From 747cecdc13a1ec52121bf5c2145360dabf209520 Mon Sep 17 00:00:00 2001 From: Peter Swain <peter.swain@ed.ac.uk> Date: Fri, 2 Sep 2022 20:45:22 +0100 Subject: [PATCH] more extractor --- aliby/tile/tiler.py | 29 ++++++++++--- extraction/core/extractor.py | 80 +++++++++++++++++++++++++----------- 2 files changed, 81 insertions(+), 28 deletions(-) diff --git a/aliby/tile/tiler.py b/aliby/tile/tiler.py index a5b5f4fb..8b5a679a 100644 --- a/aliby/tile/tiler.py +++ b/aliby/tile/tiler.py @@ -15,7 +15,7 @@ One key method is Tiler.run. The image-processing is performed by traps/segment_traps. -The experiment is stored as an array wuth a standard indexing order of (Time, Channels, Z-stack, Y, X). +The experiment is stored as an array with a standard indexing order of (Time, Channels, Z-stack, Y, X). """ import warnings from functools import lru_cache @@ -519,6 +519,24 @@ class Tiler(ProcessABC): """ Get a multidimensional array with all tiles for a set of channels and z-stacks. + + Used by extractor. + + Parameters + --------- + tp: int + Index of time point + tile_shape: int or tuple of two ints + Size of tile in x and y dimensions + channels: string or list of strings + Names of channels of interest + z: int + Index of z-channel of interest + + Returns + ------- + res: array + Data arranged as (traps, channels, timepoints, X, Y, Z) """ # FIXME add support for subtiling trap # FIXME can we ignore z(always give) @@ -526,12 +544,13 @@ class Tiler(ProcessABC): channels = [0] elif isinstance(channels, str): channels = [channels] + # get the data res = [] for c in channels: - val = self.get_tp_data(tp, c)[:, z] # Only return requested z - # positions - # Starts at traps, z, y, x - # Turn to Trap, C, T, X, Y, Z order + # only return requested z + val = self.get_tp_data(tp, c)[:, z] + # starts with the order: traps, z, y, x + # returns the order: trap, C, T, X, Y, Z val = val.swapaxes(1, 3).swapaxes(1, 2) val = np.expand_dims(val, axis=1) res.append(val) diff --git a/extraction/core/extractor.py b/extraction/core/extractor.py index 527267e7..773da141 100644 --- a/extraction/core/extractor.py +++ b/extraction/core/extractor.py @@ -221,7 +221,11 @@ class Extractor(ProcessABC): self.meta = load_attributes(self.local) def get_traps( - self, tp: int, channels: list = None, z: list = None, **kwargs + self, + tp: int, + channels: list = None, + z: list = None, + **kwargs, ) -> tuple: """ Finds traps for a given time point and given channels and z-stacks. @@ -250,7 +254,7 @@ class Extractor(ProcessABC): # a list of the indices of the z stacks if z is None: z = list(range(self.tiler.shape[-1])) - # find the appropiate traps from tiler + # gets the data via tiler traps = ( self.tiler.get_traps_timepoint( tp, channels=channel_ids, z=z, **kwargs @@ -258,6 +262,7 @@ class Extractor(ProcessABC): if channel_ids else None ) + # data arranged as (traps, channels, timepoints, X, Y, Z) return traps def extract_traps( @@ -270,14 +275,23 @@ class Extractor(ProcessABC): """ Apply a function for a whole position. - :traps: List[np.array] list of images - :masks: List[np.array] list of masks - :metric:str metric to extract - :labels: List[int] cell Labels to use as indices for output DataFrame - :pos_info: bool Whether to add the position as index or not + Parameters + ---------- + traps: List[np.array] + List of images + masks: List[np.array] + List of masks + metric: str + Metric to extract + labels: List[int] + Cell labels to use as indices in output dataFrame + pos_info: bool + Whether to add the position as an index or not - returns - :d: Dictionary of dataframe + Returns + ------- + d: dict + A dictionary of dataframes """ if labels is None: @@ -311,7 +325,7 @@ class Extractor(ProcessABC): **kwargs, ) -> dict: """ - Extract multiple