         shifts, _, _ = feature.register_translation(ref, img)
         # If a huge move is detected at a single time point it is taken
@@ -51,17 +66,13 @@ def align_timelapse_images(raw_data, channel=0, reference_reset_time=80,
             shifts = drift[-1]
 
         drift.append(shifts)
-        processed += 1
+        ref = img
 
-        # If the images have drifted too far from the reference or too
-        # much time has passed we change the reference and keep track of
-        # which images are kept as references
-        if (any([x > reference_reset_drift for x in drift[-1]])
-                or processed > reference_reset_time):
-            ref = img
-            processed = 0
-            references.append(i)
-    return np.stack(drift), references
+        # TODO test necessity for references, description below
+        #   If the images have drifted too far from the reference or too
+        #   much time has passed we change the reference and keep track of
+        #   which images are kept as references
+    return np.stack(drift)
 
 
 class SegmentedExperiment(object):
@@ -73,57 +84,95 @@ class SegmentedExperiment(object):
         """
         self.raw_expt = raw_expt
         self.rotation = None
-        self.trap_locations = self.tile_timelapse()
+        self.trap_locations = dict()
         self.cell_outlines = None
         self.compartment_outlines = None
 
+        # Tile the current position
+        self.trap_locations[self.current_position] = self.tile_timelapse()
+
+    @property
+    def n_traps(self):
+        return len(self.trap_locations[self.current_position])
+
+    @property
+    def positions(self):
+        return self.raw_expt.positions
+
+    @property
+    def current_position(self):
+        return str(self.raw_expt.current_position)
+
+    @current_position.setter
+    def current_position(self, position):
+        self.raw_expt.current_position = position
+        # Tile that position
+        if self.current_position not in self.trap_locations.keys():
+            self.trap_locations[self.current_position] = self.tile_timelapse()
+
+    @property
+    def channels(self):
+        return self.raw_expt.channels
+
+    def get_channel_index(self, channel):
+        return self.raw_expt.current_position.get_channel_index(channel)
+
     def tile_timelapse(self, channel=0):
         # Get the drift and references
-        drifts, refs = align_timelapse_images(self.raw_expt, channel=channel)
+        drifts = align_timelapse_images(self.raw_expt, channel=channel)
         # Find traps in the references
-        trap_locations = {ref: identify_trap_locations(
-            np.squeeze(self.raw_expt[channel, ref, :, :, 0]),
-            trap_template) for ref in refs}
-        # Compare reference direct traps-location to trap-location from drift
-        # Add drift to obtain the trap locations for each image
-        # TODO make single for loop using conditional clause for references
-        for j in range(len(refs) - 1):
-            for i in range(refs[j], refs[j + 1]):
-                trap_locations[i] = (
-                        trap_locations[refs[j]] - drifts[i, [1, 0]])
-
-            indices = np.argmin(distance.cdist(trap_locations[refs[j + 1]],
-                                               trap_locations[refs[j]]
-                                               - drifts[refs[j + 1], [1, 0]]),
-                                axis=0)
-
-            trap_locations[refs[j + 1]] = trap_locations[refs[j + 1]][indices]
-        # Add the timepoints after the final reference
-        for i in range(refs[-1], len(drifts)):
-            trap_locations[i] = (
-                    trap_locations[refs[-1]] - drifts[i, [1, 0]])
+        trap_locations = {0: identify_trap_locations(
+            np.squeeze(self.raw_expt[channel, 0, :, :, 0]), trap_template)}
+        for i in range(len(drifts)):
+            trap_locations[i] = trap_locations[0] \
+                                - np.sum(drifts[:i, [1, 0]], axis=0)
+
         return trap_locations
 
