diff --git a/pcore/__init__.py b/pcore/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/pcore/baby_client.py b/pcore/baby_client.py
deleted file mode 100644
index ad9ff07029da58ebdfddec17f98644a5181291fc..0000000000000000000000000000000000000000
--- a/pcore/baby_client.py
+++ /dev/null
@@ -1,268 +0,0 @@
-import collections
-import itertools
-import json
-import time
-from pathlib import Path
-from typing import Iterable
-
-import h5py
-import numpy as np
-import pandas as pd
-import re
-import requests
-import tensorflow as tf
-from tqdm import tqdm
-
-from agora.base import ParametersABC, ProcessABC
-import baby.errors
-from baby import modelsets
-from baby.brain import BabyBrain
-from baby.crawler import BabyCrawler
-from requests.exceptions import Timeout, HTTPError
-from requests_toolbelt.multipart.encoder import MultipartEncoder
-
-from pcore.utils import Cache, accumulate, get_store_path
-
-
-################### Dask Methods ################################
-def format_segmentation(segmentation, tp):
-    """Format a single timepoint into a dictionary.
-
-    Parameters
-    ------------
-    segmentation: list
-                  A list of results, each result is the output of the crawler, which is JSON-encoded
-    tp: int
-        the time point considered
-
-    Returns
-    --------
-    A dictionary containing the formatted results of BABY
-    """
-    # Segmentation is a list of dictionaries, ordered by trap
-    # Add trap information
-    # mother_assign = None
-    for i, x in enumerate(segmentation):
-        x["trap"] = [i] * len(x["cell_label"])
-        x["mother_assign_dynamic"] = np.array(x["mother_assign"])[
-            np.array(x["cell_label"], dtype=int) - 1
-        ]
-    # Merge into a dictionary of lists, by column
-    merged = {
-        k: list(itertools.chain.from_iterable(res[k] for res in segmentation))
-        for k in segmentation[0].keys()
-    }
-    # Special case for mother_assign
-    # merged["mother_assign_dynamic"] = [merged["mother_assign"]]
-    if "mother_assign" in merged:
-        del merged["mother_assign"]
-        mother_assign = [x["mother_assign"] for x in segmentation]
-    # Check that the lists are all of the same length (in case of errors in
-    # BABY)
-    n_cells = min([len(v) for v in merged.values()])
-    merged = {k: v[:n_cells] for k, v in merged.items()}
-    merged["timepoint"] = [tp] * n_cells
-    merged["mother_assign"] = mother_assign
-    return merged
-
-
-class BabyParameters(ParametersABC):
-    def __init__(
-        self,
-        model_config,
-        tracker_params,
-        clogging_thresh,
-        min_bud_tps,
-        isbud_thresh,
-        session,
-        graph,
-        print_info,
-        suppress_errors,
-        error_dump_dir,
-        tf_version,
-    ):
-        self.model_config = model_config
-        self.tracker_params = tracker_params
-        self.clogging_thresh = clogging_thresh
-        self.min_bud_tps = min_bud_tps
-        self.isbud_thresh = isbud_thresh
-        self.session = session
-        self.graph = graph
-        self.print_info = print_info
-        self.suppress_errors = suppress_errors
-        self.error_dump_dir = error_dump_dir
-        self.tf_version = tf_version
-
-    @classmethod
-    def default(cls, **kwargs):
-        """kwargs passes values to the model chooser"""
-        return cls(
-            model_config=choose_model_from_params(**kwargs),
-            tracker_params=dict(ctrack_params=dict(), budtrack_params=dict()),
-            clogging_thresh=1,
-            min_bud_tps=3,
-            isbud_thresh=0.5,
-            session=None,
-            graph=None,
-            print_info=False,
-            suppress_errors=False,
-            error_dump_dir=None,
-            tf_version=2,
-        )
-
-
-class BabyRunner:
-    """A BabyRunner object for cell segmentation.
-
-    Does segmentation one time point at a time."""
-
-    def __init__(self, tiler, parameters=None, *args, **kwargs):
-        self.tiler = tiler
-        # self.model_config = modelsets()[choose_model_from_params(**kwargs)]
-        self.model_config = modelsets()[
-            (
-                parameters.model_config
-                if parameters is not None
-                else choose_model_from_params(**kwargs)
-            )
-        ]
-        self.brain = BabyBrain(**self.model_config)
-        self.crawler = BabyCrawler(self.brain)
-        self.bf_channel = self.tiler.get_channel_index("Brightfield")
-
-    @classmethod
-    def from_tiler(cls, parameters: BabyParameters, tiler):
-        return cls(tiler, parameters)
-
-    def get_data(self, tp):
-        # Swap axes x and z, probably shouldn't swap, just move z
-        return self.tiler.get_tp_data(tp, self.bf_channel).swapaxes(1, 3).swapaxes(1, 2)
-
-    def run_tp(self, tp, with_edgemasks=True, assign_mothers=True, **kwargs):
-        """Simulating processing time with sleep"""
-        # Access the image
-        img = self.get_data(tp)
-        segmentation = self.crawler.step(
-            img, with_edgemasks=with_edgemasks, assign_mothers=assign_mothers, **kwargs
-        )
-        return format_segmentation(segmentation, tp)
-
-
-class BabyClient:
-    """A dummy BabyClient object for Dask Demo.
-
-
-    Does segmentation one time point at a time.
-    Should work better with the parallelisation.
-    """
-
-    bf_channel = 0
-    model_name = "prime95b_brightfield_60x_5z"
-    url = "http://localhost:5101"
-    max_tries = 50
-    sleep_time = 0.1
-
-    def __init__(self, tiler, *args, **kwargs):
-        self.tiler = tiler
-        self._session = None
-
-    @property
-    def session(self):
-        if self._session is None:
-            r_session = requests.get(self.url + f"/session/{self.model_name}")
-            r_session.raise_for_status()
-            self._session = r_session.json()["sessionid"]
-        return self._session
-
-    def get_data(self, tp):
-        return self.tiler.get_tp_data(tp, self.bf_channel).swapaxes(1, 3)
-
-    def queue_image(self, img, **kwargs):
-        bit_depth = img.dtype.itemsize * 8  # bit depth =  byte_size * 8
-        data = create_request(img.shape, bit_depth, img, **kwargs)
-        status = requests.post(
-            self.url + f"/segment?sessionid={self.session}",
-            data=data,
-            headers={"Content-Type": data.content_type},
-        )
-        status.raise_for_status()
-        return status
-
-    def get_segmentation(self):
-        try:
-            seg_response = requests.get(
-                self.url + f"/segment?sessionid={self.session}", timeout=120
-            )
-            seg_response.raise_for_status()
-            result = seg_response.json()
-        except Timeout as e:
-            raise e
-        except HTTPError as e:
-            raise e
-        return result
-
-    def run_tp(self, tp, **kwargs):
-        # Get data
-        img = self.get_data(tp)
-        # Queue image
-        status = self.queue_image(img, **kwargs)
-        # Get segmentation
-        for _ in range(self.max_tries):
-            try:
-                seg = self.get_segmentation()
-                break
-            except (Timeout, HTTPError):
-                time.sleep(self.sleep_time)
-                continue
-        return format_segmentation(seg, tp)
-
-
-def choose_model_from_params(
-    modelset_filter=None,
-    camera="prime95b",
-    channel="brightfield",
-    zoom="60x",
-    n_stacks="5z",
-    **kwargs,
-):
-    """
-    Define which model to query from the server based on a set of parameters.
-
-    Parameters
-    ----------
-    valid_models: List[str]
-                  The names of the models that are available.
-    modelset_filter: str
-                    A regex filter to apply on the models to start.
-    camera: str
-            The camera used in the experiment (case insensitive).
-    channel:str
-            The channel used for segmentation (case insensitive).
-    zoom: str
-          The zoom on the channel.
-    n_stacks: str
-              The number of z_stacks to use in segmentation
-
-    Returns
-    -------
-    model_name : str
-    """
-    valid_models = list(modelsets().keys())
-
-    # Apply modelset filter if specified
-    if modelset_filter is not None:
-        msf_regex = re.compile(modelset_filter)
-        valid_models = filter(msf_regex.search, valid_models)
-
-    # Apply parameter filters if specified
-    params = [
-        str(x) if x is not None else ".+"
-        for x in [camera.lower(), channel.lower(), zoom, n_stacks]
-    ]
-    params_re = re.compile("^" + "_".join(params) + "$")
-    valid_models = list(filter(params_re.search, valid_models))
-    # Check that there are valid models
-    if len(valid_models) == 0:
-        raise KeyError("No model sets found matching {}".format(", ".join(params)))
-    # Pick the first model
-    return valid_models[0]
diff --git a/pcore/cells.py b/pcore/cells.py
deleted file mode 100644
index e9c14b8affe7b8068ca021be542d31ad53942f31..0000000000000000000000000000000000000000
--- a/pcore/cells.py
+++ /dev/null
@@ -1,325 +0,0 @@
-import logging
-from pathlib import Path, PosixPath
-from time import perf_counter
-from typing import Union
-from itertools import groupby
-from collections.abc import Iterable
-
-from utils_find_1st import find_1st, cmp_equal
-import h5py
-import numpy as np
-from scipy import ndimage
-from scipy.sparse.base import isdense
-
-from pcore.io.matlab import matObject
-from pcore.utils import timed
-from pcore.io.writer import load_complex
-
-
-def cell_factory(store, type="matlab"):
-    if isinstance(store, matObject):
-        return CellsMat(store)
-    if type == "matlab":
-        mat_object = matObject(store)
-        return CellsMat(mat_object)
-    elif type == "hdf5":
-        return CellsHDF(store)
-    else:
-        raise TypeError(
-            "Could not get cells for type {}:" "valid types are matlab and hdf5"
-        )
-
-
-class Cells:
-    """An object that gathers information about all the cells in a given
-    trap.
-    This is the abstract object, used for type testing
-    """
-
-    def __init__(self):
-        pass
-
-    @staticmethod
-    def from_source(source: Union[PosixPath, str], kind: str = None):
-        if isinstance(source, str):
-            source = Path(source)
-        if kind is None:  # Infer kind from filename
-            kind = "matlab" if source.suffix == ".mat" else "hdf5"
-        return cell_factory(source, kind)
-
-    @staticmethod
-    def _asdense(array):
-        if not isdense(array):
-            array = array.todense()
-        return array
-
-    @staticmethod
-    def _astype(array, kind):
-        # Convert sparse arrays if needed and if kind is 'mask' it fills the outline
-        array = Cells._asdense(array)
-        if kind == "mask":
-            array = ndimage.binary_fill_holes(array).astype(int)
-        return array
-
-    @classmethod
-    def hdf(cls, fpath):
-        return CellsHDF(fpath)
-
-    @classmethod
-    def mat(cls, path):
-        return CellsMat(matObject(store))
-
-
-class CellsHDF(Cells):
-    def __init__(self, filename, path="cell_info"):
-        self.filename = filename
-        self.cinfo_path = path
-        self._edgem_indices = None
-        self._edgemasks = None
-        self._tile_size = None
-
-    def __getitem__(self, item):
-        if item == "edgemasks":
-            return self.edgemasks
-        _item = "_" + item
-        if not hasattr(self, _item):
-            setattr(self, _item, self._fetch(item))
-        return getattr(self, _item)
-
-    def _get_idx(self, cell_id, trap_id):
-        return (self["cell_label"] == cell_id) & (self["trap"] == trap_id)
-
-    def _fetch(self, path):
-        with h5py.File(self.filename, mode="r") as f:
-            return f[self.cinfo_path][path][()]
-
-    @property
-    def ntraps(self):
-        with h5py.File(self.filename, mode="r") as f:
-            return len(f["/trap_info/trap_locations"][()])
-
-    @property
-    def traps(self):
-        return list(set(self["trap"]))
-
-    @property
-    def tile_size(self):  # TODO read from metadata
-        if self._tile_size is None:
-            with h5py.File(self.filename, mode="r") as f:
-                self._tile_size == f["trap_info/tile_size"][0]
-        return self._tile_size
-
-    @property
-    def edgem_indices(self):
-        if self._edgem_indices is None:
-            edgem_path = "edgemasks/indices"
-            self._edgem_indices = load_complex(self._fetch(edgem_path))
-        return self._edgem_indices
-
-    @property
-    def edgemasks(self):
-        if self._edgemasks is None:
-            edgem_path = "edgemasks/values"
-            self._edgemasks = self._fetch(edgem_path)
-
-        return self._edgemasks
-
-    def _edgem_where(self, cell_id, trap_id):
-        ix = trap_id + 1j * cell_id
-        return find_1st(self.edgem_indices == ix, True, cmp_equal)
-
-    @property
-    def labels(self):
-        """
-        Return all cell labels in object
-        We use mother_assign to list traps because it is the only propriety that appears even
-        when no cells are found"""
-        return [self.labels_in_trap(trap) for trap in self.traps]
-
-    def where(self, cell_id, trap_id):
-        """
-        Returns
-        Parameters
-        ----------
-            cell_id: int
-                Cell index
-            trap_id: int
-                Trap index
-
-        Returns
-        ----------
-            indices int array
-            boolean mask array
-            edge_ix int array
-        """
-        indices = self._get_idx(cell_id, trap_id)
-        edgem_ix = self._edgem_where(cell_id, trap_id)
-        return (
-            self["timepoint"][indices],
-            indices,
-            edgem_ix,
-        )  # FIXME edgem_ix makes output different to matlab's Cell
-
-    def outline(self, cell_id, trap_id):
-        times, indices, cell_ix = self.where(cell_id, trap_id)
-        return times, self["edgemasks"][cell_ix, times]
-
-    def mask(self, cell_id, trap_id):
-        times, outlines = self.outline(cell_id, trap_id)
-        return times, np.array(
-            [ndimage.morphology.binary_fill_holes(o) for o in outlines]
-        )
-
-    def at_time(self, timepoint, kind="mask"):
-        ix = self["timepoint"] == timepoint
-        cell_ix = self["cell_label"][ix]
-        traps = self["trap"][ix]
-        indices = traps + 1j * cell_ix
-        choose = np.in1d(self.edgem_indices, indices)
-        edgemasks = self["edgemasks"][choose, timepoint]
-        masks = [
-            self._astype(edgemask, kind) for edgemask in edgemasks if edgemask.any()
-        ]
-        return self.group_by_traps(traps, masks)
-
-    def group_by_traps(self, traps, data):
-        # returns a dict with traps as keys and labels as value
-        iterator = groupby(zip(traps, data), lambda x: x[0])
-        d = {key: [x[1] for x in group] for key, group in iterator}
-        d = {i: d.get(i, []) for i in self.traps}
-        return d
-
-    def labels_in_trap(self, trap_id):
-        # Return set of cell ids in a trap.
-        return set((self["cell_label"][self["trap"] == trap_id]))
-
-    def labels_at_time(self, timepoint):
-        labels = self["cell_label"][self["timepoint"] == timepoint]
-        traps = self["trap"][self["timepoint"] == timepoint]
-        return self.group_by_traps(traps, labels)
-
-
-class CellsMat(Cells):
-    def __init__(self, mat_object):
-        super(CellsMat, self).__init__()
-        # TODO add __contains__ to the matObject
-        timelapse_traps = mat_object.get(
-            "timelapseTrapsOmero", mat_object.get("timelapseTraps", None)
-        )
-        if timelapse_traps is None:
-            raise NotImplementedError(
-                "Could not find a timelapseTraps or "
-                "timelapseTrapsOmero object. Cells "
-                "from cellResults not implemented"
-            )
-        else:
-            self.trap_info = timelapse_traps["cTimepoint"]["trapInfo"]
-
-            if isinstance(self.trap_info, list):
-                self.trap_info = {
-                    k: list([res.get(k, []) for res in self.trap_info])
-                    for k in self.trap_info[0].keys()
-                }
-
-    def where(self, cell_id, trap_id):
-        times, indices = zip(
-            *[
-                (tp, np.where(cell_id == x)[0][0])
-                for tp, x in enumerate(self.trap_info["cellLabel"][:, trap_id].tolist())
-                if np.any(cell_id == x)
-            ]
-        )
-        return times, indices
-
-    def outline(self, cell_id, trap_id):
-        times, indices = self.where(cell_id, trap_id)
-        info = self.trap_info["cell"][times, trap_id]
-
-        def get_segmented(cell, index):
-            if cell["segmented"].ndim == 0:
-                return cell["segmented"][()].todense()
-            else:
-                return cell["segmented"][index].todense()
-
-        segmentation_outline = [
-            get_segmented(cell, idx) for idx, cell in zip(indices, info)
-        ]
-        return times, np.array(segmentation_outline)
-
-    def mask(self, cell_id, trap_id):
-        times, outlines = self.outline(cell_id, trap_id)
-        return times, np.array(
-            [ndimage.morphology.binary_fill_holes(o) for o in outlines]
-        )
-
-    def at_time(self, timepoint, kind="outline"):
-
-        """Returns the segmentations for all the cells at a given timepoint.
-
-        FIXME: this is extremely hacky and accounts for differently saved
-            results in the matlab object. Deprecate ASAP.
-        """
-        # Case 1: only one cell per trap: trap_info['cell'][timepoint] is a
-        # structured array
-        if isinstance(self.trap_info["cell"][timepoint], dict):
-            segmentations = [
-                self._astype(x, "outline")
-                for x in self.trap_info["cell"][timepoint]["segmented"]
-            ]
-        # Case 2: Multiple cells per trap: it becomes a list of arrays or
-        # dictionaries,  one for each trap
-        # Case 2.1 : it's a dictionary
-        elif isinstance(self.trap_info["cell"][timepoint][0], dict):
-            segmentations = []
-            for x in self.trap_info["cell"][timepoint]:
-                seg = x["segmented"]
-                if not isinstance(seg, np.ndarray):
-                    seg = [seg]
-                segmentations.append([self._astype(y, "outline") for y in seg])
-        # Case 2.2 : it's an array
-        else:
-            segmentations = [
-                [self._astype(y, type) for y in x["segmented"]] if x.ndim != 0 else []
-                for x in self.trap_info["cell"][timepoint]
-            ]
-            # Return dict for compatibility with hdf5 output
-        return {i: v for i, v in enumerate(segmentations)}
-
-    def labels_at_time(self, tp):
-        labels = self.trap_info["cellLabel"]
-        labels = [_aslist(x) for x in labels[tp]]
-        labels = {i: [lbl for lbl in lblset] for i, lblset in enumerate(labels)}
-        return labels
-
-    @property
-    def ntraps(self):
-        return len(self.trap_info["cellLabel"][0])
-
-    @property
-    def tile_size(self):
-        pass
-
-
-class ExtractionRunner:
-    """An object to run extraction of fluorescence, and general data out of
-    segmented data.
-
-    Configure with what extraction we want to run.
-    Cell selection criteria.
-    Filtering criteria.
-    """
-
-    def __init__(self, tiler, cells):
-        pass
-
-    def run(self, keys, store, **kwargs):
-        pass
-
-
-def _aslist(x):
-    if isinstance(x, Iterable):
-        if hasattr(x, "tolist"):
-            x = x.tolist()
-    else:
-        x = [x]
-    return x
diff --git a/pcore/core.py b/pcore/core.py
deleted file mode 100644
index 56422434475f9bd42e2d891f3a32ba3295d14f75..0000000000000000000000000000000000000000
--- a/pcore/core.py
+++ /dev/null
@@ -1,34 +0,0 @@
-"""Barebones implementation of the structure/organisation of experiments."""
-
-
-class Experiment:
-    def __init__(self):
-        self.strains = dict()
-        self._metadata = None
-
-    def add_strains(self, name, strain):
-        self.strains[name] = strain
-
-
-class Strain:
-    def __init__(self):
-        self.positions = dict()
-
-    def add_position(self, name, position):
-        self.positions[name] = position
-
-
-class Position:
-    def __init__(self):
-        self.traps = []
-
-    def add_trap(self, trap):
-        self.traps.append(trap)
-
-
-class Trap:  # TODO Name this Tile?
-    def __init__(self):
-        self.cells = []
-
-    def add_cell(self, cell):
-        self.cells.append(cell)
diff --git a/pcore/experiment.py b/pcore/experiment.py
deleted file mode 100644
index c8b07fef698da2910e492f8e40f46e379e8ceea8..0000000000000000000000000000000000000000
--- a/pcore/experiment.py
+++ /dev/null
@@ -1,499 +0,0 @@
-"""Core classes for the pipeline"""
-import atexit
-import itertools
-import os
-import abc
-import glob
-import json
-import warnings
-from getpass import getpass
-from pathlib import Path
-import re
-import logging
-from typing import Union
-
-import h5py
-from tqdm import tqdm
-import pandas as pd
-
-import omero
-from omero.gateway import BlitzGateway
-from logfile_parser import Parser
-
-from pcore.timelapse import TimelapseOMERO, TimelapseLocal
-from pcore.utils import accumulate
-
-from pcore.io.writer import Writer
-
-logger = logging.getLogger(__name__)
-
-########################### Dask objects ###################################
-##################### ENVIRONMENT INITIALISATION ################
-import omero
-from omero.gateway import BlitzGateway, PixelsWrapper
-from omero.model import enums as omero_enums
-import numpy as np
-
-# Set up the pixels so that we can reuse them across sessions (?)
-PIXEL_TYPES = {
-    omero_enums.PixelsTypeint8: np.int8,
-    omero_enums.PixelsTypeuint8: np.uint8,
-    omero_enums.PixelsTypeint16: np.int16,
-    omero_enums.PixelsTypeuint16: np.uint16,
-    omero_enums.PixelsTypeint32: np.int32,
-    omero_enums.PixelsTypeuint32: np.uint32,
-    omero_enums.PixelsTypefloat: np.float32,
-    omero_enums.PixelsTypedouble: np.float64,
-}
-
-
-class NonCachedPixelsWrapper(PixelsWrapper):
-    """Extend gateway.PixelWrapper to override _prepareRawPixelsStore."""
-
-    def _prepareRawPixelsStore(self):
-        """
-        Creates RawPixelsStore and sets the id etc
-        This overrides the superclass behaviour to make sure that
-        we don't re-use RawPixelStore in multiple processes since
-        the Store may be closed in 1 process while still needed elsewhere.
-        This is needed when napari requests may planes simultaneously,
-        e.g. when switching to 3D view.
-        """
-        ps = self._conn.c.sf.createRawPixelsStore()
-        ps.setPixelsId(self._obj.id.val, True, self._conn.SERVICE_OPTS)
-        return ps
-
-
-omero.gateway.PixelsWrapper = NonCachedPixelsWrapper
-# Update the BlitzGateway to use our NonCachedPixelsWrapper
-omero.gateway.refreshWrappers()
-
-
-######################  DATA ACCESS ###################
-import dask.array as da
-from dask import delayed
-
-
-def get_data_lazy(image) -> da.Array:
-    """Get 5D dask array, with delayed reading from OMERO image."""