metrics from a timepoint + Returns dict with metrics as key and metrics applied to data as values for data from one timepoint. """ d = { metric: self.extract_traps( @@ -333,16 +347,21 @@ class Extractor(ProcessABC): Parameters ---------- - param red_metrics: dict - dict for which keys are reduction funcions and values are strings indicating the metric function + traps: array + An array of image data arranged as (traps, X, Y, Z) + masks: list of arrays + An array of masks for each trap: one per cell at the trap + red_metrics: dict + dict for which keys are reduction functions and values are either a list or a set of strings giving the metric functions. + For example: {'np_max': {'max5px', 'mean', 'median'}} **kwargs: dict - All other arguments and must include masks and traps. + All other arguments and must include masks and traps. Alan: stll true? Returns ------ Dictionary of dataframes with the corresponding reductions and metrics nested. """ - # create dict of traps with reduction in the z-direction + # create dict with keys naming the reduction in the z-direction and the reduced data as values reduced_traps = {} if traps is not None: for red_fun in red_metrics.keys(): @@ -364,7 +383,15 @@ class Extractor(ProcessABC): def reduce_dims(self, img: np.array, method=None) -> np.array: """ - Collapse a z-stack into 2d array. It may perform a null operation. + Collapse a z-stack into 2d array using method. + If method is None, return the original data. + + Parameters + ---------- + img: array + An array of the image data arranged as (X, Y, Z) + method: function + The reduction function """ if method is None: return img @@ -390,14 +417,16 @@ class Extractor(ProcessABC): tree : dict Nested dictionary indicating channels, reduction functions and metrics to be used. + For example: {'general': {'None': ['area', 'volume', 'eccentricity']}} tile_size : int - size of the tile to be extracted. + Size of the tile to be extracted. masks : np.ndarray - A 3-D boolean numpy array with dimensions (ncells, tile_size, + A 3d boolean numpy array with dimensions (ncells, tile_size, tile_size). labels : t.List[t.List[int]] List of lists of ints indicating the ids of masks. - **kwargs : Additional keyword arguments to be passed to extractor.reduce_extract. + **kwargs : keyword arguments + Passed to extractor.reduce_extract. Returns ------- @@ -421,7 +450,7 @@ class Extractor(ProcessABC): for trap_id in range(cells.ntraps) } - # find the cell masks as a dict with trap_ids as keys + # find the cell masks for a given trap as a dict with trap_ids as keys if masks is None: raw_masks = cells.at_time(tp, kind="mask") masks = {trap_id: [] for trap_id in range(cells.ntraps)} @@ -431,12 +460,14 @@ class Extractor(ProcessABC): # convert to a list of masks masks = [np.array(v) for v in masks.values()] - # find traps at the time point + # find image data at the time point + # stored as an array arranged as (traps, channels, timepoints, X, Y, Z) + # Alan: traps does not appear the best name here! traps = self.get_traps(tp, tile_shape=tile_size, channels=tree_chs) self.img_bgsub = {} if self.params.sub_bg: - # generate boolean masks for background + # generate boolean masks for background as a list with one mask per trap bg = [ ~np.sum(m, axis=2).astype(bool) if np.any(m) @@ -446,10 +477,13 @@ class Extractor(ProcessABC): d = {} for ch, red_metrics in tree.items(): - img = None - # ch != is necessary for threading + # image data for all traps and z sections for a particular channel + # as an array arranged as (traps, X, Y, Z) + # NB ch != is necessary for threading if ch != "general" and traps is not None and len(traps): img = traps[:, tree_chs.index(ch), 0] + else: + img = None d[ch] = self.reduce_extract( red_metrics=red_metrics, -- GitLab