diff --git a/core/multisignal/crosscorr.py b/core/multisignal/crosscorr.py index b67ccaa2d1a7b04f13bc189a2c5b86abe79ad9d3..5299851424eb7d653a9410bc9785d0e286d65847 100644 --- a/core/multisignal/crosscorr.py +++ b/core/multisignal/crosscorr.py @@ -58,15 +58,17 @@ class crosscorr(PostProcessABC): trace_A = trace_dfA.to_numpy() # number of time points n_tps = trace_A.shape[1] + # number of replicates + n_replicates = trace_A.shape[0] # deviation from mean at each time point dmean_A = trace_A - np.nanmean(trace_A, axis=0).reshape((1, n_tps)) - # standard deviation at each time point - stdA = np.sqrt(np.nanmean(dmean_A ** 2, axis=0).reshape((1, n_tps))) + # standard deviation over time for each replicate + stdA = np.sqrt(np.nanmean(dmean_A ** 2, axis=1).reshape((n_replicates, 1))) if trace_dfB is not None: trace_B = trace_dfB.to_numpy() # cross correlation dmean_B = trace_B - np.nanmean(trace_B, axis=0).reshape((1, n_tps)) - stdB = np.sqrt(np.nanmean(dmean_B ** 2, axis=0).reshape((1, n_tps))) + stdB = np.sqrt(np.nanmean(dmean_B ** 2, axis=1).reshape((n_replicates, 1))) else: # auto correlation dmean_B = dmean_A