-    nt, nc, nz, ny, nx = [getattr(image, f"getSize{x}")() for x in "TCZYX"]
-    pixels = image.getPrimaryPixels()
-    dtype = PIXEL_TYPES.get(pixels.getPixelsType().value, None)
-    get_plane = delayed(lambda idx: pixels.getPlane(*idx))
-
-    def get_lazy_plane(zct):
-        return da.from_delayed(get_plane(zct), shape=(ny, nx), dtype=dtype)
-
-    # 5D stack: TCZXY
-    t_stacks = []
-    for t in range(nt):
-        c_stacks = []
-        for c in range(nc):
-            z_stack = []
-            for z in range(nz):
-                z_stack.append(get_lazy_plane((z, c, t)))
-            c_stacks.append(da.stack(z_stack))
-        t_stacks.append(da.stack(c_stacks))
-    return da.stack(t_stacks)
-
-
-# Metadata writer
-from pcore.io.metadata_parser import parse_logfiles
-
-
-class MetaData:
-    """Small metadata Process that loads log."""
-
-    def __init__(self, log_dir, store):
-        self.log_dir = log_dir
-        self.store = store
-
-    def load_logs(self):
-        parsed_flattened = parse_logfiles(self.log_dir)
-        return parsed_flattened
-
-    def run(self):
-        metadata_writer = Writer(self.store)
-        metadata_dict = self.load_logs()
-        metadata_writer.write(path="/", meta=metadata_dict, overwrite=False)
-
-
-########################### Old Objects ####################################
-
-
-class Experiment(abc.ABC):
-    """
-    Abstract base class for experiments.
-    Gives all the functions that need to be implemented in both the local
-    version and the Omero version of the Experiment class.
-
-    As this is an abstract class, experiments can not be directly instantiated
-    through the usual `__init__` function, but must be instantiated from a
-    source.
-    >>> expt = Experiment.from_source(root_directory)
-    Data from the current timelapse can be obtained from the experiment using
-    colon and comma separated slicing.
-    The order of data is C, T, X, Y, Z
-    C, T and Z can have any slice
-    X and Y will only consider the beginning and end as we want the images
-    to be continuous
-    >>> bf_1 = expt[0, 0, :, :, :] # First channel, first timepoint, all x,y,z
-    """
-
-    __metaclass__ = abc.ABCMeta
-
-    # metadata_parser = AcqMetadataParser()
-
-    def __init__(self):
-        self.exptID = ""
-        self._current_position = None
-        self.position_to_process = 0
-
-    def __getitem__(self, item):
-        return self.current_position[item]
-
-    @property
-    def shape(self):
-        return self.current_position.shape
-
-    @staticmethod
-    def from_source(*args, **kwargs):
-        """
-        Factory method to construct an instance of an Experiment subclass (
-        either ExperimentOMERO or ExperimentLocal).
-
-        :param source: Where the data is stored (OMERO server or directory
-        name)
-        :param kwargs: If OMERO server, `user` and `password` keyword
-        arguments are required. If the data is stored locally keyword
-        arguments are ignored.
-        """
-        if len(args) > 1:
-            logger.debug("ExperimentOMERO: {}".format(args, kwargs))
-            return ExperimentOMERO(*args, **kwargs)
-        else:
-            logger.debug("ExperimentLocal: {}".format(args, kwargs))
-            return ExperimentLocal(*args, **kwargs)
-
-    @property
-    @abc.abstractmethod
-    def positions(self):
-        """Returns list of available position names"""
-        return
-
-    @abc.abstractmethod
-    def get_position(self, position):
-        return
-
-    @property
-    def current_position(self):
-        return self._current_position
-
-    @property
-    def channels(self):
-        return self._current_position.channels
-
-    @current_position.setter
-    def current_position(self, position):
-        self._current_position = self.get_position(position)
-
-    def get_hypercube(self, x, y, z_positions, channels, timepoints):
-        return self.current_position.get_hypercube(
-            x, y, z_positions, channels, timepoints
-        )
-
-
-# Todo: cache images like in ExperimentLocal
-class ExperimentOMERO(Experiment):
-    """
-    Experiment class to organise different timelapses.
-    Connected to a Dataset object which handles database I/O.
-    """
-
-    def __init__(self, omero_id, host, port=4064, **kwargs):
-        super(ExperimentOMERO, self).__init__()
-        self.exptID = omero_id
-        # Get annotations
-        self.use_annotations = kwargs.get("use_annotations", True)
-        self._files = None
-        self._tags = None
-
-        # Create a connection
-        self.connection = BlitzGateway(
-            kwargs.get("username") or input("Username: "),
-            kwargs.get("password") or getpass("Password: "),
-            host=host,
-            port=port,
-        )
-        connected = self.connection.connect()
-        try:
-            assert connected is True, "Could not connect to server."
-        except AssertionError as e:
-            self.connection.close()
-            raise (e)
-        try:  # Run everything that could cause the initialisation to fail
-            self.dataset = self.connection.getObject("Dataset", self.exptID)
-            self.name = self.dataset.getName()
-            # Create positions objects
-            self._positions = {
-                img.getName(): img.getId()
-                for img in sorted(
-                    self.dataset.listChildren(), key=lambda x: x.getName()
-                )
-            }
-            # Set up local cache
-            self.root_dir = Path(kwargs.get("save_dir", "./")) / self.name
-            if not self.root_dir.exists():
-                self.root_dir.mkdir(parents=True)
-            self.compression = kwargs.get("compression", None)
-            self.image_cache = h5py.File(self.root_dir / "images.h5", "a")
-
-            # Set up the current position as the first in the list
-            self._current_position = self.get_position(self.positions[0])
-            self.running_tp = 0
-        except Exception as e:
-            # Close the connection!
-            print("Error in initialisation, closing connection.")
-            self.connection.close()
-            print(self.connection.isConnected())
-            raise e
-        atexit.register(self.close)  # Close everything if program ends
-
-    def close(self):
-        print("Clean-up on exit.")
-        self.image_cache.close()
-        self.connection.close()
-
-    @property
-    def files(self):
-        if self._files is None:
-            self._files = {
-                x.getFileName(): x
-                for x in self.dataset.listAnnotations()
-                if isinstance(x, omero.gateway.FileAnnotationWrapper)
-            }
-        return self._files
-
-    @property
-    def tags(self):
-        if self._tags is None:
-            self._tags = {
-                x.getName(): x
-                for x in self.dataset.listAnnotations()
-                if isinstance(x, omero.gateway.TagAnnotationWrapper)
-            }
-        return self._tags
-
-    @property
-    def positions(self):
-        return list(self._positions.keys())
-
-    def _get_position_annotation(self, position):
-        # Get file annotations filtered by position name and ordered by
-        # creation date
-        r = re.compile(position)
-        wrappers = sorted(
-            [self.files[key] for key in filter(r.match, self.files)],
-            key=lambda x: x.creationEventDate(),
-            reverse=True,
-        )
-        # Choose newest file
-        if len(wrappers) < 1:
-            return None
-        else:
-            # Choose the newest annotation and cache it
-            annotation = wrappers[0]
-            filepath = self.root_dir / annotation.getFileName().replace("/", "_")
-            if not filepath.exists():
-                with open(str(filepath), "wb") as fd:
-                    for chunk in annotation.getFileInChunks():
-                        fd.write(chunk)
-            return filepath
-
-    def get_position(self, position):
-        """Get a Timelapse object for a given position by name"""
-        # assert position in self.positions, "Position not available."
-        img = self.connection.getObject("Image", self._positions[position])
-        if self.use_annotations:
-            annotation = self._get_position_annotation(position)
-        else:
-            annotation = None
-        return TimelapseOMERO(img, annotation, self.image_cache)
-
-    def cache_locally(
-        self,
-        root_dir="./",
-        positions=None,
-        channels=None,
-        timepoints=None,
-        z_positions=None,
-    ):
-        """
-        Save the experiment locally.
-
-        :param root_dir: The directory in which the experiment will be
-        saved. The experiment will be a subdirectory of "root_directory"
-        and will be named by its id.
-        """
-        logger.warning("Saving experiment {}; may take some time.".format(self.name))
-
-        if positions is None:
-            positions = self.positions
-        if channels is None:
-            channels = self.current_position.channels
-        if timepoints is None:
-            timepoints = range(self.current_position.size_t)
-        if z_positions is None:
-            z_positions = range(self.current_position.size_z)
-
-        save_dir = Path(root_dir) / self.name
-        if not save_dir.exists():
-            save_dir.mkdir()
-        # Save the images
-        for pos_name in tqdm(positions):
-            pos = self.get_position(pos_name)
-            pos_dir = save_dir / pos_name
-            if not pos_dir.exists():
-                pos_dir.mkdir()
-            self.cache_set(pos, range(pos.size_t))
-
-        self.cache_logs(save_dir)
-        # Save the file annotations
-        cache_config = dict(
-            positions=positions,
-            channels=channels,
-            timepoints=timepoints,
-            z_positions=z_positions,
-        )
-        with open(str(save_dir / "cache.config"), "w") as fd:
-            json.dump(cache_config, fd)
-        logger.info("Downloaded experiment {}".format(self.exptID))
-
-    def cache_logs(self, **kwargs):
-        # Save the file annotations
-        tags = dict()  # and the tag annotations
-        for annotation in self.dataset.listAnnotations():
-            if isinstance(annotation, omero.gateway.FileAnnotationWrapper):
-                filepath = self.root_dir / annotation.getFileName().replace("/", "_")
-                if str(filepath).endswith("txt") and not filepath.exists():
-                    # Save only the text files
-                    with open(str(filepath), "wb") as fd:
-                        for chunk in annotation.getFileInChunks():
-                            fd.write(chunk)
-            if isinstance(annotation, omero.gateway.TagAnnotationWrapper):
-                key = annotation.getDescription()
-                if key == "":
-                    key = "misc. tags"
-                if key in tags:
-                    if not isinstance(tags[key], list):
-                        tags[key] = [tags[key]]
-                    tags[key].append(annotation.getValue())
-                else:
-                    tags[key] = annotation.getValue()
-        with open(str(self.root_dir / "omero_tags.json"), "w") as fd:
-            json.dump(tags, fd)
-        return
-
-    def run(self, keys: Union[list, int], store, **kwargs):
-        if self.running_tp == 0:
-            self.cache_logs(**kwargs)
-            self.running_tp = 1  # Todo rename based on annotations
-        run_tps = dict()
-        for pos, tps in accumulate(keys):
-            position = self.get_position(pos)
-            run_tps[pos] = position.run(tps, store, save_dir=self.root_dir)
-        # Update the keys to match what was actually run
-        keys = [(pos, tp) for pos in run_tps for tp in run_tps[pos]]
-        return keys
-
-
-class ExperimentLocal(Experiment):
-    def __init__(self, root_dir, finished=True):
-        super(ExperimentLocal, self).__init__()
-        self.root_dir = Path(root_dir)
-        self.exptID = self.root_dir.name
-        self._pos_mapper = dict()
-        # Fixme: Made the assumption that the Acq file gets saved before the
-        #  experiment is run and that the information in that file is
-        #  trustworthy.
-        acq_file = self._find_acq_file()
-        acq_parser = Parser("multiDGUI_acq_format")
-        with open(acq_file, "r") as fd:
-            metadata = acq_parser.parse(fd)
-        self.metadata = metadata
-        self.metadata["finished"] = finished
-        self.files = [f for f in self.root_dir.iterdir() if f.is_file()]
-        self.image_cache = h5py.File(self.root_dir / "images.h5", "a")
-        if self.finished:
-            cache = self._find_cache()
-            # log = self._find_log() # Todo: add log metadata
-            if cache is not None:
-                with open(cache, "r") as fd:
-                    cache_config = json.load(fd)
-                self.metadata.update(**cache_config)
-        self._current_position = self.get_position(self.positions[0])
-
-    def _find_file(self, regex):
-        file = glob.glob(os.path.join(str(self.root_dir), regex))
-        if len(file) != 1:
-            return None
-        else:
-            return file[0]
-
-    def _find_acq_file(self):
-        file = self._find_file("*[Aa]cq.txt")
-        if file is None:
-            raise ValueError(
-                "Cannot load this experiment. There are either "
-                "too many or too few acq files."
-            )
-        return file
-
-    def _find_cache(self):
-        return self._find_file("cache.config")
-
-    @property
-    def finished(self):
-        return self.metadata["finished"]
-
-    @property
-    def running(self):
-        return not self.metadata["finished"]
-
-    @property
-    def positions(self):
-        return self.metadata["positions"]["posname"]
-
-    def _get_position_annotation(self, position):
-        r = re.compile(position)
-        files = list(filter(lambda x: r.match(x.stem), self.files))
-        if len(files) == 0:
-            return None
-        files = sorted(files, key=lambda x: x.lstat().st_ctime, reverse=True)
-        # Get the newest and return as string
-        return files[0]
-
-    def get_position(self, position):
-        if position not in self._pos_mapper:
-            annotation = self._get_position_annotation(position)
-            self._pos_mapper[position] = TimelapseLocal(
-                position,
-                self.root_dir,
-                finished=self.finished,
-                annotation=annotation,
-                cache=self.image_cache,
-            )
-        return self._pos_mapper[position]
-
-    def run(self, keys, store, **kwargs):
-        """
-
-        :param keys: List of (position, time point) tuples to process.
-        :return:
-        """
-        run_tps = dict()
-        for pos, tps in accumulate(keys):
-            run_tps[pos] = self.get_position(pos).run(tps, store)
-        # Update the keys to match what was actually run
-        keys = [(pos, tp) for pos in run_tps for tp in run_tps[pos]]
-        return keys
diff --git a/pcore/extract.py b/pcore/extract.py
deleted file mode 100644
index edd7c063cd9866c6f994a0d487eb912fe366e54a..0000000000000000000000000000000000000000
--- a/pcore/extract.py
+++ /dev/null
@@ -1,279 +0,0 @@
-"""
-A module to extract data from a processed experiment.
-"""
-import h5py
-import numpy as np
-from tqdm import tqdm
-
-from core.io.matlab import matObject
-from growth_rate.estimate_gr import estimate_gr
-
-
-class Extracted:
-    # TODO write the filtering functions.
-    def __init__(self):
-        self.volume = None
-        self._keep = None
-
-    def filter(self, filename=None, **kwargs):
-        """
-        1. Filter out small non-growing tracks. This means:
-            a. the cell size never reaches beyond a certain size-threshold
-            volume_thresh or
-            b. the cell's volume doesn't increase by at least a minimum
-            amount over its lifetime
-        2. Join daughter tracks that are contiguous and within a volume
-           threshold of each other
-        3. Discard tracks that are shorter than a threshold number of
-           timepoints
-
-        This function is used to fix tracking/bud errors in post-processing.
-        The parameters define the thresholds used to determine which cells are
-        discarded.
-        FIXME Ideally we get to a point where this is no longer needed.
-        :return:
-        """
-        #self.join_tracks()
-        filter_out = self.filter_size(**kwargs)
-        filter_out += self.filter_lifespan(**kwargs)
-        # TODO save data or just filtering parameters?
-        #self.to_hdf(filename)
-        self.keep = ~filter_out
-
-    def filter_size(self, volume_thresh=7, growth_thresh=10, **kwargs):
-        """Filter out small and non-growing cells.
-        :param volume_thresh: Size threshold for small cells
-        :param growth_thresh: Size difference threshold for non-growing cells
-        """
-        filter_out = np.where(np.max(self.volume, axis=1) < volume_thresh,
-                              True, False)
-        growth = [v[v > 0] for v in self.volume]
-        growth = np.array([v[-1] - v[0] if len(v) > 0 else 0 for v in growth])
-        filter_out += np.where(growth < growth_thresh, True, False)
-        return filter_out
-
-    def filter_lifespan(self, min_time=5, **kwargs):
-        """Remove daughter cells that have a small life span.
-
-        :param min_time: The minimum life span, under which cells are removed.
-        """
-        # TODO What if there are nan values?
-        filter_out = np.where(np.count_nonzero(self.volume, axis=1) <
-                              min_time, True, False)
-        return filter_out
-
-    def join_tracks(self, threshold=7):
-        """ Join contiguous tracks that are within a certain volume
-        threshold of each other.
-
-        :param threshold: Maximum volume difference to join contiguous tracks.
-        :return:
-        """
-        # For all pairs of cells
-        #
-        pass
-
-
-class ExtractedHDF(Extracted):
-    # TODO pull all the data out of the HFile and filter!
-    def __init__(self, file):
-        # We consider the data to be read-only
-        self.hfile = h5py.File(file, 'r')
-
-
-class ExtractedMat(Extracted):
-    """ Pulls the extracted data out of the MATLAB cTimelapse file.
-
-    This is mostly a convenience function in order to run the
-    gaussian-processes growth-rate estimation
-    """
-    def __init__(self, file, debug=False):
-        ct = matObject(file)
-        self.debug = debug
-        # Pre-computed data
-        # TODO what if there is no timelapseTrapsOmero?
-        self.metadata = ct['timelapseTrapsOmero']['metadata']
-        self.extracted_data = ct['timelapseTrapsOmero']['extractedData']
-        self.channels = ct['timelapseTrapsOmero']['extractionParameters'][
-            'functionParameters']['channels'].tolist()
-        self.time_settings = ct['timelapseTrapsOmero']['metadata']['acq'][
-            'times']
-        # Get filtering information
-        n_cells = self.extracted_data['cellNum'][0].shape
-        self.keep = np.full(n_cells, True)
-        # Not yet computed data
-        self._growth_rate = None
-        self._daughter_index = None
-
-
-    def get_channel_index(self, channel):
-        """Get index of channel based on name. This only considers
-        fluorescence channels."""
-        return self.channels.index(channel)
-
-    @property
-    def trap_num(self):
-        return self.extracted_data['trapNum'][0][self.keep]
-
-    @property
-    def cell_num(self):
-        return self.extracted_data['cellNum'][0][self.keep]
-
-    def identity(self, cell_idx):
-        """Get the (position), trap, and cell label given a cell's global
-        index."""
-        # Todo include position when using full strain
-        trap = self.trap_num[cell_idx]
-        cell = self.cell_num[cell_idx]
-        return trap, cell
-
-    def global_index(self, trap_id, cell_label):
-        """Get the global index of a cell given it's trap/cellNum
-        combination."""
-        candidates = np.where(np.logical_and(
-                            (self.trap_num == trap_id), # +1?
-                            (self.cell_num == cell_label)
-                        ))[0]
-        # TODO raise error if number of candidates != 1
-        if len(candidates) == 1:
-            return candidates[0]
-        elif len(candidates) == 0:
-            return -1
-        else:
-            raise(IndexError("No such cell/trap combination"))
-
-    @property
-    def daughter_label(self):
-        """Returns the cell label of the daughters of each cell over the
-        timelapse.
-
-        0 corresponds to no daughter. This *not* the index of the daughter
-        cell within the data. To get this, use daughter_index.
-        """
-        return self.extracted_data['daughterLabel'][0][self.keep]
-
-    def _single_daughter_idx(self, mother_idx, daughter_labels):
-        trap_id, _ = self.identity(mother_idx)
-        daughter_index = [self.global_index(trap_id, cell_label) for
-                          cell_label
-                          in daughter_labels]
-        return daughter_index
-
-    @property
-    def daughter_index(self):
-        """Returns the global index of the daughters of each cell.
-
-        This is different from the daughter label because it corresponds to
-        the index of the daughter when counting all of the cells. This can
-        be used to index within the data arrays.
-        """
-        if self._daughter_index is None:
-            daughter_index = [self._single_daughter_idx(i, daughter_labels)
-                          for i, daughter_labels in enumerate(
-                                  self.daughter_label)]
-            self._daughter_index = np.array(daughter_index)
-        return self._daughter_index
-
-    @property
-    def births(self):
-        return np.array(self.extracted_data['births'][0].todense())[self.keep]
-
-    @property
-    def volume(self):
-        """Get the volume of all of the cells"""
-        return np.array(self.extracted_data['volume'][0].todense())[self.keep]
-
-    def _gr_estimation(self):
-        dt = self.time_settings['interval'] / 360  # s to h conversion
-        results = []
-        for v in tqdm(self.volume):
-            results.append(estimate_gr(v, dt))
-        merged = {k: np.stack([x[k] for x in results]) for k in results[0]}
-        self._gr_results = merged
-        return
-
-    @property
-    def growth_rate(self):
-        """Get the growth rate for all cells.
-
-        Note that this uses the gaussian processes method of estimating
-        growth rate by default. If there is no growth rate in the given file
-        (usually the case for MATLAB), it needs to run estimation first.
-        This can take a while.
-        """
-        # TODO cache the results of growth rate estimation.
-        if self._gr_results is None:
-            dt = self.time_settings['interval'] / 360  # s to h conversion
-            self._growth_rate = [estimate_gr(v, dt) for v in self.volume]
-        return self._gr_results['growth_rate']
-
-    def _fluo_attribute(self, channel, attribute):
-        channel_id = self.get_channel_index(channel)
-        res = np.array(self.extracted_data[attribute][channel_id].todense())
-        return res[self.keep]
-
-    def protein_localisation(self, channel, method='nucEstConv'):
-        """Returns protein localisation data for a given channel.
-
-        Uses the 'nucEstConv' by default. Alternatives are 'smallPeakConv',
-        'max5px', 'max2p5pc'
-        """
-        return self._fluo_attribute(channel, method)
-
-    def background_fluo(self, channel):
-        return self._fluo_attribute(channel, 'imBackground')
-
-    def mean(self, channel):
-        return self._fluo_attribute(channel, 'mean')
-
-    def median(self, channel):
-        return self._fluo_attribute(channel, 'median')
-
-    def filter(self, filename=None):
-        """Filters and saves results to and HDF5 file.
-
-        This is necessary because we cannot write to the MATLAB file,
-        so the results of the filter cannot be saved in the object.
-        """
-        super().filter(filename=filename)
-        self._growth_rate = None  # reset growth rate so it is recomputed
-
-    def to_hdf(self, filename):
-        """Store the current results, including any filtering done, to a file.
-
-        TODO Should we save filtered results or just re-do?
-        :param filename:
-        :return:
-        """
-        store = h5py.File(filename, 'w')
-        try:
-            # Store (some of the) metadata
-            for meta in ['experiment', 'username', 'microscope',
-                              'comments', 'project', 'date', 'posname',
-                              'exptid']:
-                store.attrs[meta] = self.metadata[meta]
-            # TODO store timing information?