-    def get_trap_timelapse(self, trap_id, tile_size=96, channels=[0],
-                           z=[0]):
+    def get_trap_timelapse(self, trap_id, tile_size=96, channels=None, z=None):
+        """
+        Get a timelapse for a given trap by specifying the trap_id
+        :param trap_id: An integer defining which trap to choose. Counted
+        between 0 and SegmentedExperiment.n_traps - 1
+        :param tile_size: The size of the trap tile (centered around the
+        trap as much as possible, edge cases exist)
+        :param channels: Which channels to fetch, indexed from 0.
+        If None, defaults to [0]
+        :param z: Which z_stacks to fetch, indexed from 0.
+        If None, defaults to [0].
+        :return: A numpy array with the timelapse in (C,T,X,Y,Z) order
+        """
+        # Set the defaults (list is mutable)
+        channels = channels if channels is not None else [0]
+        z = z if z is not None else [0]
         # Get trap location for that id:
-        trap_centers = [self.trap_locations[i][trap_id] for i in
-                        range(len(self.trap_locations))]
-
-        half_size = tile_size // 2
-
-        def get_tile_shapes(x, max_shape=(self.raw_expt.shape[2],
-                                          self.raw_expt.shape[3])):
-            xmin = int(x[0] - half_size)
-            ymin = max(0, int(x[1] - half_size))
-            if xmin + tile_size > max_shape[0]:
-                xmin = max_shape[0] - tile_size
-            if ymin + tile_size > max_shape[1]:
-                ymin = max_shape[1] - tile_size
-            return xmin, xmin + tile_size, ymin, ymin + tile_size
+        trap_centers = [self.trap_locations[self.current_position][i][trap_id]
+                        for i in
+                        range(len(self.trap_locations[self.current_position]))]
 
-        tiles_shapes = [get_tile_shapes(x) for x in trap_centers]
+        max_shape=(self.raw_expt.shape[2], self.raw_expt.shape[3])
+        tiles_shapes = [get_tile_shapes(x, tile_size, max_shape)
+                        for x in trap_centers]
 
         timelapse = [self.raw_expt[channels, i, xmin:xmax, ymin:ymax, z] for
                      i, (xmin, xmax, ymin, ymax) in enumerate(tiles_shapes)]
         return np.hstack(timelapse)
+
+    def get_traps_timepoint(self, tp, tile_size=96, channels=[0], z=[0]):
+        """
+        Get all the traps from a given timepoint
+        :param tp:
+        :param tile_size:
+        :param channels:
+        :param z:
+        :return: A numpy array with the traps in the (trap, C, T, X, Y,
+        Z) order
+        """
+        traps = []
+        max_shape=(self.raw_expt.shape[2], self.raw_expt.shape[3])
+        for trap_center in self.trap_locations[self.current_position]:
+            xmin, xmax, ymin,ymax = get_tile_shapes(trap_center, tile_size,
+                                                    max_shape)
+            traps.append(self.raw_expt[channels, tp, xmin:xmax, ymin:ymax, z])
+        return np.stack(traps)
+
diff --git a/core/traps.py b/core/traps.py
index 61bdbb9b84890edd88496014a4fcb894f7e5ae9f..ff9d9b797eb273908cf8636e736e6f3a64f05863 100644
--- a/core/traps.py
+++ b/core/traps.py
@@ -2,7 +2,6 @@
 A set of utilities for dealing with ALCATRAS traps
 """
 
-# TODO portfolio of trap templates
 import numpy as np
 from skimage import transform, feature
 
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7c2e9401c68450402d6ea4df2f647c2fe7028fe4
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,7 @@
+imageio==2.8.0
+numpy
+omero-py==5.6.2
+pandas
+scikit-image==0.16.2
+tqdm
+zeroc-ice>=3.6.0
diff --git a/setup.py b/setup.py
index 87fb9d3c88b251775ca9f1f01ca50057ebeac21d..3b9e2ff3f7cd01882def63ce24003a8569e0f9e1 100644
--- a/setup.py
+++ b/setup.py
@@ -13,7 +13,6 @@ setup(
     include_package_data=True,
     install_requires=[
         'numpy',
-        'pandas',
         'tqdm',
         'scikit-image==0.16.2',
         'imageio==2.8.0',