-            store.attrs['time_interval'] = self.time_settings['interval']
-            store.attrs['timepoints'] = self.time_settings['ntimepoints']
-            store.attrs['total_duration'] = self.time_settings['totalduration']
-            # Store volume, births, daughterLabel, trapNum, cellNum
-            for key in ['volume', 'births', 'daughter_label', 'trap_num',
-                        'cell_num']:
-                store[key] = getattr(self, key)
-            # Store growth rate results
-            if self._gr_results:
-                grp = store.create_group('gaussian_process')
-                for key, val in self._gr_results.items():
-                    grp[key] = val
-            for channel in self.channels:
-                # Create a group for each channel
-                grp = store.create_group(channel)
-                # Store protein_localisation, background fluorescence, mean, median
-                # for each channel
-                grp['protein_localisation'] = self.protein_localisation(channel)
-                grp['background_fluo'] = self.background_fluo(channel)
-                grp['mean'] = self.mean(channel)
-                grp['median'] = self.median(channel)
-        finally:
-            store.close()
-
diff --git a/pcore/grouper.py b/pcore/grouper.py
deleted file mode 100644
index 9f61fc6f2a32ef243e2f83cd6911adfb58f09beb..0000000000000000000000000000000000000000
--- a/pcore/grouper.py
+++ /dev/null
@@ -1,175 +0,0 @@
-#!/usr/bin/env python3
-
-from abc import ABC, abstractmethod, abstractproperty
-from pathlib import Path
-from pathos.multiprocessing import Pool
-
-import h5py
-import numpy as np
-import pandas as pd
-
-from pcore.io.signal import Signal
-
-
-class Grouper(ABC):
-    """
-    Base grouper class
-    """
-
-    files = []
-
-    def __init__(self, dir):
-        self.files = list(Path(dir).glob("*.h5"))
-        self.load_signals()
-
-    def load_signals(self):
-        self.signals = {f.name[:-3]: Signal(f) for f in self.files}
-
-    @property
-    def fsignal(self):
-        return list(self.signals.values())[0]
-
-    @property
-    def siglist(self):
-        return self.fsignal.datasets
-
-    @abstractproperty
-    def group_names():
-        pass
-
-    def concat_signal(self, path, reduce_cols=None, axis=0, pool=8):
-        group_names = self.group_names
-        sitems = self.signals.items()
-        if pool:
-            with Pool(pool) as p:
-                signals = p.map(
-                    lambda x: concat_signal_ind(path, group_names, x[0], x[1]),
-                    sitems,
-                )
-        else:
-            signals = [
-                concat_signal_ind(path, group_names, name, signal)
-                for name, signal in sitems
-            ]
-
-        signals = [s for s in signals if s is not None]
-        sorted = pd.concat(signals, axis=axis).sort_index()
-        if reduce_cols:
-            sorted = sorted.apply(np.nanmean, axis=1)
-            spath = path.split("/")
-            sorted.name = "_".join([spath[1], spath[-1]])
-
-        return sorted
-
-    @property
-    def ntraps(self):
-        for pos, s in self.signals.items():
-            with h5py.File(s.filename, "r") as f:
-                print(pos, f["/trap_info/trap_locations"].shape[0])
-
-    def traplocs(self):
-        d = {}
-        for pos, s in self.signals.items():
-            with h5py.File(s.filename, "r") as f:
-                d[pos] = f["/trap_info/trap_locations"][()]
-        return d
-
-
-class MetaGrouper(Grouper):
-    """Group positions using metadata's 'group' number"""
-
-    pass
-
-
-class NameGrouper(Grouper):
-    """
-    Group a set of positions using a subsection of the name
-    """
-
-    def __init__(self, dir, by=None):
-        super().__init__(dir=dir)
-
-        if by is None:
-            by = (0, -4)
-        self.by = by
-
-    @property
-    def group_names(self):
-        if not hasattr(self, "_group_names"):
-            self._group_names = {}
-            for name in self.signals.keys():
-                self._group_names[name] = name[self.by[0] : self.by[1]]
-
-        return self._group_names
-
-    def aggregate_multisignals(self, paths=None, **kwargs):
-
-        aggregated = pd.concat(
-            [
-                self.concat_signal(path, reduce_cols=np.nanmean, **kwargs)
-                for path in paths
-            ],
-            axis=1,
-        )
-        # ph = pd.Series(
-        #     [
-        #         self.ph_from_group(x[list(aggregated.index.names).index("group")])
-        #         for x in aggregated.index
-        #     ],
-        #     index=aggregated.index,
-        #     name="media_pH",
-        # )
-        # self.aggregated = pd.concat((aggregated, ph), axis=1)
-
-        return aggregated
-
-
-class phGrouper(NameGrouper):
-    """
-    Grouper for pH calibration experiments where all surveyed media pH values
-    are within a single experiment.
-    """
-
-    def __init__(self, dir, by=(3, 7)):
-        super().__init__(dir=dir, by=by)
-
-    def get_ph(self):
-        self.ph = {gn: self.ph_from_group(gn) for gn in self.group_names}
-
-    @staticmethod
-    def ph_from_group(group_name):
-        if group_name.startswith("ph_"):
-            group_name = group_name[3:]
-
-        return float(group_name.replace("_", "."))
-
-    def aggregate_multisignals(self, paths):
-
-        aggregated = pd.concat(
-            [self.concat_signal(path, reduce_cols=np.nanmean) for path in paths], axis=1
-        )
-        ph = pd.Series(
-            [
-                self.ph_from_group(x[list(aggregated.index.names).index("group")])
-                for x in aggregated.index
-            ],
-            index=aggregated.index,
-            name="media_pH",
-        )
-        aggregated = pd.concat((aggregated, ph), axis=1)
-
-        return aggregated
-
-
-def concat_signal_ind(path, group_names, group, signal):
-    print("Looking at ", group)
-    try:
-        combined = signal[path]
-        combined["position"] = group
-        combined["group"] = group_names[group]
-        combined.set_index(["group", "position"], inplace=True, append=True)
-        combined.index = combined.index.swaplevel(-2, 0).swaplevel(-1, 1)
-
-        return combined
-    except:
-        return None
diff --git a/pcore/haystack.py b/pcore/haystack.py
deleted file mode 100644
index 5ca8118cd3c1e136c8f3607919ca2523055422e1..0000000000000000000000000000000000000000
--- a/pcore/haystack.py
+++ /dev/null
@@ -1,97 +0,0 @@
-import numpy as np
-from time import perf_counter
-from pathlib import Path
-
-import tensorflow as tf
-
-from pcore.io.writer import DynamicWriter
-
-
-def initialise_tf(version):
-    # Initialise tensorflow
-    if version == 1:
-        core_config = tf.ConfigProto()
-        core_config.gpu_options.allow_growth = True
-        session = tf.Session(config=core_config)
-        return session
-    # TODO this only works for TF2
-    if version == 2:
-        gpus = tf.config.experimental.list_physical_devices("GPU")
-        if gpus:
-            for gpu in gpus:
-                tf.config.experimental.set_memory_growth(gpu, True)
-            logical_gpus = tf.config.experimental.list_logical_devices("GPU")
-            print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
-        return None
-
-
-def timer(func, *args, **kwargs):
-    start = perf_counter()
-    result = func(*args, **kwargs)
-    print(f"Function {func.__name__}: {perf_counter() - start}s")
-    return result
-
-
-################## CUSTOM OBJECTS ##################################
-
-
-class ModelPredictor:
-    """Generic object that takes a NN and returns the prediction.
-
-    Use for predicting fluorescence/other from bright field.
-    This does not do instance segmentations of anything.
-    """
-
-    def __init__(self, tiler, model, name):
-        self.tiler = tiler
-        self.model = model
-        self.name = name
-
-    def get_data(self, tp):
-        # Change axes to X,Y,Z rather than Z,Y,X
-        return self.tiler.get_tp_data(tp, self.bf_channel).swapaxes(1, 3).swapaxes(1, 2)
-
-    def format_result(self, result, tp):
-        return {self.name: result, "timepoints": [tp] * len(result)}
-
-    def run_tp(self, tp, **kwargs):
-        """Simulating processing time with sleep"""
-        # Access the image
-        segmentation = self.model.predict(self.get_data(tp))
-        return self._format_result(segmentation, tp)
-
-
-class ModelPredictorWriter(DynamicWriter):
-    def __init__(self, file, name, shape, dtype):
-        super.__init__(file)
-        self.datatypes = {name: (shape, dtype), "timepoint": ((None,), np.uint16)}
-        self.group = f"{self.name}_info"
-
-
-class Saver:
-    channel_names = {0: "BrightField", 1: "GFP"}
-
-    def __init__(self, tiler, save_directory, pos_name):
-        """This class straight up saves the trap data for use with neural networks in the future."""
-        self.tiler = tiler
-        self.name = pos_name
-        self.save_dir = Path(save_directory)
-
-    def channel_dir(self, index):
-        ch_dir = self.save_dir / self.channel_names[index]
-        if not ch_dir.exists():
-            ch_dir.mkdir()
-        return ch_dir
-
-    def get_data(self, tp, ch):
-        return self.tiler.get_tp_data(tp, ch).swapaxes(1, 3).swapaxes(1, 2)
-
-    def cache(self, tp):
-        # Get a given time point
-        # split into channels
-        for ch in self.channel_names:
-            ch_dir = self.channel_dir(ch)
-            data = self.get_data(tp, ch)
-            for tid, trap in enumerate(data):
-                np.save(ch_dir / f"{self.name}_{tid}_{tp}.npy", trap)
-        return
diff --git a/pcore/io/__init__.py b/pcore/io/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/pcore/io/base.py b/pcore/io/base.py
deleted file mode 100644
index a9b911736943ecbcc9abe79300e52ceff5fe34e1..0000000000000000000000000000000000000000
--- a/pcore/io/base.py
+++ /dev/null
@@ -1,142 +0,0 @@
-from typing import Union
-import collections
-from itertools import groupby, chain, product
-
-import numpy as np
-import h5py
-
-
-class BridgeH5:
-    """
-    Base class to interact with h5 data stores.
-    It also contains functions useful to predict how long should segmentation take.
-    """
-
-    def __init__(self, filename, flag="r"):
-        self.filename = filename
-        if flag is not None:
-            self._hdf = h5py.File(filename, flag)
-
-            self._filecheck
-
-    def _filecheck(self):
-        assert "cell_info" in self._hdf, "Invalid file. No 'cell_info' found."
-
-    def close(self):
-        self._hdf.close()
-
-    def max_ncellpairs(self, nstepsback):
-        """
-        Get maximum number of cell pairs to be calculated
-        """
-
-        dset = self._hdf["cell_info"][()]
-        # attrs = self._hdf[dataset].attrs
-        pass
-
-    @property
-    def cell_tree(self):
-        return self.get_info_tree()
-
-    def get_n_cellpairs(self, nstepsback=2):
-        cell_tree = self.cell_tree
-        # get pair of consecutive trap-time points
-        pass
-
-    @staticmethod
-    def get_consecutives(tree, nstepsback):
-        # Receives a sorted tree and returns the keys of consecutive elements
-        vals = {k: np.array(list(v)) for k, v in tree.items()}  # get tp level
-        where_consec = [
-            {
-                k: np.where(np.subtract(v[n + 1 :], v[: -n - 1]) == n + 1)[0]
-                for k, v in vals.items()
-            }
-            for n in range(nstepsback)
-        ]  # get indices of consecutive elements
-        return where_consec
-
-    def get_npairs(self, nstepsback=2, tree=None):
-        if tree is None:
-            tree = self.cell_tree
-
-        consecutive = self.get_consecutives(tree, nstepsback=nstepsback)
-        flat_tree = flatten(tree)
-
-        n_predictions = 0
-        for i, d in enumerate(consecutive, 1):
-            flat = list(chain(*[product([k], list(v)) for k, v in d.items()]))
-            pairs = [(f, (f[0], f[1] + i)) for f in flat]
-            for p in pairs:
-                n_predictions += len(flat_tree.get(p[0], [])) * len(
-                    flat_tree.get(p[1], [])
-                )
-
-        return n_predictions
-
-    def get_npairs_over_time(self, nstepsback=2):
-        tree = self.cell_tree
-        npairs = []
-        for t in self._hdf["cell_info"]["processed_timepoints"][()]:
-            tmp_tree = {
-                k: {k2: v2 for k2, v2 in v.items() if k2 <= t} for k, v in tree.items()
-            }
-            npairs.append(self.get_npairs(tree=tmp_tree))
-
-        return np.diff(npairs)
-
-    def get_info_tree(
-        self, fields: Union[tuple, list] = ("trap", "timepoint", "cell_label")
-    ):
-        """
-        Returns traps, time points and labels for this position in form of a tree
-        in the hierarchy determined by the argument fields. Note that it is
-        compressed to non-empty elements and timepoints.
-
-        Default hierarchy is:
-        - trap
-         - time point
-          - cell label
-
-        This function currently produces trees of depth 3, but it can easily be
-        extended for deeper trees if needed (e.g. considering groups,
-        chambers and/or positions).
-
-        input
-        :fields: Fields to fetch from 'cell_info' inside the hdf5 storage
-
-        returns
-        :tree: Nested dictionary where keys (or branches) are the upper levels
-             and the leaves are the last element of :fields:.
-        """
-        zipped_info = (*zip(*[self._hdf["cell_info"][f][()] for f in fields]),)
-
-        return recursive_groupsort(zipped_info)
-
-
-def groupsort(iterable: Union[tuple, list]):
-    # Sorts iterable and returns a dictionary where the values are grouped by the first element.
-
-    iterable = sorted(iterable, key=lambda x: x[0])
-    grouped = {k: [x[1:] for x in v] for k, v in groupby(iterable, lambda x: x[0])}
-    return grouped
-
-
-def recursive_groupsort(iterable):
-    # Recursive extension of groupsort
-    if len(iterable[0]) > 1:
-        return {k: recursive_groupsort(v) for k, v in groupsort(iterable).items()}
-    else:  # Only two elements in list
-        return [x[0] for x in iterable]
-
-
-def flatten(d, parent_key="", sep="_"):
-    """Flatten nested dict. Adapted from https://stackoverflow.com/a/6027615"""
-    items = []
-    for k, v in d.items():
-        new_key = parent_key + (k,) if parent_key else (k,)
-        if isinstance(v, collections.MutableMapping):
-            items.extend(flatten(v, new_key, sep=sep).items())
-        else:
-            items.append((new_key, v))
-    return dict(items)
diff --git a/pcore/io/matlab.py b/pcore/io/matlab.py
deleted file mode 100644
index a4ed598459ef0154682bc9faa035c77df2de630d..0000000000000000000000000000000000000000
--- a/pcore/io/matlab.py
+++ /dev/null
@@ -1,569 +0,0 @@
-"""Read and convert MATLAB files from Swain Lab platform.
-
-TODO: Information that I need from lab members esp J and A
-    * Lots of examples to try
-    * Any ideas on what these Map objects are?
-
-TODO: Update Swain Lab wiki
-
-All credit to Matt Bauman for
-the reverse engineering at https://nbviewer.jupyter.org/gist/mbauman/9121961
-"""
-
-import re
-import struct
-import sys
-from collections import Iterable
-from io import BytesIO
-
-import h5py
-import numpy as np
-import pandas as pd
-import scipy
-from numpy.compat import asstr
-
-# TODO only use this if scipy>=1.6 or so
-from scipy.io import matlab
-from scipy.io.matlab.mio5 import MatFile5Reader
-from scipy.io.matlab.mio5_params import mat_struct
-
-from pcore.io.utils import read_int, read_string, read_delim
-
-
-def read_minimat_vars(rdr):
-    rdr.initialize_read()
-    mdict = {"__globals__": []}
-    i = 0
-    while not rdr.end_of_stream():
-        hdr, next_position = rdr.read_var_header()
-        name = asstr(hdr.name)
-        if name == "":
-            name = "var_%d" % i
-            i += 1
-        res = rdr.read_var_array(hdr, process=False)
-        rdr.mat_stream.seek(next_position)
-        mdict[name] = res
-        if hdr.is_global:
-            mdict["__globals__"].append(name)
-    return mdict
-
-
-def read_workspace_vars(fname):
-    fp = open(fname, "rb")
-    rdr = MatFile5Reader(fp, struct_as_record=True, squeeze_me=True)
-    vars = rdr.get_variables()
-    fws = vars["__function_workspace__"]
-    ws_bs = BytesIO(fws.tostring())
-    ws_bs.seek(2)
-    rdr.mat_stream = ws_bs
-    # Guess byte order.
-    mi = rdr.mat_stream.read(2)
-    rdr.byte_order = mi == b"IM" and "<" or ">"
-    rdr.mat_stream.read(4)  # presumably byte padding
-    mdict = read_minimat_vars(rdr)
-    fp.close()
-    return mdict
-
-
-class matObject:
-    """A python read-out of MATLAB objects
-    The objects pulled out of the
-    """
-
-    def __init__(self, filepath):
-        self.filepath = filepath  # For record
-        self.classname = None
-        self.object_name = None
-        self.buffer = None
-        self.version = None
-        self.names = None
-        self.segments = None
-        self.heap = None
-        self.attrs = dict()
-        self._init_buffer()
-        self._init_heap()
-        self._read_header()
-        self.parse_file()
-
-    def __getitem__(self, item):
-        return self.attrs[item]
-
-    def keys(self):
-        """Returns the names of the available properties"""
-        return self.attrs.keys()
-
-    def get(self, item, default=None):
-        return self.attrs.get(item, default)
-
-    def _init_buffer(self):
-        fp = open(self.filepath, "rb")
-        rdr = MatFile5Reader(fp, struct_as_record=True, squeeze_me=True)
-        vars = rdr.get_variables()
-        self.classname = vars["None"]["s2"][0].decode("utf-8")
-        self.object_name = vars["None"]["s0"][0].decode("utf-8")
-        fws = vars["__function_workspace__"]
-        self.buffer = BytesIO(fws.tostring())
-        fp.close()
-
-    def _init_heap(self):
-        super_data = read_workspace_vars(self.filepath)
-        elem = super_data["var_0"][0, 0]
-        if isinstance(elem, mat_struct):
-            self.heap = elem.MCOS[0]["arr"]
-        else:
-            self.heap = elem["MCOS"][0]["arr"]
-
-    def _read_header(self):
-        self.buffer.seek(248)  # the start of the header
-        version = read_int(self.buffer)
-        n_str = read_int(self.buffer)
-
-        offsets = read_int(self.buffer, n=6)
-
-        # check that the next two are zeros
-        reserved = read_int(self.buffer, n=2)
-        assert all(
-            [x == 0 for x in reserved]
-        ), "Non-zero reserved header fields: {}".format(reserved)
-        # check that we are at the right place
-        assert self.buffer.tell() == 288, "String elemnts begin at 288"
-        hdrs = []
-        for i in range(n_str):
-            hdrs.append(read_string(self.buffer))
-        self.names = hdrs
-        self.version = version
-        # The offsets are actually STARTING FROM 248 as well
-        self.segments = [x + 248 for x in offsets]  # list(offsets)
-        return
-
-    def parse_file(self):
-        # Get class attributes from segment 1
-        self.buffer.seek(self.segments[0])
-        classes = self._parse_class_attributes(self.segments[1])
-        # Get first set of properties from segment 2
-        self.buffer.seek(self.segments[1])
-        props1 = self._parse_properties(self.segments[2])
-        # Get the property description from segment 3
-        self.buffer.seek(self.segments[2])
-        object_info = self._parse_prop_description(classes, self.segments[3])
-        # Get more properties from segment 4
-        self.buffer.seek(self.segments[3])
-        props2 = self._parse_properties(self.segments[4])
-        # Check that the last segment is empty
-        self.buffer.seek(self.segments[4])
-        seg5_length = (self.segments[5] - self.segments[4]) // 8
-        read_delim(self.buffer, seg5_length)
-        props = (props1, props2)
-        self._to_attrs(object_info, props)
-
-    def _to_attrs(self, object_info, props):
-        """Re-organise the various classes and subclasses into a nested
-        dictionary.
-        :return:
-        """
-        for pkg_clss, indices, idx in object_info:
-            pkg, clss = pkg_clss
-            idx = max(indices)
-            which = indices.index(idx)
-            obj = flatten_obj(props[which][idx])
-            subdict = self.attrs
-            if pkg != "":
-                subdict = self.attrs.setdefault(pkg, {})
-            if clss in subdict:
-                if isinstance(subdict[clss], list):
-                    subdict[clss].append(obj)
-                else:
-                    subdict[clss] = [subdict[clss]]
-                    subdict[clss].append(obj)
-            else:
-                subdict[clss] = obj
-
-    def describe(self):
-        describe(self.attrs)
-
-    def _parse_class_attributes(self, section_end):
-        """Read the Class attributes = the first segment"""
-        read_delim(self.buffer, 4)
-        classes = []
-        while self.buffer.tell() < section_end:
-            package_index = read_int(self.buffer) - 1
-            package = self.names[package_index] if package_index > 0 else ""
-            name_idx = read_int(self.buffer) - 1
-            name = self.names[name_idx] if name_idx > 0 else ""
-            classes.append((package, name))
-            read_delim(self.buffer, 2)
-        return classes
-
-    def _parse_prop_description(self, classes, section_end):
-        """Parse the description of each property = the third segment"""
-        read_delim(self.buffer, 6)
-        object_info = []
-        while self.buffer.tell() < section_end:
-            class_idx = read_int(self.buffer) - 1
-            class_type = classes[class_idx]
-            read_delim(self.buffer, 2)
-            indices = [x - 1 for x in read_int(self.buffer, 2)]
-            obj_id = read_int(self.buffer)
-            object_info.append((class_type, indices, obj_id))
-        return object_info
-
-    def _parse_properties(self, section_end):
-        """
-        Parse the actual values of the attributes == segments 2 and 4
-        """
-        read_delim(self.buffer, 2)
-        props = []
-        while self.buffer.tell() < section_end:
-            n_props = read_int(self.buffer)
-            d = parse_prop(n_props, self.buffer, self.names, self.heap)
-            if not d:  # Empty dictionary
-                break
-            props.append(d)
-            # Move to next 8-byte aligned offset
-            self.buffer.seek(self.buffer.tell() + self.buffer.tell() % 8)
-        return props
-
-    def to_hdf(self, filename):
-        f = h5py.File(filename, mode="w")
-        save_to_hdf(f, "/", self.attrs)
-
-
-def describe(d, indent=0, width=4, out=None):
-    for key, value in d.items():
-        print(f'{"": <{width * indent}}' + str(key), file=out)
-        if isinstance(value, dict):
-            describe(value, indent + 1, out=out)
-        elif isinstance(value, np.ndarray):
-            print(
-                f'{"": <{width * (indent + 1)}} {value.shape} array '
-                f"of type {value.dtype}",
-                file=out,
-            )
-        elif isinstance(value, scipy.sparse.csc.csc_matrix):
-            print(
-                f'{"": <{width * (indent + 1)}} {value.shape} '
-                f"sparse matrix of type {value.dtype}",
-                file=out,
-            )
-        elif isinstance(value, Iterable) and not isinstance(value, str):
-            print(
-                f'{"": <{width * (indent + 1)}} {type(value)} of len ' f"{len(value)}",
-                file=out,
-            )
-        else:
-            print(f'{"": <{width * (indent + 1)}} {value}', file=out)
-
-
-def parse_prop(n_props, buff, names, heap):
-    d = dict()
-    for i in range(n_props):
-        name_idx, flag, heap_idx = read_int(buff, 3)
-        if flag not in [0, 1, 2] and name_idx == 0:
-            n_props = flag
-            buff.seek(buff.tell() - 1)  # go back on one byte
-            d = parse_prop(n_props, buff, names, heap)
-        else:
-            item_name = names[name_idx - 1]
-            if flag == 0:
-                d[item_name] = names[heap_idx]
-            elif flag == 1:
-                d[item_name] = heap[heap_idx + 2]  # Todo: what is the heap?
-            elif flag == 2:
-                assert 0 <= heap_idx <= 1, (
-                    "Boolean flag has a value other " "than 0 or 1 "
-                )
-                d[item_name] = bool(heap_idx)
-            else:
-                raise ValueError(
-                    "unknown flag {} for property {} with heap "
-                    "index {}".format(flag, item_name, heap_idx)
-                )
-    return d
-
-
-def is_object(x):
-    """Checking object dtype for structured numpy arrays"""
-    if x.dtype.names is not None and len(x.dtype.names) > 1:  # Complex obj
-        return all(x.dtype[ix] == np.object for ix in range(len(x.dtype)))
-    else:  # simple object
-        return x.dtype == np.object
-
-
-def flatten_obj(arr):
-    # TODO turn structured arrays into nested dicts of lists rather that
-    #  lists of dicts
-    if isinstance(arr, np.ndarray):
-        if arr.dtype.names:
-            arrdict = dict()
-            for fieldname in arr.dtype.names:
-                arrdict[fieldname] = flatten_obj(arr[fieldname])
-            arr = arrdict
-        elif arr.dtype == np.object and arr.ndim == 0:
-            arr = flatten_obj(arr[()])
-        elif arr.dtype == np.object and arr.ndim > 0:
-            try:
-                arr = np.stack(arr)
-                if arr.dtype.names:
-                    d = {k: flatten_obj(arr[k]) for k in arr.dtype.names}
-                    arr = d
-            except:
-                arr = [flatten_obj(x) for x in arr.tolist()]
-    elif isinstance(arr, dict):
-        arr = {k: flatten_obj(v) for k, v in arr.items()}
-    elif isinstance(arr, list):
-        try:
-            arr = flatten_obj(np.stack(arr))
-        except:
-            arr = [flatten_obj(x) for x in arr]
-    return arr
-
-
-def save_to_hdf(h5file, path, dic):
-    """
-    Saving a MATLAB object to HDF5
-    """
-    if isinstance(dic, list):
-        dic = {str(i): v for i, v in enumerate(dic)}
-    for key, item in dic.items():
-        if isinstance(item, (int, float, str)):
-            h5file[path].attrs.create(key, item)
-        elif isinstance(item, list):
-            if len(item) == 0 and path + key not in h5file:  # empty list empty group
-                h5file.create_group(path + key)
-            if all(isinstance(x, (int, float, str)) for x in item):
-                if path not in h5file:
-                    h5file.create_group(path)
-                h5file[path].attrs.create(key, item)
-            else:
-                if path + key not in h5file:
-                    h5file.create_group(path + key)
-                save_to_hdf(
-                    h5file, path + key + "/", {str(i): x for i, x in enumerate(item)}
-                )
-        elif isinstance(item, scipy.sparse.csc.csc_matrix):
-            try:
-                h5file.create_dataset(
-                    path + key, data=item.todense(), compression="gzip"
-                )
-            except Exception as e:
-                print(path + key)
-                raise e
-        elif isinstance(item, (np.ndarray, np.int64, np.float64)):
-            if item.dtype == np.dtype("<U1"):  # Strings to 'S' type for HDF5
-                item = item.astype("S")
-            try:
-                h5file.create_dataset(path + key, data=item, compression="gzip")
-            except Exception as e:
-                print(path + key)
-                raise e
-        elif isinstance(item, dict):
-            if path + key not in h5file:
-                h5file.create_group(path + key)
-            save_to_hdf(h5file, path + key + "/", item)
-        elif item is None:
-            continue
-        else:
-            raise ValueError(f"Cannot save {type(item)} type at key {path + key}")
-
-
-## NOT YET FULLY IMPLEMENTED!
-
-
-class _Info:
-    def __init__(self, info):
-        self.info = info
-        self._identity = None
-
-    def __getitem__(self, item):
-        val = self.info[item]
-        if val.shape[0] == 1:
-            val = val[0]
-        if 0 in val[1].shape:
-            val = val[0]
-        if isinstance(val, scipy.sparse.csc.csc_matrix):
-            return np.asarray(val.todense())
-        if val.dtype == np.dtype("O"):
-            # 3d "sparse matrix"
-            if all(isinstance(x, scipy.sparse.csc.csc_matrix) for x in val):
-                val = np.array([x.todense() for x in val])
-            # TODO: The actual object data
-        equality = val[0] == val[1]
-        if isinstance(equality, scipy.sparse.csc.csc_matrix):
-            equality = equality.todense()
-        if equality.all():
-            val = val[0]
-        return np.squeeze(val)
-
-    @property
-    def categories(self):
-        return self.info.dtype.names
-
-
-class TrapInfo(_Info):
-    def __init__(self, info):
-        """
-        The information on all of the traps in a given position.
-
-        :param info: The TrapInfo structure, can be found in the heap of
-        the CTimelapse at index 7
-        """
-        super().__init__(info)
-
-
-class CellInfo(_Info):
-    def __init__(self, info):
-        """
-        The extracted information of all cells in a given position.
-        :param info: The CellInfo structure, can be found in the heap
-        of the CTimelapse at index 15.
-        """
-        super().__init__(info)
-
-    @property
-    def identity(self):
-        if self._identity is None:
-            self._identity = pd.DataFrame(
-                zip(self["trapNum"], self["cellNum"]), columns=["trapNum", "cellNum"]
-            )
-        return self._identity
-
-    def index(self, trapNum, cellNum):
-        query = "trapNum=={} and cellNum=={}".format(trapNum, cellNum)
-        try:
-            result = self.identity.query(query).index[0]
-        except Exception as e:
-            print(query)
-            raise e
-        return result
-
-    @property
-    def nucEstConv1(self):
-        return np.asarray(self.info["nuc_est_conv"][0][0].todense())
-
-    @property
-    def nucEstConv2(self):
-        return np.asarray(self.info["nuc_est_conv"][0][1].todense())
-
-    @property
-    def mothers(self):
-        return np.where((self["births"] != 0).any(axis=1))[0]
-
-    def daughters(self, mother_index):
-        """
-        Get daughters of cell with index `mother_index`.
-
-        :param mother_index: the index of the mother within the data. This is
-        different from the mother's cell/trap identity.
-        """
-        daughter_ids = np.unique(self["daughterLabel"][mother_index]).tolist()
-        daughter_ids.remove(0)
-        mother_trap = self.identity["trapNum"].loc[mother_index]
-        daughters = [self.index(mother_trap, cellNum) for cellNum in daughter_ids]
-        return daughters
-
-
-def _todict(matobj):
-    """
-    A recursive function which constructs from matobjects nested dictionaries
-    """
-    if not hasattr(matobj, "_fieldnames"):
-        return matobj
-    d = {}
-    for strg in matobj._fieldnames:
-        elem = matobj.__dict__[strg]
-        if isinstance(elem, matlab.mio5_params.mat_struct):
-            d[strg] = _todict(elem)
-        elif isinstance(elem, np.ndarray):
-            d[strg] = _toarray(elem)
-        else:
-            d[strg] = elem
-    return d
-
-
-def _toarray(ndarray):
-    """
-    A recursive function which constructs ndarray from cellarrays
-    (which are loaded as numpy ndarrays), recursing into the elements
-    if they contain matobjects.
-    """
-    if ndarray.dtype != "float64":
-        elem_list = []
-        for sub_elem in ndarray:
-            if isinstance(sub_elem, matlab.mio5_params.mat_struct):
-                elem_list.append(_todict(sub_elem))
-            elif isinstance(sub_elem, np.ndarray):
-                elem_list.append(_toarray(sub_elem))
-            else:
-                elem_list.append(sub_elem)
-        return np.array(elem_list)
-    else:
-        return ndarray
-
-
-from pathlib import Path
-
-
-class Strain:
-    """The cell info for all the positions of a strain."""
-
-    def __init__(self, origin, strain):
-        self.origin = Path(origin)
-        self.files = [x for x in origin.iterdir() if strain in str(x)]
-        self.cts = [matObject(x) for x in self.files]
-        self.cinfos = [CellInfo(x.heap[15]) for x in self.cts]
-        self._identity = None
-
-    def __getitem__(self, item):
-        try:
-            return np.concatenate([c[item] for c in self.cinfos])
-        except ValueError:  # If first axis is the channel
-            return np.concatenate([c[item] for c in self.cinfos], axis=1)
-
-    @property
-    def categories(self):
-        return set.union(*[set(c.categories) for c in self.cinfos])
-
-    @property
-    def identity(self):
-        if self._identity is None:
-            identities = []
-            for pos_id, cinfo in enumerate(self.cinfos):
-                identity = cinfo.identity
-                identity["position"] = pos_id
-                identities.append(identity)
-            self._identity = pd.concat(identities, ignore_index=True)
-        return self._identity
-
-    def index(self, posNum, trapNum, cellNum):
-        query = "position=={} and trapNum=={} and cellNum=={}".format(
-            posNum, trapNum, cellNum
-        )
-        try:
-            result = self.identity.query(query).index[0]
-        except Exception as e:
-            raise e
-        return result
-
-    @property
-    def mothers(self):
-        # At least two births are needed to be considered a mother cell
-        return np.where(np.count_nonzero(self["births"], axis=1) > 3)[0]
-
-    def daughters(self, mother_index):
-        """
-        Get daughters of cell with index `mother_index`.
-
-        :param mother_index: the index of the mother within the data. This is
-        different from the mother's pos/trap/cell identity.
-        """
-        daughter_ids = np.unique(self["daughterLabel"][mother_index]).tolist()
-        if 0 in daughter_ids:
-            daughter_ids.remove(0)
-        mother_pos_trap = self.identity[["position", "trapNum"]].loc[mother_index]
-        daughters = []
-        for cellNum in daughter_ids:
-            try:
-                daughters.append(self.index(*mother_pos_trap, cellNum))
-            except IndexError:
-                continue
-        return daughters
diff --git a/pcore/io/metadata_parser.py b/pcore/io/metadata_parser.py
deleted file mode 100644
index 81938152ecdf00bf3d892d4231ca44e5b47d6635..0000000000000000000000000000000000000000
--- a/pcore/io/metadata_parser.py
+++ /dev/null
@@ -1,77 +0,0 @@
-"""
-Parse microscopy log files according to specified JSON grammars.
-Produces dictionary to include in HDF5
-"""
-import glob
-import os
-import numpy as np
-import pandas as pd
-from datetime import datetime, timezone
-from pytz import timezone
-
-from logfile_parser import Parser
-
-# Paradigm: able to do something with all datatypes present in log files,
-# then pare down on what specific information is really useful later.
-
-# Needed because HDF5 attributes do not support dictionaries
-def flatten_dict(nested_dict, separator='/'):
-    '''
-    Flattens nested dictionary
-    '''
-    df = pd.json_normalize(nested_dict, sep=separator)
-    return df.to_dict(orient='records')[0]
-
-# Needed because HDF5 attributes do not support datetime objects
-# Takes care of time zones & daylight saving
-def datetime_to_timestamp(time, locale = 'Europe/London'):
-    '''
-    Convert datetime object to UNIX timestamp
-    '''
-    return timezone(locale).localize(time).timestamp()
-
-def find_file(root_dir, regex):
-    file = glob.glob(os.path.join(str(root_dir), regex))
-    if len(file) != 1:
-        return None
-    else:
-        return file[0]
-
-# TODO: re-write this as a class if appropriate
-# WARNING: grammars depend on the directory structure of a locally installed
-# logfile_parser repo
-def parse_logfiles(root_dir,
-                   acq_grammar = 'multiDGUI_acq_format.json',
-                   log_grammar = 'multiDGUI_log_format.json'):
-    '''
-    Parse acq and log files depending on the grammar specified, then merge into
-    single dict.
-    '''
-    # Both acq and log files contain useful information.
-    #ACQ_FILE = 'flavin_htb2_glucose_long_ramp_DelftAcq.txt'
-    #LOG_FILE = 'flavin_htb2_glucose_long_ramp_Delftlog.txt'
-    log_parser = Parser(log_grammar)
-    try:
-        log_file = find_file(root_dir, '*log.txt')
-    except:
-        raise ValueError('Experiment log file not found.')
-    with open(log_file, 'r') as f:
-        log_parsed = log_parser.parse(f)
-
-    acq_parser = Parser(acq_grammar)
-    try:
-        acq_file = find_file(root_dir, '*[Aa]cq.txt')
-    except:
-        raise ValueError('Experiment acq file not found.')
-    with open(acq_file, 'r') as f:
-        acq_parsed = acq_parser.parse(f)
-
-    parsed = {**acq_parsed, **log_parsed}
-
-    for key, value in parsed.items():
-        if isinstance(value, datetime):
-            parsed[key] = datetime_to_timestamp(value)
-
-    parsed_flattened = flatten_dict(parsed)
-
-    return parsed_flattened
diff --git a/pcore/io/omero.py b/pcore/io/omero.py
deleted file mode 100644
index b0e5eb65cbb395b61e595eb844b4b6d3e3d1c5d1..0000000000000000000000000000000000000000
--- a/pcore/io/omero.py
+++ /dev/null
@@ -1,133 +0,0 @@
-import h5py
-import omero
-from omero.gateway import BlitzGateway
-from pcore.experiment import get_data_lazy
-from pcore.cells import CellsHDF
-
-
-class Argo:
-    # TODO use the one in extraction?
-    def __init__(
-        self, host="islay.bio.ed.ac.uk", username="upload", password="***REMOVED***"
-    ):
-        self.conn = None
-        self.host = host
-        self.username = username
-        self.password = password
-
-    def get_meta(self):
-        pass
-
-    def __enter__(self):
-        self.conn = BlitzGateway(
-            host=self.host, username=self.username, passwd=self.password
-        )
-        self.conn.connect()
-        return self
-
-    def __exit__(self, *exc):
-        self.conn.close()
-        return False
-
-
-class Dataset(Argo):
-    def __init__(self, expt_id):
-        super().__init__()
-        self.expt_id = expt_id
-        self._files = None
-
-    @property
-    def dataset(self):
-        return self.conn.getObject("Dataset", self.expt_id)
-
-    @property
-    def name(self):
-        return self.dataset.getName()
-
-    @property
-    def date(self):
-        return self.dataset.getDate()
-
-    @property
-    def unique_name(self):
-        return "_".join((self.date.strftime("%Y_%m_%d").replace("/", "_"), self.name))
-
-    def get_images(self):
-        return {im.getName(): im.getId() for im in self.dataset.listChildren()}
-
-    @property
-    def files(self):
-        if self._files is None:
-            self._files = {
-                x.getFileName(): x
-                for x in self.dataset.listAnnotations()
-                if isinstance(x, omero.gateway.FileAnnotationWrapper)
-            }
-        return self._files
-
-    @property
-    def tags(self):
-        if self._tags is None:
-            self._tags = {
-                x.getName(): x
-                for x in self.dataset.listAnnotations()
-                if isinstance(x, omero.gateway.TagAnnotationWrapper)
-            }
-        return self._tags
-
-    def cache_logs(self, root_dir):
-        for name, annotation in self.files.items():
-            filepath = root_dir / annotation.getFileName().replace("/", "_")
-            if str(filepath).endswith("txt") and not filepath.exists():
-                # Save only the text files
-                with open(str(filepath), "wb") as fd:
-                    for chunk in annotation.getFileInChunks():
-                        fd.write(chunk)
-        return True
-
-
-class Image(Argo):
-    def __init__(self, image_id):
-        super().__init__()
-        self.image_id = image_id
-        self._image_wrap = None
-
-    @property
-    def image_wrap(self):
-        # TODO check that it is alive/ connected
-        if self._image_wrap is None:
-            self._image_wrap = self.conn.getObject("Image", self.image_id)
-        return self._image_wrap
-
-    @property
-    def name(self):
-        return self.image_wrap.getName()
-
-    @property
-    def data(self):
-        return get_data_lazy(self.image_wrap)
-
-    @property
-    def metadata(self):
-        meta = dict()
-        meta["size_x"] = self.image_wrap.getSizeX()
-        meta["size_y"] = self.image_wrap.getSizeY()
-        meta["size_z"] = self.image_wrap.getSizeZ()
-        meta["size_c"] = self.image_wrap.getSizeC()
-        meta["size_t"] = self.image_wrap.getSizeT()
-        meta["channels"] = self.image_wrap.getChannelLabels()
-        meta["name"] = self.image_wrap.getName()
-        return meta
-
-
-class Cells(CellsHDF):
-    def __init__(self, filename):
-        file = h5py.File(filename, "r")
-        super().__init__(file)
-
-    def __enter__(self):
-        return self
-
-    def __exit__(self, *exc):
-        self.close
-        return False
diff --git a/pcore/io/signal.py b/pcore/io/signal.py
deleted file mode 100644
index d2816a5acefccd86638f868287e7c25c601edd5f..0000000000000000000000000000000000000000
--- a/pcore/io/signal.py
+++ /dev/null
@@ -1,234 +0,0 @@
-import numpy as np
-from copy import copy
-from itertools import accumulate
-
-from numpy import ndarray
-
-# from more_itertools import first_true
-
-import h5py
-import pandas as pd
-from utils_find_1st import find_1st, cmp_larger
-
-from pcore.io.base import BridgeH5
-
-
-class Signal(BridgeH5):
-    """
-    Class that fetches data from the hdf5 storage for post-processing
-    """
-
-    def __init__(self, file):
-        super().__init__(file, flag=None)
-
-        self.names = ["experiment", "position", "trap"]
-
-    @staticmethod
-    def add_name(df, name):
-        df.name = name
-        return df
-
-    def mothers(self, signal, cutoff=0.8):
-        df = self[signal]
-        get_mothers = lambda df: df.loc[df.notna().sum(axis=1) > df.shape[1] * cutoff]
-        if isinstance(df, pd.DataFrame):
-            return get_mothers(df)
-        elif isinstance(df, list):
-            return [get_mothers(d) for d in df]
-
-    def __getitem__(self, dsets):
-
-        if isinstance(dsets, str) and (
-            dsets.startswith("postprocessing")
-            or dsets.startswith("/postprocessing")
-            or dsets.endswith("imBackground")
-        ):
-            df = self.get_raw(dsets)
-
-        elif isinstance(dsets, str):
-            df = self.apply_prepost(dsets)
-
-        elif isinstance(dsets, list):
-            is_bgd = [dset.endswith("imBackground") for dset in dsets]
-            assert sum(is_bgd) == 0 or sum(is_bgd) == len(
-                dsets
-            ), "Trap data and cell data can't be mixed"
-            with h5py.File(self.filename, "r") as f:
-                return [self.add_name(self.apply_prepost(dset), dset) for dset in dsets]
-
-        return self.add_name(df, dsets)
-
-    def apply_prepost(self, dataset: str):
-        merges = self.get_merges()
-        with h5py.File(self.filename, "r") as f:
-            df = self.dset_to_df(f, dataset)
-
-            merged = df
-            if merges.any():
-                # Split in two dfs, one with rows relevant for merging and one without them
-                mergable_ids = pd.MultiIndex.from_arrays(
-                    np.unique(merges.reshape(-1, 2), axis=0).T,
-                    names=df.index.names,
-                )
-                merged = self.apply_merge(df.loc[mergable_ids], merges)
-
-                nonmergable_ids = df.index.difference(mergable_ids)
-
-                merged = pd.concat(
-                    (merged, df.loc[nonmergable_ids]), names=df.index.names
-                )
-
-            search = lambda a, b: np.where(
-                np.in1d(
-                    np.ravel_multi_index(a.T, a.max(0) + 1),
-                    np.ravel_multi_index(b.T, a.max(0) + 1),
-                )
-            )
-            if "modifiers/picks" in f:
-                picks = self.get_picks(names=merged.index.names)
-                missing_cells = [i for i in picks if tuple(i) not in set(merged.index)]
-
-                if picks:
-                    # return merged.loc[
-                    #     set(picks).intersection([tuple(x) for x in merged.index])
-                    # ]
-                    return merged.loc[picks]
-                else:
-                    if isinstance(merged.index, pd.MultiIndex):
-                        empty_lvls = [[] for i in merged.index.names]
-                        index = pd.MultiIndex(
-                            levels=empty_lvls,
-                            codes=empty_lvls,
-                            names=merged.index.names,
-                        )
-                    else:
-                        index = pd.Index([], name=merged.index.name)
-                    merged = pd.DataFrame([], index=index)
-            return merged
-
-    @property
-    def datasets(self):
-        with h5py.File(self.filename, "r") as f:
-            dsets = f.visititems(self._if_ext_or_post)
-        return dsets
-
-    def get_merged(self, dataset):
-        return self.apply_prepost(dataset, skip_pick=True)
-
-    @property
-    def merges(self):
-        with h5py.File(self.filename, "r") as f:
-            dsets = f.visititems(self._if_merges)
-        return dsets
-
-    @property
-    def n_merges(self):
-        print("{} merge events".format(len(self.merges)))
-
-    @property
-    def merges(self):
-        with h5py.File(self.filename, "r") as f:
-            dsets = f.visititems(self._if_merges)
-        return dsets
-
-    @property
-    def picks(self):
-        with h5py.File(self.filename, "r") as f:
-            dsets = f.visititems(self._if_picks)
-        return dsets
-
-    def apply_merge(self, df, changes):
-        if len(changes):
-
-            for target, source in changes:
-                df.loc[tuple(target)] = self.join_tracks_pair(
-                    df.loc[tuple(target)], df.loc[tuple(source)]
-                )
-                df.drop(tuple(source), inplace=True)
-
-        return df
-
-    def get_raw(self, dataset):
-        if isinstance(dataset, str):
-            with h5py.File(self.filename, "r") as f:
-                return self.dset_to_df(f, dataset)
-        elif isinstance(dataset, list):
-            return [self.get_raw(dset) for dset in dataset]
-
-    def get_merges(self):
-        # fetch merge events going up to the first level
-        with h5py.File(self.filename, "r") as f:
-            merges = f.get("modifiers/merges", np.array([]))
-            if not isinstance(merges, np.ndarray):
-                merges = merges[()]
-
-        return merges
-
-    # def get_picks(self, levels):
-    def get_picks(self, names, path="modifiers/picks/"):
-        with h5py.File(self.filename, "r") as f:
-            if path in f:
-                return list(zip(*[f[path + name] for name in names]))
-                # return f["modifiers/picks"]
-            else:
-                return None
-
-    def dset_to_df(self, f, dataset):
-        dset = f[dataset]
-        names = copy(self.names)
-        if not dataset.endswith("imBackground"):
-            names.append("cell_label")
-        lbls = {lbl: dset[lbl][()] for lbl in names if lbl in dset.keys()}
-        index = pd.MultiIndex.from_arrays(
-            list(lbls.values()), names=names[-len(lbls) :]
-        )
-
-        columns = (
-            dset["timepoint"][()] if "timepoint" in dset else dset.attrs["columns"]
-        )
-
-        df = pd.DataFrame(dset[("values")][()], index=index, columns=columns)
-
-        return df
-
-    @staticmethod
-    def dataset_to_df(f: h5py.File, path: str, mode: str = "h5py"):
-
-        if mode is "h5py":
-            all_indices = ["experiment", "position", "trap", "cell_label"]
-            indices = {k: f[path][k][()] for k in all_indices if k in f[path].keys()}
-            return pd.DataFrame(
-                f[path + "/values"][()],
-                index=pd.MultiIndex.from_arrays(
-                    list(indices.values()), names=indices.keys()
-                ),
-                columns=f[path + "/timepoint"][()],
-            )
-
-    @staticmethod
-    def _if_ext_or_post(name, *args):
-        flag = False
-        if name.startswith("extraction") and len(name.split("/")) == 4:
-            flag = True
-        elif name.startswith("postprocessing") and len(name.split("/")) == 3:
-            flag = True
-
-        if flag:
-            print(name)
-
-    @staticmethod
-    def _if_merges(name: str, obj):
-        if isinstance(obj, h5py.Dataset) and name.startswith("modifiers/merges"):
-            return obj[()]
-
-    @staticmethod
-    def _if_picks(name: str, obj):
-        if isinstance(obj, h5py.Group) and name.endswith("picks"):
-            return obj[()]
-
-    @staticmethod
-    def join_tracks_pair(target, source):
-        tgt_copy = copy(target)
-        end = find_1st(target.values[::-1], 0, cmp_larger)
-        tgt_copy.iloc[-end:] = source.iloc[-end:].values
-        return tgt_copy
diff --git a/pcore/io/utils.py b/pcore/io/utils.py
deleted file mode 100644
index a1029e822d7b1fa91daf28f63886d9fa44ce4bc2..0000000000000000000000000000000000000000
--- a/pcore/io/utils.py
+++ /dev/null
@@ -1,44 +0,0 @@
-import re
-import struct
-
-
-def clean_ascii(text):
-    return re.sub(r'[^\x20-\x7F]', '.', text)
-
-
-def xxd(x, start=0, stop=None):
-    if stop is None:
-        stop = len(x)
-    for i in range(start, stop, 8):
-        # Row number
-        print("%04d" % i, end="   ")
-        # Hexadecimal bytes
-        for r in range(i, i + 8):
-            print("%02x" % x[r], end="")
-            if (r + 1) % 4 == 0:
-                print("  ", end="")
-        # ASCII
-        print("   ", clean_ascii(x[i:i + 8].decode('utf-8', errors='ignore')),
-              "   ", end="")
-        # Int32
-        print('{:>10} {:>10}'.format(*struct.unpack('II', x[i: i + 8])),
-              end="   ")
-        print("")  # Newline
-    return
-
-
-# Buffer reading functions
-def read_int(buffer, n=1):
-    res = struct.unpack('I' * n, buffer.read(4 * n))
-    if n == 1:
-        res = res[0]
-    return res
-
-
-def read_string(buffer):
-    return ''.join([x.decode() for x in iter(lambda: buffer.read(1), b'\x00')])
-
-
-def read_delim(buffer, n):
-    delim = read_int(buffer, n)
-    assert all([x == 0 for x in delim]), "Unknown nonzero value in delimiter"
diff --git a/pcore/io/writer.py b/pcore/io/writer.py
deleted file mode 100644
index 2da1253c10b17198e908e9cdd1dfeaac4bfc6f61..0000000000000000000000000000000000000000
--- a/pcore/io/writer.py
+++ /dev/null
@@ -1,567 +0,0 @@
-import itertools
-import logging
-from time import perf_counter
-
-import h5py
-import numpy as np
-import pandas as pd
-from collections.abc import Iterable
-from typing import Dict
-
-from utils_find_1st import find_1st, cmp_equal
-
-from pcore.io.base import BridgeH5
-from pcore.utils import timed
-
-
-#################### Dynamic version ##################################
-
-
-def load_attributes(file: str, group="/"):
-    with h5py.File(file, "r") as f:
-        meta = dict(f[group].attrs.items())
-    return meta
-
-
-class DynamicWriter:
-    data_types = {}
-    group = ""
-    compression = None
-
-    def __init__(self, file: str):
-        self.file = file
-        self.metadata = load_attributes(file)
-
-    def _append(self, data, key, hgroup):
-        """Append data to existing dataset."""
-        try:
-            n = len(data)
-        except:
-            # Attributes have no length
-            n = 1
-        if key not in hgroup:
-            # TODO Include sparsity check
-            max_shape, dtype = self.datatypes[key]
-            shape = (n,) + max_shape[1:]
-            hgroup.create_dataset(
-                key,
-                shape=shape,
-                maxshape=max_shape,
-                dtype=dtype,
-                compression=self.compression,
-            )
-            hgroup[key][()] = data
-        else:
-            # The dataset already exists, expand it
-
-            try:  # FIXME This is broken by bugged mother-bud assignment
-                dset = hgroup[key]
-                dset.resize(dset.shape[0] + n, axis=0)
-                dset[-n:] = data
-            except:
-                logging.debug(
-                    "DynamicWriter:Inconsistency between dataset shape and new empty data"
-                )
-        return
-
-    def _overwrite(self, data, key, hgroup):
-        """Overwrite existing dataset with new data"""
-        # We do not append to mother_assign; raise error if already saved
-        n = len(data)
-        max_shape, dtype = self.datatypes[key]
-        if key in hgroup:
-            del hgroup[key]
-        hgroup.require_dataset(
-            key, shape=(n,), dtype=dtype, compression=self.compression
-        )
-        hgroup[key][()] = data
-
-    def _check_key(self, key):
-        if key not in self.datatypes:
-            raise KeyError(f"No defined data type for key {key}")
-
-    def write(self, data, overwrite: list):
-        # Data is a dictionary, if not, make it one
-        # Overwrite data is a dictionary
-        with h5py.File(self.file, "a") as store:
-            hgroup = store.require_group(self.group)
-
-            for key, value in data.items():
-                # We're only saving data that has a pre-defined data-type
-                self._check_key(key)
-                try:
-                    if key.startswith("attrs/"):  # metadata
-                        key = key.split("/")[1]  # First thing after attrs
-                        hgroup.attrs[key] = value
-                    elif key in overwrite:
-                        self._overwrite(value, key, hgroup)
-                    else:
-                        self._append(value, key, hgroup)
-                except Exception as e:
-                    print(key, value)
-                    raise (e)
-        return
-
-
-##################### Special instances #####################
-class TilerWriter(DynamicWriter):
-    datatypes = {
-        "trap_locations": ((None, 2), np.uint16),
-        "drifts": ((None, 2), np.float32),
-        "attrs/tile_size": ((1,), np.uint16),
-        "attrs/max_size": ((1,), np.uint16),
-    }
-    group = "trap_info"
-
-
-tile_size = 117
-
-
-@timed()
-def save_complex(array, dataset):
-    # Dataset needs to be 2D
-    n = len(array)
-    if n > 0:
-        dataset.resize(dataset.shape[0] + n, axis=0)
-        dataset[-n:, 0] = array.real
-        dataset[-n:, 1] = array.imag
-
-
-@timed()
-def load_complex(dataset):
-    array = dataset[:, 0] + 1j * dataset[:, 1]
-    return array
-
-
-class BabyWriter(DynamicWriter):
-    compression = "gzip"
-    max_ncells = 2e5  # Could just make this None
-    max_tps = 1e3  # Could just make this None
-    chunk_cells = 25  # The number of cells in a chunk for edge masks
-    default_tile_size = 117
-    datatypes = {
-        "centres": ((None, 2), np.uint16),
-        "position": ((None,), np.uint16),
-        "angles": ((None,), h5py.vlen_dtype(np.float32)),
-        "radii": ((None,), h5py.vlen_dtype(np.float32)),
-        "edgemasks": ((max_ncells, max_tps, tile_size, tile_size), np.bool),
-        "ellipse_dims": ((None, 2), np.float32),
-        "cell_label": ((None,), np.uint16),
-        "trap": ((None,), np.uint16),
-        "timepoint": ((None,), np.uint16),
-        "mother_assign": ((None,), h5py.vlen_dtype(np.uint16)),
-        "mother_assign_dynamic": ((None,), np.uint16),
-        "volumes": ((None,), np.float32),
-    }
-    group = "cell_info"
-
-    def __init__(self, *args, **kwargs):
-        super().__init__(*args, **kwargs)
-        # Get max_tps and trap info
-        self._traps_initialised = False
-
-    def __init_trap_info(self):
-        # Should only be run after the traps have been initialised
-        trap_metadata = load_attributes(self.file, "trap_info")
-        tile_size = trap_metadata.get("tile_size", self.default_tile_size)
-        max_tps = self.metadata["time_settings/ntimepoints"][0]
-        self.datatypes["edgemasks"] = (
-            (self.max_ncells, max_tps, tile_size, tile_size),
-            np.bool,
-        )
-        self._traps_initialised = True
-
-    def __init_edgemasks(self, hgroup, edgemasks, current_indices, n_cells):
-        # Create values dataset
-        # This holds the edge masks directly and
-        # Is of shape (n_tps, n_cells, tile_size, tile_size)
-        key = "edgemasks"
-        max_shape, dtype = self.datatypes[key]
-        shape = (n_cells, 1) + max_shape[2:]
-        chunks = (self.chunk_cells, 1) + max_shape[2:]
-        val_dset = hgroup.create_dataset(
-            "values",
-            shape=shape,
-            maxshape=max_shape,
-            dtype=dtype,
-            chunks=chunks,
-            compression=self.compression,
-        )
-        val_dset[:, 0] = edgemasks
-        # Create index dataset
-        # Holds the (trap, cell_id) description used to index into the
-        # values and is of shape (n_cells, 2)
-        ix_max_shape = (max_shape[0], 2)
-        ix_shape = (0, 2)
-        ix_dtype = np.uint16
-        ix_dset = hgroup.create_dataset(
-            "indices",
-            shape=ix_shape,
-            maxshape=ix_max_shape,
-            dtype=ix_dtype,
-            compression=self.compression,
-        )
-        save_complex(current_indices, ix_dset)
-
-    def __append_edgemasks(self, hgroup, edgemasks, current_indices):
-        key = "edgemasks"
-        val_dset = hgroup["values"]
-        ix_dset = hgroup["indices"]
-        existing_indices = load_complex(ix_dset)
-        # Check if there are any new labels
-        available = np.in1d(current_indices, existing_indices)
-        missing = current_indices[~available]
-        all_indices = np.concatenate([existing_indices, missing])
-        # Resizing
-        t = perf_counter()
-        n_tps = val_dset.shape[1] + 1
-        n_add_cells = len(missing)
-        # RESIZE DATASET FOR TIME and Cells
-        new_shape = (val_dset.shape[0] + n_add_cells, n_tps) + val_dset.shape[2:]
-        val_dset.resize(new_shape)
-        logging.debug(f"Timing:resizing:{perf_counter() - t}")
-        # Writing data
-        cell_indices = np.where(np.in1d(all_indices, current_indices))[0]
-        for ix, mask in zip(cell_indices, edgemasks):
-            try:
-                val_dset[ix, n_tps - 1] = mask
-            except Exception as e:
-                logging.debug(f"{ix}, {n_tps}, {val_dset.shape}")
-        # Save the index values
-        save_complex(missing, ix_dset)
-
-    def write_edgemasks(self, data, keys, hgroup):
-        if not self._traps_initialised:
-            self.__init_trap_info()
-        # DATA is TRAP_IDS, CELL_LABELS, EDGEMASKS in a structured array
-        key = "edgemasks"
-        val_key = "values"
-        idx_key = "indices"
-        # Length of edgemasks
-        traps, cell_labels, edgemasks = data
-        n_cells = len(cell_labels)
-        hgroup = hgroup.require_group(key)
-        current_indices = np.array(traps) + 1j * np.array(cell_labels)
-        if val_key not in hgroup:
-            self.__init_edgemasks(hgroup, edgemasks, current_indices, n_cells)
-        else:
-            self.__append_edgemasks(hgroup, edgemasks, current_indices)
-
-    def write(self, data, overwrite: list):
-        with h5py.File(self.file, "a") as store:
-            hgroup = store.require_group(self.group)
-
-            for key, value in data.items():
-                # We're only saving data that has a pre-defined data-type
-                self._check_key(key)
-                try:
-                    if key.startswith("attrs/"):  # metadata
-                        key = key.split("/")[1]  # First thing after attrs
-                        hgroup.attrs[key] = value
-                    elif key in overwrite:
-                        self._overwrite(value, key, hgroup)
-                    elif key == "edgemasks":
-                        keys = ["trap", "cell_label", "edgemasks"]
-                        value = [data[x] for x in keys]
-                        self.write_edgemasks(value, keys, hgroup)
-                    else:
-                        self._append(value, key, hgroup)
-                except Exception as e:
-                    print(key, value)
-                    raise (e)
-        return
-
-
-#################### Extraction version ###############################
-class Writer(BridgeH5):
-    """
-    Class in charge of transforming data into compatible formats
-
-    Decoupling interface from implementation!
-
-    Parameters
-    ----------
-        filename: str Name of file to write into
-        flag: str, default=None
-            Flag to pass to the default file reader. If None the file remains closed.
-        compression: str, default=None
-            Compression method passed on to h5py writing functions (only used for
-        dataframes and other array-like data.)
-    """
-
-    def __init__(self, filename, compression=None):
-        super().__init__(filename, flag=None)
-
-        if compression is None:
-            self.compression = "gzip"
-
-    def write(
-        self,
-        path: str,
-        data: Iterable = None,
-        meta: Dict = {},
-        overwrite: str = None,
-    ):
-        """
-        Parameters
-        ----------
-        path : str
-            Path inside h5 file to write into.
-        data : Iterable, default = None
-        meta : Dict, default = {}
-
-
-        """
-        self.id_cache = {}
-        with h5py.File(self.filename, "a") as f:
-            if overwrite == "overwrite":  # TODO refactor overwriting
-                if path in f:
-                    del f[path]
-            elif overwrite == "accumulate":  # Add a number if needed
-                if path in f:
-                    parent, name = path.rsplit("/", maxsplit=1)
-                    n = sum([x.startswith(name) for x in f[path]])
-                    path = path + str(n).zfill(3)
-            elif overwrite == "skip":
-                if path in f:
-                    logging.debug("Skipping dataset {}".format(path))
-
-            logging.debug(
-                "{} {} to {} and {} metadata fields".format(
-                    overwrite, type(data), path, len(meta)
-                )
-            )
-            if data is not None:
-                self.write_dset(f, path, data)
-            if meta:
-                for attr, metadata in meta.items():
-                    self.write_meta(f, path, attr, data=metadata)
-
-    def write_dset(self, f: h5py.File, path: str, data: Iterable):
-        if isinstance(data, pd.DataFrame):
-            self.write_pd(f, path, data, compression=self.compression)
-        elif isinstance(data, pd.MultiIndex):
-            self.write_index(f, path, data)  # , compression=self.compression)
-        elif isinstance(data, Iterable):
-            self.write_arraylike(f, path, data)
-        else:
-            self.write_atomic(data, f, path)
-
-    def write_meta(self, f: h5py.File, path: str, attr: str, data: Iterable):
-        obj = f.require_group(path)
-
-        obj.attrs[attr] = data
-
-    @staticmethod
-    def write_arraylike(f: h5py.File, path: str, data: Iterable, **kwargs):
-        if path in f:
-            del f[path]
-
-        narray = np.array(data)
-
-        chunks = None
-        if narray.any():
-            chunks = (1, *narray.shape[1:])
-
-        dset = f.create_dataset(
-            path,
-            shape=narray.shape,
-            chunks=chunks,
-            dtype="int",
-            compression=kwargs.get("compression", None),
-        )
-        dset[()] = narray
-
-    @staticmethod  # TODO Use this function to implement Diane's dynamic writer
-    def write_dynamic(f: h5py.File, path: str, data: Iterable):
-        pass
-
-    @staticmethod
-    def write_index(f, path, pd_index, **kwargs):
-        f.require_group(path)  # TODO check if we can remove this
-        for i, name in enumerate(pd_index.names):
-            ids = pd_index.get_level_values(i)
-            id_path = path + "/" + name
-            f.create_dataset(
-                name=id_path,
-                shape=(len(ids),),
-                dtype="uint16",
-                compression=kwargs.get("compression", None),
-            )
-            indices = f[id_path]
-            indices[()] = ids
-
-    def write_pd(self, f, path, df, **kwargs):
-        values_path = path + "values" if path.endswith("/") else path + "/values"
-        if path not in f:
-            max_ncells = 2e5
-
-            max_tps = 1e3
-            f.create_dataset(
-                name=values_path,
-                shape=df.shape,
-                # chunks=(min(df.shape[0], 1), df.shape[1]),
-                # dtype=df.dtypes.iloc[0], This is making NaN in ints into negative vals
-                dtype="float",
-                maxshape=(max_ncells, max_tps),
-                compression=kwargs.get("compression", None),
-            )
-            dset = f[values_path]
-            dset[()] = df.values
-
-            for name in df.index.names:
-                indices_path = "/".join((path, name))
-                f.create_dataset(
-                    name=indices_path,
-                    shape=(len(df),),
-                    dtype="uint16",  # Assuming we'll always use int indices
-                    chunks=True,
-                    maxshape=(max_ncells,),
-                )
-                dset = f[indices_path]
-                dset[()] = df.index.get_level_values(level=name).tolist()
-
-            if df.columns.dtype == np.int or df.columns.dtype == np.dtype("uint"):
-                tp_path = path + "/timepoint"
-                f.create_dataset(
-                    name=tp_path,
-                    shape=(df.shape[1],),
-                    maxshape=(max_tps,),
-                    dtype="uint16",
-                )
-                tps = df.columns.tolist()
-                f[tp_path][tps] = tps
-            else:
-                f[path].attrs["columns"] = df.columns.tolist()
-        else:
-            dset = f[values_path]
-
-            # Filter out repeated timepoints
-            new_tps = set(df.columns)
-            if path + "/timepoint" in f:
-                new_tps = new_tps.difference(f[path + "/timepoint"][()])
-            df = df[new_tps]
-
-            if (
-                not hasattr(self, "id_cache") or not df.index.nlevels in self.id_cache
-            ):  # Use cache dict to store previously-obtained indices
-                self.id_cache[df.index.nlevels] = {}
-                existing_ids = self.get_existing_ids(
-                    f, [path + "/" + x for x in df.index.names]
-                )
-                # Split indices in existing and additional
-                new = df.index.tolist()
-                if df.index.nlevels == 1:  # Cover for cases with a single index
-                    new = [(x,) for x in df.index.tolist()]
-                (
-                    found_multis,
-                    self.id_cache[df.index.nlevels]["additional_multis"],
-                ) = self.find_ids(
-                    existing=existing_ids,
-                    new=new,
-                )
-                found_indices = np.array(locate_indices(existing_ids, found_multis))
-
-                # We must sort our indices for h5py indexing
-                incremental_existing = np.argsort(found_indices)
-                self.id_cache[df.index.nlevels]["found_indices"] = found_indices[
-                    incremental_existing
-                ]
-                self.id_cache[df.index.nlevels]["found_multi"] = found_multis[
-                    incremental_existing
-                ]
-
-            existing_values = df.loc[
-                [
-                    _tuple_or_int(x)
-                    for x in self.id_cache[df.index.nlevels]["found_multi"]
-                ]
-            ].values
-            new_values = df.loc[
-                [
-                    _tuple_or_int(x)
-                    for x in self.id_cache[df.index.nlevels]["additional_multis"]
-                ]
-            ].values
-            ncells, ntps = f[values_path].shape
-
-            # Add found cells
-            dset.resize(dset.shape[1] + df.shape[1], axis=1)
-            dset[:, ntps:] = np.nan
-            for i, tp in enumerate(df.columns):
-                dset[
-                    self.id_cache[df.index.nlevels]["found_indices"], tp
-                ] = existing_values[:, i]
-            # Add new cells
-            n_newcells = len(self.id_cache[df.index.nlevels]["additional_multis"])
-            dset.resize(dset.shape[0] + n_newcells, axis=0)
-            dset[ncells:, :] = np.nan
-
-            for i, tp in enumerate(df.columns):
-                dset[ncells:, tp] = new_values[:, i]
-
-            # save indices
-            for i, name in enumerate(df.index.names):
-                tmp = path + "/" + name
-                dset = f[tmp]
-                n = dset.shape[0]
-                dset.resize(n + n_newcells, axis=0)
-                dset[n:] = (
-                    self.id_cache[df.index.nlevels]["additional_multis"][:, i]
-                    if len(self.id_cache[df.index.nlevels]["additional_multis"].shape)
-                    > 1
-                    else self.id_cache[df.index.nlevels]["additional_multis"]
-                )
-
-            tmp = path + "/timepoint"
-            dset = f[tmp]
-            n = dset.shape[0]
-            dset.resize(n + df.shape[1], axis=0)
-            dset[n:] = df.columns.tolist()
-
-    @staticmethod
-    def get_existing_ids(f, paths):
-        # Fetch indices and convert them to a (nentries, nlevels) ndarray
-        return np.array([f[path][()] for path in paths]).T
-
-    @staticmethod
-    def find_ids(existing, new):
-        # Compare two tuple sets and return the intersection and difference
-        # (elements in the 'new' set not in 'existing')
-        set_existing = set([tuple(*x) for x in zip(existing.tolist())])
-        existing_cells = np.array(list(set_existing.intersection(new)))
-        new_cells = np.array(list(set(new).difference(set_existing)))
-
-        return (
-            existing_cells,
-            new_cells,
-        )
-
-
-# @staticmethod
-def locate_indices(existing, new):
-    if new.any():
-        if new.shape[1] > 1:
-            return [
-                find_1st(
-                    (existing[:, 0] == n[0]) & (existing[:, 1] == n[1]), True, cmp_equal
-                )
-                for n in new
-            ]
-        else:
-            return [find_1st(existing[:, 0] == n, True, cmp_equal) for n in new]
-    else:
-        return []
-
-
-# def tuple_or_int(x):
-#     if isinstance(x, Iterable):
-#         return tuple(x)
-#     else:
-#         return x
-def _tuple_or_int(x):
-    # Convert tuple to int if it only contains one value
-    if len(x) == 1:
-        return x[0]
-    else:
-        return x
diff --git a/pcore/multiexperiment.py b/pcore/multiexperiment.py
deleted file mode 100644
index a3ce094faf505cbcc8b05ebb3197265db9d9bb5c..0000000000000000000000000000000000000000
--- a/pcore/multiexperiment.py
+++ /dev/null
@@ -1,25 +0,0 @@
-from pathos.multiprocessing import Pool
-
-from pcore.pipeline import PipelineParameters, Pipeline
-
-
-class MultiExp:
-    """
-    Manages cases when you need to segment several different experiments with a single
-    position (e.g. pH calibration).
-    """
-
-    def __init__(self, expt_ids, npools=8, *args, **kwargs):
-
-        self.expt_ids = expt_ids
-
-    def run(self):
-        run_expt = lambda expt: Pipeline(
-            PipelineParameters.default(general={"expt_id": expt, "distributed": 0})
-        ).run()
-        with Pool(npools) as p:
-            results = p.map(lambda x: self.create_pipeline(x), self.exp_ids)
-
-    @classmethod
-    def default(self):
-        return cls(expt_ids=list(range(20448, 20467 + 1)))
diff --git a/pcore/pipeline.py b/pcore/pipeline.py
deleted file mode 100644
index 1fca4085d4f65e3764eaa9b05e92284b4b05f7bc..0000000000000000000000000000000000000000
--- a/pcore/pipeline.py
+++ /dev/null
@@ -1,271 +0,0 @@
-"""
-Pipeline and chaining elements.
-"""
-import logging
-import os
-from abc import ABC, abstractmethod
-from typing import List
-from pathlib import Path
-import traceback
-
-import itertools
-import yaml
-from tqdm import tqdm
-from time import perf_counter
-
-import numpy as np
-import pandas as pd
-from pathos.multiprocessing import Pool
-
-from agora.base import ParametersABC, ProcessABC
-from pcore.experiment import MetaData
-from pcore.io.omero import Dataset, Image
-from pcore.haystack import initialise_tf
-from pcore.baby_client import BabyRunner, BabyParameters
-from pcore.segment import Tiler, TilerParameters
-from pcore.io.writer import TilerWriter, BabyWriter
-from pcore.io.signal import Signal
-from extraction.core.extractor import Extractor, ExtractorParameters
-from extraction.core.functions.defaults import exparams_from_meta
-from postprocessor.core.processor import PostProcessor, PostProcessorParameters
-
-
-class PipelineParameters(ParametersABC):
-    def __init__(self, general, tiler, baby, extraction, postprocessing):
-        self.general = general
-        self.tiler = tiler
-        self.baby = baby
-        self.extraction = extraction
-        self.postprocessing = postprocessing
-
-    @classmethod
-    def default(
-        cls,
-        general={},
-        tiler={},
-        baby={},
-        extraction={},
-        postprocessing={},
-    ):
-        """
-        Load unit test experiment
-        :expt_id: Experiment id
-        :directory: Output directory
-
-        Provides default parameters for the entire pipeline. This downloads the logfiles and sets the default
-        timepoints and extraction parameters from there.
-        """
-        expt_id = general.get("expt_id", 19993)
-        directory = Path(general.get("directory", "../data"))
-        with Dataset(int(expt_id)) as conn:
-            directory = directory / conn.unique_name
-            if not directory.exists():
-                directory.mkdir(parents=True)
-                # Download logs to use for metadata
-            conn.cache_logs(directory)
-        meta = MetaData(directory, None).load_logs()
-        tps = meta["time_settings/ntimepoints"][0]
-        defaults = {
-            "general": dict(
-                id=expt_id,
-                distributed=0,
-                tps=tps,
-                directory=directory,
-                strain="",
-                earlystop=dict(
-                    min_tp=0,
-                    thresh_pos_clogged=0.3,
-                    thresh_trap_clogged=7,
-                    ntps_to_eval=5,
-                ),
-            )
-        }
-        defaults["tiler"] = TilerParameters.default().to_dict()
-        defaults["baby"] = BabyParameters.default().to_dict()
-        defaults["extraction"] = exparams_from_meta(meta)
-        defaults["postprocessing"] = PostProcessorParameters.default().to_dict()
-        for k in defaults.keys():
-            exec("defaults[k].update(" + k + ")")
-        return cls(**{k: v for k, v in defaults.items()})
-
-    def load_logs(self):
-        parsed_flattened = parse_logfiles(self.log_dir)
-        return parsed_flattened
-
-
-class Pipeline(ProcessABC):
-    """
-    A chained set of Pipeline elements connected through pipes.
-    """
-
-    # Tiling, Segmentation,Extraction and Postprocessing should use their own default parameters
-
-    # Early stop for clogging
-    earlystop = {
-        "min_tp": 50,
-        "thresh_pos_clogged": 0.3,
-        "thresh_trap_clogged": 7,
-        "ntps_to_eval": 5,
-    }
-
-    def __init__(self, parameters: PipelineParameters):
-        super().__init__(parameters)
-        self.store = self.parameters.general["directory"]
-
-    @classmethod
-    def from_yaml(cls, fpath):
-        # This is just a convenience function, think before implementing
-        # for other processes
-        return cls(parameters=PipelineParameters.from_yaml(fpath))
-
-    def run(self):
-        # Config holds the general information, use in main
-        # Steps holds the description of tasks with their parameters
-        # Steps: all holds general tasks
-        # steps: strain_name holds task for a given strain
-        config = self.parameters.to_dict()
-        expt_id = config["general"]["id"]
-        distributed = config["general"]["distributed"]
-        strain_filter = config["general"]["strain"]
-        root_dir = config["general"]["directory"]
-        root_dir = Path(root_dir)
-
-        print("Searching OMERO")
-        # Do all initialis
-        with Dataset(int(expt_id)) as conn:
-            image_ids = conn.get_images()
-            directory = root_dir / conn.unique_name
-            if not directory.exists():
-                directory.mkdir(parents=True)
-                # Download logs to use for metadata
-            conn.cache_logs(directory)
-
-        # Modify to the configuration
-        self.parameters.general["directory"] = directory
-        config["general"]["directory"] = directory
-
-        # Filter TODO integrate filter onto class and add regex
-        image_ids = {k: v for k, v in image_ids.items() if k.startswith(strain_filter)}
-
-        if distributed != 0:  # Gives the number of simultaneous processes
-            with Pool(distributed) as p:
-                results = p.map(lambda x: self.create_pipeline(x), image_ids.items())
-            return results
-        else:  # Sequential
-            results = []
-            for k, v in image_ids.items():
-                r = self.create_pipeline((k, v))
-                results.append(r)
-
-    def create_pipeline(self, image_id):
-        config = self.parameters.to_dict()
-        name, image_id = image_id
-        general_config = config["general"]
-        session = None
-        earlystop = general_config["earlystop"]
-        try:
-            directory = general_config["directory"]
-            with Image(image_id) as image:
-                filename = f"{directory}/{image.name}.h5"
-                try:
-                    os.remove(filename)
-                except:
-                    pass
-
-                # Run metadata first
-                process_from = 0
-                # if True:  # not Path(filename).exists():
-                meta = MetaData(directory, filename)
-                meta.run()
-                tiler = Tiler.from_image(
-                    image, TilerParameters.from_dict(config["tiler"])
-                )
-                # else: TODO add support to continue local experiments?
-                #     tiler = Tiler.from_hdf5(image.data, filename)
-                #     s = Signal(filename)
-                #     process_from = s["/general/None/extraction/volume"].columns[-1]
-                #     if process_from > 2:
-                #         process_from = process_from - 3
-                #         tiler.n_processed = process_from
-
-                writer = TilerWriter(filename)
-                session = initialise_tf(2)
-                runner = BabyRunner.from_tiler(
-                    BabyParameters.from_dict(config["baby"]), tiler
-                )
-                bwriter = BabyWriter(filename)
-                exparams = ExtractorParameters.from_dict(config["extraction"])
-                ext = Extractor.from_tiler(exparams, store=filename, tiler=tiler)
-
-                # RUN
-                tps = general_config["tps"]
-                frac_clogged_traps = 0
-                for i in tqdm(
-                    range(process_from, tps), desc=image.name, initial=process_from
-                ):
-                    if frac_clogged_traps < earlystop["thresh_pos_clogged"]:
-                        t = perf_counter()
-                        trap_info = tiler.run_tp(i)
-                        logging.debug(f"Timing:Trap:{perf_counter() - t}s")
-                        t = perf_counter()
-                        writer.write(trap_info, overwrite=[])
-                        logging.debug(f"Timing:Writing-trap:{perf_counter() - t}s")
-                        t = perf_counter()
-                        seg = runner.run_tp(i)
-                        logging.debug(f"Timing:Segmentation:{perf_counter() - t}s")
-                        # logging.debug(
-                        #     f"Segmentation failed:Segmentation:{perf_counter() - t}s"
-                        # )
-                        t = perf_counter()
-                        bwriter.write(seg, overwrite=["mother_assign"])
-                        logging.debug(f"Timing:Writing-baby:{perf_counter() - t}s")
-                        t = perf_counter()
-
-                        tmp = ext.run(tps=[i])
-                        logging.debug(f"Timing:Extraction:{perf_counter() - t}s")
-                    else:  # Stop if more than X% traps are clogged
-                        logging.debug(
-                            f"EarlyStop:{earlystop['thresh_pos_clogged']*100}% traps clogged at time point {i}"
-                        )
-                        print(
-                            f"Stopping analysis at time {i} with {frac_clogged_traps} clogged traps"
-                        )
-                        break
-
-                    if (
-                        i > earlystop["min_tp"]
-                    ):  # Calculate the fraction of clogged traps
-                        frac_clogged_traps = self.check_earlystop(filename, earlystop)
-                        logging.debug(f"Quality:Clogged_traps:{frac_clogged_traps}")
-                        print("Frac clogged traps: ", frac_clogged_traps)
-
-                # Run post processing
-                post_proc_params = PostProcessorParameters.from_dict(
-                    self.parameters.postprocessing
-                ).to_dict()
-                PostProcessor(filename, post_proc_params).run()
-                return True
-        except Exception as e:  # bug in the trap getting
-            print(f"Caught exception in worker thread (x = {name}):")
-            # This prints the type, value, and stack trace of the
-            # current exception being handled.
-            traceback.print_exc()
-            print()
-            raise e
-        finally:
-            if session:
-                session.close()
-
-    def check_earlystop(self, filename, es_parameters):
-        s = Signal(filename)
-        df = s["/extraction/general/None/area"]
-        frac_clogged_traps = (
-            df[df.columns[-1 - es_parameters["ntps_to_eval"] : -1]]
-            .dropna(how="all")
-            .notna()
-            .groupby("trap")
-            .apply(sum)
-            .apply(np.mean, axis=1)
-            > es_parameters["thresh_trap_clogged"]
-        ).mean()
-        return frac_clogged_traps
diff --git a/pcore/post_processing.py b/pcore/post_processing.py
deleted file mode 100644
index 58481dd84c44911d6f90f2fb3947eaeb199f9ab9..0000000000000000000000000000000000000000
--- a/pcore/post_processing.py
+++ /dev/null
@@ -1,189 +0,0 @@
-"""
-Post-processing utilities
-
-Notes: I don't have statistics on ranges of radii for each of the knots in
-the radial spline representation, but we regularly extract the average of
-these radii for each cell. So, depending on camera/lens, we get:
-    * 60x evolve: mean radii of 2-14 pixels (and measured areas of 30-750
-    pixels^2)
-    * 60x prime95b: mean radii of 3-24 pixels (and measured areas of 60-2000
-	pixels^2)
-
-And I presume that for a 100x lens we would get an ~5/3 increase over those
-values.
-
-In terms of the current volume estimation method, it's currently only
-implemented in the AnalysisToolbox repository, but it's super simple:
-
-mVol = 4/3*pi*sqrt(mArea/pi).^3
-
-where mArea is simply the sum of pixels for that cell.
-"""
-import matplotlib.pyplot as plt
-import numpy as np
-from mpl_toolkits.mplot3d.art3d import Poly3DCollection
-from scipy import ndimage
-from skimage.morphology import erosion, ball
-from skimage import measure, draw
-
-
-def my_ball(radius):
-    """Generates a ball-shaped structuring element.
-
-    This is the 3D equivalent of a disk.
-    A pixel is within the neighborhood if the Euclidean distance between
-    it and the origin is no greater than radius.
-
-    Parameters
-    ----------
-    radius : int
-        The radius of the ball-shaped structuring element.
-
-    Other Parameters
-    ----------------
-    dtype : data-type
-        The data type of the structuring element.
-
-    Returns
-    -------
-    selem : ndarray
-        The structuring element where elements of the neighborhood
-        are 1 and 0 otherwise.
-    """
-    n = 2 * radius + 1
-    Z, Y, X = np.mgrid[-radius:radius:n * 1j,
-              -radius:radius:n * 1j,
-              -radius:radius:n * 1j]
-    X **= 2
-    Y **= 2
-    Z **= 2
-    X += Y
-    X += Z
-    # s = X ** 2 + Y ** 2 + Z ** 2
-    return X <= radius * radius
-
-def circle_outline(r):
-    return ellipse_perimeter(r, r)
-
-def ellipse_perimeter(x, y):
-    im_shape = int(2*max(x, y) + 1)
-    img = np.zeros((im_shape, im_shape), dtype=np.uint8)
-    rr, cc = draw.ellipse_perimeter(int(im_shape//2), int(im_shape//2),
-                                    int(x), int(y))
-    img[rr, cc] = 1
-    return np.pad(img, 1)
-
-def capped_cylinder(x, y):
-    max_size = (y + 2*x + 2)
-    pixels = np.zeros((max_size, max_size))
-
-    rect_start = ((max_size-x)//2, x + 1)
-    rr, cc = draw.rectangle_perimeter(rect_start, extent=(x, y),
-                                     shape=(max_size, max_size))
-    pixels[rr, cc] = 1
-    circle_centres = [(max_size//2 - 1, x),
-                      (max_size//2 - 1, max_size - x - 1 )]
-    for r, c in circle_centres:
-        rr, cc = draw.circle_perimeter(r, c, (x + 1)//2,
-                                       shape=(max_size, max_size))
-        pixels[rr, cc] = 1
-    pixels = ndimage.morphology.binary_fill_holes(pixels)
-    pixels ^= erosion(pixels)
-    return pixels
-
-def volume_of_sphere(radius):
-    return 4 / 3 * np.pi * radius**3
-
-def plot_voxels(voxels):
-    verts, faces, normals, values = measure.marching_cubes_lewiner(
-        voxels, 0)
-    fig = plt.figure(figsize=(10, 10))
-    ax = fig.add_subplot(111, projection='3d')
-    mesh = Poly3DCollection(verts[faces])
-    mesh.set_edgecolor('k')
-    ax.add_collection3d(mesh)
-    ax.set_xlim(0, voxels.shape[0])
-    ax.set_ylim(0, voxels.shape[1])
-    ax.set_zlim(0, voxels.shape[2])
-    plt.tight_layout()
-    plt.show()
-
-# Volume estimation
-def union_of_spheres(outline, shape='my_ball', debug=False):
-    filled = ndimage.binary_fill_holes(outline)
-    nearest_neighbor = ndimage.morphology.distance_transform_edt(
-        outline == 0) * filled
-    voxels = np.zeros((filled.shape[0], filled.shape[1], max(filled.shape)))
-    c_z = voxels.shape[2] // 2
-    for x,y in zip(*np.where(filled)):
-        radius = nearest_neighbor[(x,y)]
-        if radius > 0:
-            if shape == 'ball':
-                b = ball(radius)
-            elif shape == 'my_ball':
-                b = my_ball(radius)
-            else:
-                raise ValueError(f"{shape} is not an accepted value for "
-                                 f"shape.")
-            centre_b = ndimage.measurements.center_of_mass(b)
-
-            I,J,K = np.ogrid[:b.shape[0], :b.shape[1], :b.shape[2]]
-            voxels[I + int(x - centre_b[0]), J + int(y - centre_b[1]),
-                   K + int(c_z - centre_b[2])] += b
-    if debug:
-        plot_voxels(voxels)
-    return voxels.astype(bool).sum()
-
-def improved_uos(outline, shape='my_ball', debug=False):
-    filled = ndimage.binary_fill_holes(outline)
-    nearest_neighbor = ndimage.morphology.distance_transform_edt(
-        outline == 0) * filled
-    voxels = np.zeros((filled.shape[0], filled.shape[1], max(filled.shape)))
-    c_z = voxels.shape[2] // 2
-
-    while np.any(nearest_neighbor != 0):
-        radius = np.max(nearest_neighbor)
-        x, y = np.argwhere(nearest_neighbor == radius)[0]
-        if shape == 'ball':
-            b = ball(np.ceil(radius))
-        elif shape == 'my_ball':
-            b = my_ball(np.ceil(radius))
-        else:
-            raise ValueError(f"{shape} is not an accepted value for shape")
-        centre_b = ndimage.measurements.center_of_mass(b)
-
-        I, J, K = np.ogrid[:b.shape[0], :b.shape[1], :b.shape[2]]
-        voxels[I + int(x - centre_b[0]), J + int(y - centre_b[1]),
-               K + int(c_z - centre_b[2])] += b
-
-        # Use the central disk of the ball from voxels to get the circle
-        # = 0 if nn[x,y] < r else nn[x,y]
-        rr, cc = draw.circle(x, y, np.ceil(radius), nearest_neighbor.shape)
-        nearest_neighbor[rr, cc] = 0
-    if debug:
-        plot_voxels(voxels)
-    return voxels.astype(bool).sum()
-
-def conical(outline, debug=False):
-    nearest_neighbor = ndimage.morphology.distance_transform_edt(
-        outline == 0) * ndimage.binary_fill_holes(outline)
-    if debug:
-        hf = plt.figure()
-        ha = hf.add_subplot(111, projection='3d')
-
-        X, Y = np.meshgrid(np.arange(nearest_neighbor.shape[0]),
-                           np.arange(nearest_neighbor.shape[1]))
-        ha.plot_surface(X, Y, nearest_neighbor)
-        plt.show()
-    return 4 * nearest_neighbor.sum()
-
-def volume(outline, method='spheres'):
-    if method=='conical':
-        return conical(outline)
-    elif method=='spheres':
-        return union_of_spheres(outline)
-    else:
-        raise ValueError(f"Method {method} not implemented.")
-
-def circularity(outline):
-    pass
\ No newline at end of file
diff --git a/pcore/results.py b/pcore/results.py
deleted file mode 100644
index fd12c2831dc9da6e84017eb5e80b3672492013d2..0000000000000000000000000000000000000000
--- a/pcore/results.py
+++ /dev/null
@@ -1,35 +0,0 @@
-"""Pipeline results classes and utilities"""
-
-
-class SegmentationResults:
-    """
-    Object storing the data from the Segmentation pipeline.
-    Everything is stored as an `AttributeDict`, which is a `defaultdict` where
-    you can get elements as attributes.
-
-    In addition, it implements:
-     - IO functionality (read from file, write to file)
-    """
-    def __init__(self, raw_expt):
-        pass
-
-
-
-
-class CellResults:
-    """
-    Results on a set of cells TODO: what set of cells, how?
-
-    Contains:
-    * cellInf describing which cells are taken into account
-    * annotations on the cell
-    * segmentation maps of the cell TODO: how to define and save this?
-    * trapLocations TODO: why is this not part of cellInf?
-    """
-
-    def __init__(self, cellInf=None, annotations=None, segmentation=None,
-                 trapLocations=None):
-        self._cellInf = cellInf
-        self._annotations = annotations
-        self._segmentation = segmentation
-        self._trapLocations = trapLocations
diff --git a/pcore/segment.py b/pcore/segment.py
deleted file mode 100644
index 8565b9c5698b0b7b2f47e0a38013cc726dcf4d9d..0000000000000000000000000000000000000000
--- a/pcore/segment.py
+++ /dev/null
@@ -1,344 +0,0 @@
-"""Segment/segmented pipelines.
-Includes splitting the image into traps/parts,
-cell segmentation, nucleus segmentation."""
-import warnings
-from functools import lru_cache
-
-import h5py
-import numpy as np
-
-from pathlib import Path, PosixPath
-
-from skimage.registration import phase_cross_correlation
-
-from agora.base import ParametersABC, ProcessABC
-from pcore.traps import segment_traps
-from pcore.timelapse import TimelapseOMERO
-from pcore.io.matlab import matObject
-from pcore.traps import (
-    identify_trap_locations,
-    get_trap_timelapse,
-    get_traps_timepoint,
-    centre,
-    get_trap_timelapse_omero,
-)
-from pcore.utils import accumulate, get_store_path
-
-from pcore.io.writer import Writer, load_attributes
-from pcore.io.metadata_parser import parse_logfiles
-
-trap_template_directory = Path(__file__).parent / "trap_templates"
-# TODO do we need multiple templates, one for each setup?
-trap_template = np.array([])  # np.load(trap_template_directory / "trap_prime.npy")
-
-
-def get_tile_shapes(x, tile_size, max_shape):
-    half_size = tile_size // 2
-    xmin = int(x[0] - half_size)
-    ymin = max(0, int(x[1] - half_size))
-    if xmin + tile_size > max_shape[0]:
-        xmin = max_shape[0] - tile_size
-    if ymin + tile_size > max_shape[1]:
-        ymin = max_shape[1] - tile_size
-    return xmin, xmin + tile_size, ymin, ymin + tile_size
-
-
-###################### Dask versions ########################
-class Trap:
-    def __init__(self, centre, parent, size, max_size):
-        self.centre = centre
-        self.parent = parent  # Used to access drifts
-        self.size = size
-        self.half_size = size // 2
-        self.max_size = max_size
-
-    def padding_required(self, tp):
-        """Check if we need to pad the trap image for this time point."""
-        try:
-            assert all(self.at_time(tp) - self.half_size >= 0)
-            assert all(self.at_time(tp) + self.half_size <= self.max_size)
-        except AssertionError:
-            return True
-        return False
-
-    def at_time(self, tp):
-        """Return trap centre at time tp"""
-        drifts = self.parent.drifts
-        return self.centre - np.sum(drifts[:tp], axis=0)
-
-    def as_tile(self, tp):
-        """Return trap in the OMERO tile format of x, y, w, h
-
-        Also returns the padding necessary for this tile.
-        """
-        x, y = self.at_time(tp)
-        # tile bottom corner
-        x = int(x - self.half_size)
-        y = int(y - self.half_size)
-        return x, y, self.size, self.size
-
-    def as_range(self, tp):
-        """Return trap in a range format, two slice objects that can be used in Arrays"""
-        x, y, w, h = self.as_tile(tp)
-        return slice(x, x + w), slice(y, y + h)
-
-
-class TrapLocations:
-    def __init__(self, initial_location, tile_size, max_size=1200, drifts=[]):
-        self.tile_size = tile_size
-        self.max_size = max_size
-        self.initial_location = initial_location
-        self.traps = [
-            Trap(centre, self, tile_size, max_size) for centre in initial_location
-        ]
-        self.drifts = drifts
-
-    @classmethod
-    def from_source(cls, fpath: str):
-        with h5py.File(fpath, "r") as f:
-            # TODO read tile size from file metadata
-            drifts = f["trap_info/drifts"][()]
-            tlocs = cls(f["trap_info/trap_locations"][()], tile_size=96, drifts=drifts)
-
-        return tlocs
-
-    @property
-    def shape(self):
-        return len(self.traps), len(self.drifts)
-
-    def __len__(self):
-        return len(self.traps)
-
-    def __iter__(self):
-        yield from self.traps
-
-    def padding_required(self, tp):
-        return any([trap.padding_required(tp) for trap in self.traps])
-
-    def to_dict(self, tp):
-        res = dict()
-        if tp == 0:
-            res["trap_locations"] = self.initial_location
-            res["attrs/tile_size"] = self.tile_size
-            res["attrs/max_size"] = self.max_size
-        res["drifts"] = np.expand_dims(self.drifts[tp], axis=0)
-        # res['processed_timepoints'] = tp
-        return res
-
-    @classmethod
-    def read_hdf5(cls, file):
-        with h5py.File(file, "r") as hfile:
-            trap_info = hfile["trap_info"]
-            initial_locations = trap_info["trap_locations"][()]
-            drifts = trap_info["drifts"][()]
-            max_size = trap_info.attrs["max_size"]
-            tile_size = trap_info.attrs["tile_size"]
-        trap_locs = cls(initial_locations, tile_size, max_size=max_size)
-        trap_locs.drifts = drifts
-        return trap_locs
-
-
-class TilerParameters(ParametersABC):
-    def __init__(
-        self, tile_size: int, ref_channel: str, ref_z: int, template_name: str = None
-    ):
-        self.tile_size = tile_size
-        self.ref_channel = ref_channel
-        self.ref_z = ref_z
-        self.template_name = template_name
-
-    @classmethod
-    def from_template(cls, template_name: str, ref_channel: str, ref_z: int):
-        return cls(template.shape[0], ref_channel, ref_z, template_path=template_name)
-
-    @classmethod
-    def default(cls):
-        return cls(96, "Brightfield", 0)
-
-
-class Tiler(ProcessABC):
-    """A dummy TimelapseTiler object fora Dask Demo.
-
-    Does trap finding and image registration."""
-
-    def __init__(
-        self,
-        image,
-        metadata,
-        parameters: TilerParameters,
-    ):
-        super().__init__(parameters)
-        self.image = image
-        self.channels = metadata["channels"]
-        self.ref_channel = self.get_channel_index(parameters.ref_channel)
-
-    @classmethod
-    def from_image(cls, image, parameters: TilerParameters):
-        return cls(image.data, image.metadata, parameters)
-
-    @classmethod
-    def from_hdf5(cls, image, filepath, tile_size=None):
-        trap_locs = TrapLocations.read_hdf5(filepath)
-        metadata = load_attributes(filepath)
-        metadata["channels"] = metadata["channels/channel"].tolist()
-        if tile_size is None:
-            tile_size = trap_locs.tile_size
-        return Tiler(
-            image=image,
-            metadata=metadata,
-            template=None,
-            tile_size=tile_size,
-            trap_locs=trap_locs,
-        )
-
-    @lru_cache(maxsize=2)
-    def get_tc(self, t, c):
-        # Get image
-        full = self.image[t, c].compute()  # FORCE THE CACHE
-        return full
-
-    @property
-    def shape(self):
-        c, t, z, y, x = self.image.shape
-        return (c, t, x, y, z)
-
-    @property
-    def n_processed(self):
-        if not hasattr(self, "_n_processed"):
-            self._n_processed = 0
-        return self._n_processed
-
-    @n_processed.setter
-    def n_processed(self, value):
-        self._n_processed = value
-
-    @property
-    def n_traps(self):
-        return len(self.trap_locs)
-
-    @property
-    def finished(self):
-        return self.n_processed == self.image.shape[0]
-
-    def _initialise_traps(self, tile_size):
-        """Find initial trap positions.
-
-        Removes all those that are too close to the edge so no padding is necessary.
-        """
-        half_tile = tile_size // 2
-        max_size = min(self.image.shape[-2:])
-        initial_image = self.image[
-            0, self.ref_channel, self.ref_z
-        ]  # First time point, first channel, first z-position
-        trap_locs = segment_traps(initial_image, tile_size)
-        trap_locs = [
-            [x, y]
-            for x, y in trap_locs
-            if half_tile < x < max_size - half_tile
-            and half_tile < y < max_size - half_tile
-        ]
-        self.trap_locs = TrapLocations(trap_locs, tile_size)
-
-    def find_drift(self, tp):
-        # TODO check that the drift doesn't move any tiles out of the image, remove them from list if so
-        prev_tp = max(0, tp - 1)
-        drift, error, _ = phase_cross_correlation(
-            self.image[prev_tp, self.ref_channel, self.ref_z],
-            self.image[tp, self.ref_channel, self.ref_z],
-        )
-        self.trap_locs.drifts.append(drift)
-
-    def get_tp_data(self, tp, c):
-        traps = []
-        full = self.get_tc(tp, c)
-        # if self.trap_locs.padding_required(tp):
-        for trap in self.trap_locs:
-            ndtrap = self.ifoob_pad(full, trap.as_range(tp))
-
-            traps.append(ndtrap)
-        return np.stack(traps)
-
-    def get_trap_data(self, trap_id, tp, c):
-        full = self.get_tc(tp, c)
-        trap = self.trap_locs.traps[trap_id]
-        ndtrap = self.ifoob_pad(full, trap.as_range(tp))
-
-        return ndtrap
-
-    @staticmethod
-    def ifoob_pad(full, slices):
-        """
-        Returns the slices padded if it is out of bounds
-
-        Parameters:
-        ----------
-        full: (zstacks, max_size, max_size) ndarray
-        Entire position with zstacks as first axis
-        slices: tuple of two slices
-        Each slice indicates an axis to index
-
-
-        Returns
-        Trap for given slices, padded with median if needed, or np.nan if the padding is too much
-        """
-        max_size = full.shape[-1]
-
-        y, x = [slice(max(0, s.start), min(max_size, s.stop)) for s in slices]
-        trap = full[:, y, x]
-
-        padding = np.array(
-            [(-min(0, s.start), -min(0, max_size - s.stop)) for s in slices]
-        )
-        if padding.any():
-            tile_size = slices[0].stop - slices[0].start
-            if (padding > tile_size / 4).any():
-                trap = np.full((full.shape[0], tile_size, tile_size), np.nan)
-            else:
-
-                trap = np.pad(trap, [[0, 0]] + padding.tolist(), "median")
-
-        return trap
-
-    def run_tp(self, tp):
-        assert tp >= self.n_processed, "Time point already processed"
-        # TODO check contiguity?
-        if self.n_processed == 0:
-            self._initialise_traps(self.tile_size)
-        self.find_drift(tp)  # Get drift
-        # update n_processed
-        self.n_processed += 1
-        # Return result for writer
-        return self.trap_locs.to_dict(tp)
-
-    def run(self, tp):
-        if self.n_processed == 0:
-            self._initialise_traps(self.tile_size)
-        self.find_drift(tp)  # Get drift
-        # update n_processed
-        self.n_processed += 1
-        # Return result for writer
-        return self.trap_locs.to_dict(tp)
-
-    # The next set of functions are necessary for the extraction object
-    def get_traps_timepoint(self, tp, tile_size=None, channels=None, z=None):
-        # FIXME we currently ignore the tile size
-        # FIXME can we ignore z(always  give)
-        res = []
-        for c in channels:
-            val = self.get_tp_data(tp, c)[:, z]  # Only return requested z
-            # positions
-            # Starts at traps, z, y, x
-            # Turn to Trap, C, T, X, Y, Z order
-            val = val.swapaxes(1, 3).swapaxes(1, 2)
-            val = np.expand_dims(val, axis=1)
-            res.append(val)
-        return np.stack(res, axis=1)
-
-    def get_channel_index(self, item):
-        for i, ch in enumerate(self.channels):
-            if item in ch:
-                return i
-
-    def get_position_annotation(self):
-        # TODO required for matlab support
-        return None
diff --git a/pcore/tests/__init__.py b/pcore/tests/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/pcore/tests/test_integration.py b/pcore/tests/test_integration.py
deleted file mode 100644
index 10e45f8ae16b8319cf18266bf2e3a331e502969b..0000000000000000000000000000000000000000
--- a/pcore/tests/test_integration.py
+++ /dev/null
@@ -1,28 +0,0 @@
-"""
-Testing the "run" functions in the pipeline elements.
-"""
-import pytest
-pytest.mark.skip(reason='All tests still WIP')
-
-# Todo: data needed: an experiment object
-# Todo: data needed: an sqlite database
-# Todo: data needed: a Shelf storage
-class TestPipeline:
-    def test_experiment(self):
-        pass
-
-    def test_omero_experiment(self):
-        pass
-
-    def test_tiler(self):
-        pass
-
-    def test_baby_client(self):
-        pass
-
-    def test_baby_runner(self):
-        pass
-
-    def test_pipeline(self):
-        pass
-
diff --git a/pcore/tests/test_units.py b/pcore/tests/test_units.py
deleted file mode 100644
index 447ab6018d2e249612094202a490c0beb9ae4324..0000000000000000000000000000000000000000
--- a/pcore/tests/test_units.py
+++ /dev/null
@@ -1,99 +0,0 @@
-import pytest
-pytest.mark.skip("all tests still WIP")
-
-
-from core.core import PersistentDict
-
-# Todo: temporary file needed
-class TestPersistentDict:
-    @pytest.fixture(autouse=True, scope='class')
-    def _get_json_file(self, tmp_path):
-        self._filename = tmp_path / 'persistent_dict.json'
-
-    def test_persistent_dict(self):
-        p = PersistentDict(self._filename)
-        p['hello/from/the/other/side'] = "adele"
-        p['hello/how/you/doing'] = 'lionel'
-        # Todo: run checks
-
-
-# Todo: data needed - small experiment
-class TestExperiment:
-    def test_shape(self):
-        pass
-    def test_positions(self):
-        pass
-    def test_channels(self):
-        pass
-    def test_hypercube(self):
-        pass
-
-# Todo: data needed - a dummy OMERO server
-class TestConnection:
-    def test_dataset(self):
-        pass
-    def test_image(self):
-        pass
-
-# Todo data needed - a position
-class TestTimelapse:
-    def test_id(self):
-        pass
-    def test_name(self):
-        pass
-    def test_size_z(self):
-        pass
-    def test_size_c(self):
-        pass
-    def test_size_t(self):
-        pass
-    def test_size_x(self):
-        pass
-    def test_size_y(self):
-        pass
-    def test_channels(self):
-        pass
-    def test_channel_index(self):
-        pass
-
-# Todo: data needed image and template
-class TestTrapUtils:
-    def test_trap_locations(self):
-        pass
-    def test_tile_shape(self):
-        pass
-    def test_get_tile(self):
-        pass
-    def test_centre(self):
-        pass
-
-# Todo: data needed - a functional experiment object
-class TestTiler:
-    def test_n_timepoints(self):
-        pass
-    def test_n_traps(self):
-        pass
-    def test_get_trap_timelapse(self):
-        pass
-    def test_get_trap_timepoints(self):
-        pass
-
-# Todo: data needed - a functional tiler object
-# Todo: running server needed
-class TestBabyClient:
-    def test_get_new_session(self):
-        pass
-    def test_queue_image(self):
-        pass
-    def test_get_segmentation(self):
-        pass
-
-# Todo: data needed - a functional tiler object
-class TestBabyRunner:
-    def test_model_choice(self):
-        pass
-    def test_properties(self):
-        pass
-    def test_segment(self):
-        pass
-
diff --git a/pcore/timelapse.py b/pcore/timelapse.py
deleted file mode 100644
index 2e663cd1f6a548bad68a869e48b4c3aa1bd41413..0000000000000000000000000000000000000000
--- a/pcore/timelapse.py
+++ /dev/null
@@ -1,427 +0,0 @@
-import itertools
-import logging
-
-import h5py
-import numpy as np
-from pathlib import Path
-
-from tqdm import tqdm
-import cv2
-
-from pcore.io.matlab import matObject
-from pcore.utils import Cache, imread, get_store_path
-
-logger = logging.getLogger(__name__)
-
-
-def parse_local_fs(pos_dir, tp=None):
-    """
-    Local file structure:
-    - pos_dir
-        -- exptID_{timepointID}_{ChannelID}_{z_position_id}.png
-
-    :param pos_dirs:
-    :return: Image_mapper
-    """
-    pos_dir = Path(pos_dir)
-
-    img_mapper = dict()
-
-    def channel_idx(img_name):
-        return img_name.stem.split("_")[-2]
-
-    def tp_idx(img_name):
-        return int(img_name.stem.split("_")[-3]) - 1
-
-    def z_idx(img_name):
-        return img_name.stem.split("_")[-1]
-
-    if tp is not None:
-        img_list = [img for img in pos_dir.iterdir() if tp_idx(img) in tp]
-    else:
-        img_list = [img for img in pos_dir.iterdir()]
-
-    for tp, group in itertools.groupby(sorted(img_list, key=tp_idx), key=tp_idx):
-        img_mapper[int(tp)] = {
-            channel: {i: item for i, item in enumerate(sorted(grp, key=z_idx))}
-            for channel, grp in itertools.groupby(
-                sorted(group, key=channel_idx), key=channel_idx
-            )
-        }
-    return img_mapper
-
-
-class Timelapse:
-    """
-    Timelapse class contains the specifics of one position.
-    """
-
-    def __init__(self):
-        self._id = None
-        self._name = None
-        self._channels = []
-        self._size_c = 0
-        self._size_t = 0
-        self._size_x = 0
-        self._size_y = 0
-        self._size_z = 0
-        self.image_cache = None
-        self.annotation = None
-
-    def __repr__(self):
-        return self.name
-
-    def full_mask(self):
-        return np.full(self.shape, False)
-
-    def __getitem__(self, item):
-        cached = self.image_cache[item]
-        # Check if there are missing values, if so reload
-        # TODO only reload missing
-        mask = np.isnan(cached)
-        if np.any(mask):
-            full = self.load_fn(item)
-            shape = self.image_cache[
-                item
-            ].shape  # TODO speed this up by  recognising the shape from the item
-            self.image_cache[item] = np.reshape(full, shape)
-            return full
-        return cached
-
-    def get_hypercube(self):
-        pass
-
-    def load_fn(self, item):
-        """
-        The hypercube is ordered as: C, T, X, Y, Z
-        :param item:
-        :return:
-        """
-
-        def parse_slice(s):
-            step = s.step if s.step is not None else 1
-            if s.start is None and s.stop is None:
-                return None
-            elif s.start is None and s.stop is not None:
-                return range(0, s.stop, step)
-            elif s.start is not None and s.stop is None:
-                return [s.start]
-            else:  # both s.start and s.stop are not None
-                return range(s.start, s.stop, step)
-
-        def parse_subitem(subitem, kw):
-            if isinstance(subitem, (int, float)):
-                res = [int(subitem)]
-            elif isinstance(subitem, list) or isinstance(subitem, tuple):
-                res = list(subitem)
-            elif isinstance(subitem, slice):
-                res = parse_slice(subitem)
-            else:
-                res = subitem
-                # raise ValueError(f"Cannot parse slice {kw}: {subitem}")
-
-            if kw in ["x", "y"]:
-                # Need exactly two values
-                if res is not None:
-                    if len(res) < 2:
-                        # An int was passed, assume it was
-                        res = [res[0], self.size_x]
-                    elif len(res) > 2:
-                        res = [res[0], res[-1] + 1]
-            return res
-
-        if isinstance(item, int):
-            return self.get_hypercube(
-                x=None, y=None, z_positions=None, channels=[item], timepoints=None
-            )
-        elif isinstance(item, slice):
-            return self.get_hypercube(channels=parse_slice(item))
-        keywords = ["channels", "timepoints", "x", "y", "z_positions"]
-        kwargs = dict()
-        for kw, subitem in zip(keywords, item):
-            kwargs[kw] = parse_subitem(subitem, kw)
-        return self.get_hypercube(**kwargs)
-
-    @property
-    def shape(self):
-        return (self.size_c, self.size_t, self.size_x, self.size_y, self.size_z)
-
-    @property
-    def id(self):
-        return self._id
-
-    @property
-    def name(self):
-        return self._name
-
-    @property
-    def size_z(self):
-        return self._size_z
-
-    @property
-    def size_c(self):
-        return self._size_c
-
-    @property
-    def size_t(self):
-        return self._size_t
-
-    @property
-    def size_x(self):
-        return self._size_x
-
-    @property
-    def size_y(self):
-        return self._size_y
-
-    @property
-    def channels(self):
-        return self._channels
-
-    def get_channel_index(self, channel):
-        return self.channels.index(channel)
-
-
-def load_annotation(filepath: Path):
-    try:
-        return matObject(filepath)
-    except Exception as e:
-        raise (
-            "Could not load annotation file. \n"
-            "Non MATLAB files currently unsupported"
-        ) from e
-
-
-class TimelapseOMERO(Timelapse):
-    """
-    Connected to an Image object which handles database I/O.
-    """
-
-    def __init__(self, image, annotation, cache, **kwargs):
-        super(TimelapseOMERO, self).__init__()
-        self.image = image
-        # Pre-load pixels
-        self.pixels = self.image.getPrimaryPixels()
-        self._id = self.image.getId()
-        self._name = self.image.getName()
-        self._size_x = self.image.getSizeX()
-        self._size_y = self.image.getSizeY()
-        self._size_z = self.image.getSizeZ()
-        self._size_c = self.image.getSizeC()
-        self._size_t = self.image.getSizeT()
-        self._channels = self.image.getChannelLabels()
-        # Check whether there are file annotations for this position
-        if annotation is not None:
-            self.annotation = load_annotation(annotation)
-        # Get an HDF5 dataset to use as a cache.
-        compression = kwargs.get("compression", None)
-        self.image_cache = cache.require_dataset(
-            self.name,
-            self.shape,
-            dtype=np.float16,
-            fillvalue=np.nan,
-            compression=compression,
-        )
-
-    def get_hypercube(
-        self, x=None, y=None, z_positions=None, channels=None, timepoints=None
-    ):
-        if x is None and y is None:
-            tile = None  # Get full plane
-        elif x is None:
-            ymin, ymax = y
-            tile = (None, ymin, None, ymax - ymin)
-        elif y is None:
-            xmin, xmax = x
-            tile = (xmin, None, xmax - xmin, None)
-        else:
-            xmin, xmax = x
-            ymin, ymax = y
-            tile = (xmin, ymin, xmax - xmin, ymax - ymin)
-
-        if z_positions is None:
-            z_positions = range(self.size_z)
-        if channels is None:
-            channels = range(self.size_c)
-        if timepoints is None:
-            timepoints = range(self.size_t)
-
-        z_positions = z_positions or [0]
-        channels = channels or [0]
-        timepoints = timepoints or [0]
-
-        zcttile_list = [
-            (z, c, t, tile)
-            for z, c, t in itertools.product(z_positions, channels, timepoints)
-        ]
-        planes = list(self.pixels.getTiles(zcttile_list))
-        order = (
-            len(z_positions),
-            len(channels),
-            len(timepoints),
-            planes[0].shape[-2],
-            planes[0].shape[-1],
-        )
-        result = np.stack([x for x in planes]).reshape(order)
-        # Set to C, T, X, Y, Z order
-        result = np.moveaxis(result, -1, -2)
-        return np.moveaxis(result, 0, -1)
-
-    def cache_set(self, save_dir, timepoints, expt_name, quiet=True):
-        # TODO deprecate when this is default
-        pos_dir = save_dir / self.name
-        if not pos_dir.exists():
-            pos_dir.mkdir()
-        for tp in tqdm(timepoints, desc=self.name):
-            for channel in tqdm(self.channels, disable=quiet):
-                for z_pos in tqdm(range(self.size_z), disable=quiet):
-                    ch_id = self.get_channel_index(channel)
-                    image = self.get_hypercube(
-                        x=None,
-                        y=None,
-                        channels=[ch_id],
-                        z_positions=[z_pos],
-                        timepoints=[tp],
-                    )
-                    im_name = "{}_{:06d}_{}_{:03d}.png".format(
-                        expt_name, tp + 1, channel, z_pos + 1
-                    )
-                    cv2.imwrite(str(pos_dir / im_name), np.squeeze(image))
-        # TODO update positions table to get the number of timepoints?
-        return list(itertools.product([self.name], timepoints))
-
-    def run(self, keys, store, save_dir="./", **kwargs):
-        """
-        Parse file structure and get images for the timepoints in keys.
-        """
-        save_dir = Path(save_dir)
-        if keys is None:
-            # TODO save final metadata
-            return None
-        store = save_dir / store
-        # A position specific store
-        store = store.with_name(self.name + store.name)
-        # Create store if it does not exist
-        if not store.exists():
-            # The first run, add metadata to the store
-            with h5py.File(store, "w") as pos_store:
-                # TODO Add metadata to the store.
-                pass
-        # TODO check how sensible the keys are with what is available
-        #   if some of the keys don't make sense, log a warning and remove
-        #   them so that the next steps of the pipeline make sense
-        return keys
-
-    def clear_cache(self):
-        self.image_cache.clear()
-
-
-class TimelapseLocal(Timelapse):
-    def __init__(
-        self, position, root_dir, finished=True, annotation=None, cache=None, **kwargs
-    ):
-        """
-        Linked to a local directory containing the images for one position
-        in an experiment.
-        Can be a still running experiment or a finished one.
-
-        :param position: Name of the position
-        :param root_dir: Root directory
-        :param finished: Whether the experiment has finished running or the
-        class will be used as part of a pipeline, mostly with calls to `run`
-        """
-        super(TimelapseLocal, self).__init__()
-        self.pos_dir = Path(root_dir) / position
-        assert self.pos_dir.exists()
-        self._id = position
-        self._name = position
-        if finished:
-            self.image_mapper = parse_local_fs(self.pos_dir)
-            self._update_metadata()
-        else:
-            self.image_mapper = dict()
-        self.annotation = None
-        # Check whether there are file annotations for this position
-        if annotation is not None:
-            self.annotation = load_annotation(annotation)
-        compression = kwargs.get("compression", None)
-        self.image_cache = cache.require_dataset(
-            self.name,
-            self.shape,
-            dtype=np.float16,
-            fillvalue=np.nan,
-            compression=compression,
-        )
-
-    def _update_metadata(self):
-        self._size_t = len(self.image_mapper)
-        # Todo: if cy5 is the first one it causes issues with getting x, y
-        #   hence the sorted but it's not very robust
-        self._channels = sorted(
-            list(set.union(*[set(tp.keys()) for tp in self.image_mapper.values()]))
-        )
-        self._size_c = len(self._channels)
-        # Todo: refactor so we don't rely on there being any images at all
-        self._size_z = max([len(self.image_mapper[0][ch]) for ch in self._channels])
-        single_img = self.get_hypercube(
-            x=None, y=None, z_positions=None, channels=[0], timepoints=[0]
-        )
-        self._size_x = single_img.shape[2]
-        self._size_y = single_img.shape[3]
-
-    def get_hypercube(
-        self, x=None, y=None, z_positions=None, channels=None, timepoints=None
-    ):
-        xmin, xmax = x if x is not None else (None, None)
-        ymin, ymax = y if y is not None else (None, None)
-
-        if z_positions is None:
-            z_positions = range(self.size_z)
-        if channels is None:
-            channels = range(self.size_c)
-        if timepoints is None:
-            timepoints = range(self.size_t)
-
-        def z_pos_getter(z_positions, ch_id, t):
-            default = np.zeros((self.size_x, self.size_y))
-            names = [
-                self.image_mapper[t][self.channels[ch_id]].get(i, None)
-                for i in z_positions
-            ]
-            res = [imread(name) if name is not None else default for name in names]
-            return res
-
-        # nested list of images in C, T, X, Y, Z order
-        ctxyz = []
-        for ch_id in channels:
-            txyz = []
-            for t in timepoints:
-                xyz = z_pos_getter(z_positions, ch_id, t)
-                txyz.append(np.dstack(list(xyz))[xmin:xmax, ymin:ymax])
-            ctxyz.append(np.stack(txyz))
-        return np.stack(ctxyz)
-
-    def clear_cache(self):
-        self.image_cache.clear()
-
-    def run(self, keys, store, save_dir="./", **kwargs):
-        """
-        Parse file structure and get images for the time points in keys.
-        """
-        if keys is None:
-            return None
-        elif isinstance(keys, int):
-            keys = [keys]
-        self.image_mapper.update(parse_local_fs(self.pos_dir, tp=keys))
-        self._update_metadata()
-        # Create store if it does not exist
-        store = get_store_path(save_dir, store, self.name)
-        if not store.exists():
-            # The first run, add metadata to the store
-            with h5py.File(store, "w") as pos_store:
-                # TODO Add metadata to the store.
-                pass
-        # TODO check how sensible the keys are with what is available
-        #   if some of the keys don't make sense, log a warning and remove
-        #   them so that the next steps of the pipeline make sense
-        return keys
diff --git a/pcore/trap_templates/trap_bg_1.npy b/pcore/trap_templates/trap_bg_1.npy
deleted file mode 100644
index ca09a8b6fdbb857de18289059bde8027f55b5a55..0000000000000000000000000000000000000000
Binary files a/pcore/trap_templates/trap_bg_1.npy and /dev/null differ
diff --git a/pcore/trap_templates/trap_bm_1.npy b/pcore/trap_templates/trap_bm_1.npy
deleted file mode 100644
index babded4ab4a877c9a7ecf67d400d8d9aec0bea4f..0000000000000000000000000000000000000000
Binary files a/pcore/trap_templates/trap_bm_1.npy and /dev/null differ
diff --git a/pcore/trap_templates/trap_bm_2.npy b/pcore/trap_templates/trap_bm_2.npy
deleted file mode 100644
index 28f399c3062429d2de63c5e9bcd1c42ded66171a..0000000000000000000000000000000000000000
Binary files a/pcore/trap_templates/trap_bm_2.npy and /dev/null differ
diff --git a/pcore/trap_templates/trap_prime.npy b/pcore/trap_templates/trap_prime.npy
deleted file mode 100644
index 146cdae25b50d81f6f05a1f7818aedcc2210228a..0000000000000000000000000000000000000000
Binary files a/pcore/trap_templates/trap_prime.npy and /dev/null differ
diff --git a/pcore/traps.py b/pcore/traps.py
deleted file mode 100644
index e37eb925eb5763c43efbabed961fb76385aa5e4c..0000000000000000000000000000000000000000
--- a/pcore/traps.py
+++ /dev/null
@@ -1,480 +0,0 @@
-"""
-A set of utilities for dealing with ALCATRAS traps
-"""
-
-import numpy as np
-from tqdm import tqdm
-
-from skimage import transform, feature
-from skimage.filters.rank import entropy
-from skimage.filters import threshold_otsu
-from skimage.segmentation import clear_border
-from skimage.measure import label, regionprops
-from skimage.morphology import disk, closing, square
-
-
-def stretch_image(image):
-    image = ((image - image.min()) / (image.max() - image.min())) * 255
-    minval = np.percentile(image, 2)
-    maxval = np.percentile(image, 98)
-    image = np.clip(image, minval, maxval)
-    image = (image - minval) / (maxval - minval)
-    return image
-
-
-def segment_traps(image, tile_size, downscale=0.4):
-    # Make image go between 0 and 255
-    img = image  # Keep a memory of image in case need to re-run
-    # stretched = stretch_image(image)
-    # img = stretch_image(image)
-    # TODO Optimise the hyperparameters
-    disk_radius = int(min([0.01 * x for x in img.shape]))
-    min_area = 0.2 * (tile_size ** 2)
-    if downscale != 1:
-        img = transform.rescale(image, downscale)
-    entropy_image = entropy(img, disk(disk_radius))
-    if downscale != 1:
-        entropy_image = transform.rescale(entropy_image, 1 / downscale)
-
-    # apply threshold
-    thresh = threshold_otsu(entropy_image)
-    bw = closing(entropy_image > thresh, square(3))
-
-    # remove artifacts connected to image border
-    cleared = clear_border(bw)
-
-    # label image regions
-    label_image = label(cleared)
-    areas = [
-        region.area
-        for region in regionprops(label_image)
-        if region.area > min_area and region.area < tile_size ** 2 * 0.8
-    ]
-    traps = (
-        np.array(
-            [
-                region.centroid
-                for region in regionprops(label_image)
-                if region.area > min_area and region.area < tile_size ** 2 * 0.8
-            ]
-        )
-        .round()
-        .astype(int)
-    )
-    ma = (
-        np.array(
-            [
-                region.minor_axis_length
-                for region in regionprops(label_image)
-                if region.area > min_area and region.area < tile_size ** 2 * 0.8
-            ]
-        )
-        .round()
-        .astype(int)
-    )
-    maskx = (tile_size // 2 < traps[:, 0]) & (
-        traps[:, 0] < image.shape[0] - tile_size // 2
-    )
-    masky = (tile_size // 2 < traps[:, 1]) & (
-        traps[:, 1] < image.shape[1] - tile_size // 2
-    )
-
-    traps = traps[maskx & masky, :]
-    ma = ma[maskx & masky]
-
-    chosen_trap_coords = np.round(traps[ma.argmin()]).astype(int)
-    x, y = chosen_trap_coords
-    template = image[
-        x - tile_size // 2 : x + tile_size // 2, y - tile_size // 2 : y + tile_size // 2
-    ]
-
-    traps = identify_trap_locations(image, template)
-
-    if len(traps) < 10 and downscale != 1:
-        print("Trying again.")
-        return segment_traps(image, tile_size, downscale=1)
-
-    return traps
-
-
-# def segment_traps(image, tile_size, downscale=0.4):
-#     # Make image go between 0 and 255
-#     img = image  # Keep a memory of image in case need to re-run
-#     image = stretch_image(image)
-#     # TODO Optimise the hyperparameters
-#     disk_radius = int(min([0.01 * x for x in img.shape]))
-#     min_area = 0.1 * (tile_size ** 2)
-#     if downscale != 1:
-#         img = transform.rescale(image, downscale)
-#     entropy_image = entropy(img, disk(disk_radius))
-#     if downscale != 1:
-#         entropy_image = transform.rescale(entropy_image, 1 / downscale)
-
-#     # apply threshold
-#     thresh = threshold_otsu(entropy_image)
-#     bw = closing(entropy_image > thresh, square(3))
-
-#     # remove artifacts connected to image border
-#     cleared = clear_border(bw)
-
-#     # label image regions
-#     label_image = label(cleared)
-#     traps = [
-#         region.centroid for region in regionprops(label_image) if region.area > min_area
-#     ]
-#     if len(traps) < 10 and downscale != 1:
-#         print("Trying again.")
-#         return segment_traps(image, tile_size, downscale=1)
-#     return traps
-
-
-def identify_trap_locations(
-    image, trap_template, optimize_scale=True, downscale=0.35, trap_size=None
-):
-    """
-    Identify the traps in a single image based on a trap template.
-    This assumes a trap template that is similar to the image in question
-    (same camera, same magification; ideally same experiment).
-
-    This method speeds up the search by downscaling both the image and
-    the trap template before running the template match.
-    It also optimizes the scale and the rotation of the trap template.
-
-    :param image:
-    :param trap_template:
-    :param optimize_scale:
-    :param downscale:
-    :param trap_rotation:
-    :return:
-    """
-    trap_size = trap_size if trap_size is not None else trap_template.shape[0]
-    # Careful, the image is float16!
-    img = transform.rescale(image.astype(float), downscale)
-    temp = transform.rescale(trap_template, downscale)
-
-    # TODO random search hyperparameter optimization
-    # optimize rotation
-    matches = {
-        rotation: feature.match_template(
-            img,
-            transform.rotate(temp, rotation, cval=np.median(img)),
-            pad_input=True,
-            mode="median",
-        )
-        ** 2
-        for rotation in [0, 90, 180, 270]
-    }
-    best_rotation = max(matches, key=lambda x: np.percentile(matches[x], 99.9))
-    temp = transform.rotate(temp, best_rotation, cval=np.median(img))
-
-    if optimize_scale:
-        scales = np.linspace(0.5, 2, 10)
-        matches = {
-            scale: feature.match_template(
-                img, transform.rescale(temp, scale), mode="median", pad_input=True
-            )
-            ** 2
-            for scale in scales
-        }
-        best_scale = max(matches, key=lambda x: np.percentile(matches[x], 99.9))
-        matched = matches[best_scale]
-    else:
-        matched = feature.match_template(img, temp, pad_input=True, mode="median")
-
-    coordinates = feature.peak_local_max(
-        transform.rescale(matched, 1 / downscale),
-        min_distance=int(trap_template.shape[0] * 0.70),
-        exclude_border=(trap_size // 3),
-    )
-    return coordinates
-
-
-def get_tile_shapes(x, tile_size, max_shape):
-    half_size = tile_size // 2
-    xmin = int(x[0] - half_size)
-    ymin = max(0, int(x[1] - half_size))
-    # if xmin + tile_size > max_shape[0]:
-    #     xmin = max_shape[0] - tile_size
-    # if ymin + tile_size > max_shape[1]:
-    # #     ymin = max_shape[1] - tile_size
-    # return max(xmin, 0), xmin + tile_size, max(ymin, 0), ymin + tile_size
-    return xmin, xmin + tile_size, ymin, ymin + tile_size
-
-
-def in_image(img, xmin, xmax, ymin, ymax, xidx=2, yidx=3):
-    if xmin >= 0 and ymin >= 0:
-        if xmax < img.shape[xidx] and ymax < img.shape[yidx]:
-            return True
-    else:
-        return False
-
-
-def get_xy_tile(img, xmin, xmax, ymin, ymax, xidx=2, yidx=3, pad_val=None):
-    if pad_val is None:
-        pad_val = np.median(img)
-    # Get the tile from the image
-    idx = [slice(None)] * len(img.shape)
-    idx[xidx] = slice(max(0, xmin), min(xmax, img.shape[xidx]))
-    idx[yidx] = slice(max(0, ymin), min(ymax, img.shape[yidx]))
-    tile = img[tuple(idx)]
-    # Check if the tile is in the image
-    if in_image(img, xmin, xmax, ymin, ymax, xidx, yidx):
-        return tile
-    else:
-        # Add padding
-        pad_shape = [(0, 0)] * len(img.shape)
-        pad_shape[xidx] = (max(-xmin, 0), max(xmax - img.shape[xidx], 0))
-        pad_shape[yidx] = (max(-ymin, 0), max(ymax - img.shape[yidx], 0))
-        tile = np.pad(tile, pad_shape, constant_values=pad_val)
-    return tile
-
-
-def get_trap_timelapse(
-    raw_expt, trap_locations, trap_id, tile_size=117, channels=None, z=None
-):
-    """
-    Get a timelapse for a given trap by specifying the trap_id
-    :param trap_id: An integer defining which trap to choose. Counted
-    between 0 and Tiler.n_traps - 1
-    :param tile_size: The size of the trap tile (centered around the
-    trap as much as possible, edge cases exist)
-    :param channels: Which channels to fetch, indexed from 0.
-    If None, defaults to [0]
-    :param z: Which z_stacks to fetch, indexed from 0.
-    If None, defaults to [0].
-    :return: A numpy array with the timelapse in (C,T,X,Y,Z) order
-    """
-    # Set the defaults (list is mutable)
-    channels = channels if channels is not None else [0]
-    z = z if z is not None else [0]
-    # Get trap location for that id:
-    trap_centers = [trap_locations[i][trap_id] for i in range(len(trap_locations))]
-
-    max_shape = (raw_expt.shape[2], raw_expt.shape[3])
-    tiles_shapes = [
-        get_tile_shapes((x[0], x[1]), tile_size, max_shape) for x in trap_centers
-    ]
-
-    timelapse = [
-        get_xy_tile(
-            raw_expt[channels, i, :, :, z], xmin, xmax, ymin, ymax, pad_val=None
-        )
-        for i, (xmin, xmax, ymin, ymax) in enumerate(tiles_shapes)
-    ]
-    return np.hstack(timelapse)
-
-
-def get_trap_timelapse_omero(
-    raw_expt, trap_locations, trap_id, tile_size=117, channels=None, z=None, t=None
-):
-    """
-    Get a timelapse for a given trap by specifying the trap_id
-    :param raw_expt: A Timelapse object from which data is obtained
-    :param trap_id: An integer defining which trap to choose. Counted
-    between 0 and Tiler.n_traps - 1
-    :param tile_size: The size of the trap tile (centered around the
-    trap as much as possible, edge cases exist)
-    :param channels: Which channels to fetch, indexed from 0.
-    If None, defaults to [0]
-    :param z: Which z_stacks to fetch, indexed from 0.
-    If None, defaults to [0].
-    :return: A numpy array with the timelapse in (C,T,X,Y,Z) order
-    """
-    # Set the defaults (list is mutable)
-    channels = channels if channels is not None else [0]
-    z_positions = z if z is not None else [0]
-    times = (
-        t if t is not None else np.arange(raw_expt.shape[1])
-    )  # TODO choose sub-set of time points
-    shape = (len(channels), len(times), tile_size, tile_size, len(z_positions))
-    # Get trap location for that id:
-    zct_tiles, slices, trap_ids = all_tiles(
-        trap_locations, shape, raw_expt, z_positions, channels, times, [trap_id]
-    )
-
-    # TODO Make this an explicit function in TimelapseOMERO
-    images = raw_expt.pixels.getTiles(zct_tiles)
-    timelapse = np.full(shape, np.nan)
-    total = len(zct_tiles)
-    for (z, c, t, _), (y, x), image in tqdm(
-        zip(zct_tiles, slices, images), total=total
-    ):
-        ch = channels.index(c)
-        tp = times.tolist().index(t)
-        z_pos = z_positions.index(z)
-        timelapse[ch, tp, x[0] : x[1], y[0] : y[1], z_pos] = image
-
-    # for x in timelapse:  # By channel
-    #    np.nan_to_num(x, nan=np.nanmedian(x), copy=False)
-    return timelapse
-
-
-def all_tiles(trap_locations, shape, raw_expt, z_positions, channels, times, traps):
-    _, _, x, y, _ = shape
-    _, _, MAX_X, MAX_Y, _ = raw_expt.shape
-
-    trap_ids = []
-    zct_tiles = []
-    slices = []
-    for z in z_positions:
-        for ch in channels:
-            for t in times:
-                for trap_id in traps:
-                    centre = trap_locations[t][trap_id]
-                    xmin, ymin, xmax, ymax, r_xmin, r_ymin, r_xmax, r_ymax = tile_where(
-                        centre, x, y, MAX_X, MAX_Y
-                    )
-                    slices.append(
-                        ((r_ymin - ymin, r_ymax - ymin), (r_xmin - xmin, r_xmax - xmin))
-                    )
-                    tile = (r_ymin, r_xmin, r_ymax - r_ymin, r_xmax - r_xmin)
-                    zct_tiles.append((z, ch, t, tile))
-                    trap_ids.append(trap_id)  # So we remember the order!
-    return zct_tiles, slices, trap_ids
-
-
-def tile_where(centre, x, y, MAX_X, MAX_Y):
-    # Find the position of the tile
-    xmin = int(centre[1] - x // 2)
-    ymin = int(centre[0] - y // 2)
-    xmax = xmin + x
-    ymax = ymin + y
-    # What do we actually have available?
-    r_xmin = max(0, xmin)
-    r_xmax = min(MAX_X, xmax)
-    r_ymin = max(0, ymin)
-    r_ymax = min(MAX_Y, ymax)
-    return xmin, ymin, xmax, ymax, r_xmin, r_ymin, r_xmax, r_ymax
-
-
-def get_tile(shape, center, raw_expt, ch, t, z):
-    """Returns a tile from the raw experiment with a given shape.
-
-    :param shape: The shape of the tile in (C, T, Z, Y, X) order.
-    :param center: The x,y position of the centre of the tile
-    :param
-    """
-    _, _, x, y, _ = shape
-    _, _, MAX_X, MAX_Y, _ = raw_expt.shape
-    tile = np.full(shape, np.nan)
-
-    # Find the position of the tile
-    xmin = int(center[1] - x // 2)
-    ymin = int(center[0] - y // 2)
-    xmax = xmin + x
-    ymax = ymin + y
-    # What do we actually have available?
-    r_xmin = max(0, xmin)
-    r_xmax = min(MAX_X, xmax)
-    r_ymin = max(0, ymin)
-    r_ymax = min(MAX_Y, ymax)
-
-    # Fill values
-    tile[
-        :, :, (r_xmin - xmin) : (r_xmax - xmin), (r_ymin - ymin) : (r_ymax - ymin), :
-    ] = raw_expt[ch, t, r_xmin:r_xmax, r_ymin:r_ymax, z]
-    # fill_val = np.nanmedian(tile)
-    # np.nan_to_num(tile, nan=fill_val, copy=False)
-    return tile
-
-
-def get_traps_timepoint(
-    raw_expt, trap_locations, tp, tile_size=96, channels=None, z=None
-):
-    """
-    Get all the traps from a given time point
-    :param raw_expt:
-    :param trap_locations:
-    :param tp:
-    :param tile_size:
-    :param channels:
-    :param z:
-    :return: A numpy array with the traps in the (trap, C, T, X, Y,
-    Z) order
-    """
-
-    # Set the defaults (list is mutable)
-    channels = channels if channels is not None else [0]
-    z_positions = z if z is not None else [0]
-    if isinstance(z_positions, slice):
-        n_z = z_positions.stop
-        z_positions = list(range(n_z))  # slice is not iterable error
-    elif isinstance(z_positions, list):
-        n_z = len(z_positions)
-    else:
-        n_z = 1
-
-    n_traps = len(trap_locations[tp])
-    trap_ids = list(range(n_traps))
-    shape = (len(channels), 1, tile_size, tile_size, n_z)
-    # all tiles
-    zct_tiles, slices, trap_ids = all_tiles(
-        trap_locations, shape, raw_expt, z_positions, channels, [tp], trap_ids
-    )
-    # TODO Make this an explicit function in TimelapseOMERO
-    images = raw_expt.pixels.getTiles(zct_tiles)
-    # Initialise empty traps
-    traps = np.full((n_traps,) + shape, np.nan)
-    for trap_id, (z, c, _, _), (y, x), image in zip(
-        trap_ids, zct_tiles, slices, images
-    ):
-        ch = channels.index(c)
-        z_pos = z_positions.index(z)
-        traps[trap_id, ch, 0, x[0] : x[1], y[0] : y[1], z_pos] = image
-    for x in traps:  # By channel
-        np.nan_to_num(x, nan=np.nanmedian(x), copy=False)
-    return traps
-
-
-def centre(img, percentage=0.3):
-    y, x = img.shape
-    cropx = int(np.ceil(x * percentage))
-    cropy = int(np.ceil(y * percentage))
-    startx = int(x // 2 - (cropx // 2))
-    starty = int(y // 2 - (cropy // 2))
-    return img[starty : starty + cropy, startx : startx + cropx]
-
-
-def align_timelapse_images(
-    raw_data, channel=0, reference_reset_time=80, reference_reset_drift=25
-):
-    """
-    Uses image registration to align images in the timelapse.
-    Uses the channel with id `channel` to perform the registration.
-
-    Starts with the first timepoint as a reference and changes the
-    reference to the current timepoint if either the images have moved
-    by half of a trap width or `reference_reset_time` has been reached.
-
-    Sets `self.drift`, a 3D numpy array with shape (t, drift_x, drift_y).
-    We assume no drift occurs in the z-direction.
-
-    :param reference_reset_drift: Upper bound on the allowed drift before
-    resetting the reference image.
-    :param reference_reset_time: Upper bound on number of time points to
-    register before resetting the reference image.
-    :param channel: index of the channel to use for image registration.
-    """
-    ref = centre(np.squeeze(raw_data[channel, 0, :, :, 0]))
-    size_t = raw_data.shape[1]
-
-    drift = [np.array([0, 0])]
-    for i in range(1, size_t):
-        img = centre(np.squeeze(raw_data[channel, i, :, :, 0]))
-
-        shifts, _, _ = feature.register_translation(ref, img)
-        # If a huge move is detected at a single time point it is taken
-        # to be inaccurate and the correction from the previous time point
-        # is used.
-        # This might be common if there is a focus loss for example.
-        if any([abs(x - y) > reference_reset_drift for x, y in zip(shifts, drift[-1])]):
-            shifts = drift[-1]
-
-        drift.append(shifts)
-        ref = img
-
-        # TODO test necessity for references, description below
-        #   If the images have drifted too far from the reference or too
-        #   much time has passed we change the reference and keep track of
-        #   which images are kept as references
-    return np.stack(drift)
diff --git a/pcore/utils.py b/pcore/utils.py
deleted file mode 100644
index 613bdb720e2e1338261a5965f1c329f7250189e7..0000000000000000000000000000000000000000
--- a/pcore/utils.py
+++ /dev/null
@@ -1,135 +0,0 @@
-"""
-Utility functions and classes
-"""
-import itertools
-import logging
-import operator
-from pathlib import Path
-from typing import Callable
-
-import h5py
-import imageio
-import cv2
-import numpy as np
-
-def repr_obj(obj, indent=0):
-    """
-    Helper function to display info about OMERO objects.
-    Not all objects will have a "name" or owner field.
-    """
-    string = """%s%s:%s  Name:"%s" (owner=%s)""" % (
-        " " * indent,
-        obj.OMERO_CLASS,
-        obj.getId(),
-        obj.getName(),
-        obj.getAnnotation())
-
-    return string
-
-def imread(path):
-    return cv2.imread(str(path), -1)
-
-
-class ImageCache:
-    """HDF5-based image cache for faster loading of the images once they've
-    been read.
-    """
-    def __init__(self, file, name, shape, remote_fn):
-        self.store = h5py.File(file, 'a')
-        # Create a dataset
-        self.dataset = self.store.create_dataset(name, shape,
-                                                 dtype=np.float,
-                                                 fill_value=np.nan)
-        self.remote_fn = remote_fn
-
-    def __getitem__(self, item):
-        cached = self.dataset[item]
-        if np.any(np.isnan(cached)):
-            full = self.remote_fn(item)
-            self.dataset[item] = full
-            return full
-        else:
-            return cached
-
-
-class Cache:
-    """
-    Fixed-length mapping to use as a cache.
-    Deletes items in FIFO manner when maximum allowed length is reached.
-    """
-    def __init__(self, max_len=5000, load_fn: Callable = imread):
-        """
-        :param max_len: Maximum number of items in the cache.
-        :param load_fn: The function used to load new items if they are not
-        available in the Cache
-        """
-        self._dict = dict()
-        self._queue = []
-        self.load_fn = load_fn
-        self.max_len=max_len
-
-    def __getitem__(self, item):
-        if item not in self._dict:
-            self.load_item(item)
-        return self._dict[item]
-
-    def load_item(self, item):
-        self._dict[item] = self.load_fn(item)
-        # Clean up the queue
-        self._queue.append(item)
-        if len(self._queue) > self.max_len:
-            del self._dict[self._queue.pop(0)]
-
-    def clear(self):
-        self._dict.clear()
-        self._queue.clear()
-
-
-def accumulate(l: list):
-    l = sorted(l)
-    it = itertools.groupby(l, operator.itemgetter(0))
-    for key, sub_iter in it:
-        yield key, [x[1] for x in sub_iter]
-
-
-def get_store_path(save_dir, store, name):
-    """Create a path to a position-specific store.
-
-    This combines the name and the store's base name into a file path within save_dir.
-    For example.
-    >>> get_store_path('data', 'baby_seg.h5', 'pos001')
-    Path(data/pos001baby_seg.h5')
-
-    :param save_dir: The root directory in which to save the file, absolute
-    path.
-    :param store: The base name of the store
-    :param name: The name of the position
-    :return: Path(save_dir) / name+store
-    """
-    store = Path(save_dir) / store
-    store = store.with_name(name + store.name)
-    return store
-
-def parametrized(dec):
-    def layer(*args, **kwargs):
-        def repl(f):
-            return dec(f, *args, **kwargs)
-        return repl
-    return layer
-
-from functools import wraps, partial
-from time import perf_counter
-import logging
-@parametrized
-def timed(f, name=None):
-    @wraps(f)
-    def decorated(*args, **kwargs):
-        t = perf_counter()
-        res = f(*args, **kwargs)
-        to_print = name or f.__name__
-        logging.debug(f'Timing:{to_print}:{perf_counter() - t}s')
-        return res
-    return decorated
-
-
-
diff --git a/setup.py b/setup.py
index 64bb81ee39c098ff885650b45d816e86bb4e5ab6..aab0a27d3ba614b17b8b206aa6db279787d0cbb4 100644
--- a/setup.py
+++ b/setup.py
@@ -2,8 +2,8 @@ from setuptools import setup, find_packages
 
 print("find_packages outputs ", find_packages("aliby"))
 setup(
-    name="pipeline-core",
-    version="0.1.1-dev",
+    name="aliby",
+    version="0.1.2",
     packages=find_packages(),
     # package_dir={"": "aliby"},
     # packages=['aliby', 'aliby.io'],