diff --git a/src/extraction/core/extractor.py b/src/extraction/core/extractor.py index 6a5af6bcbfef415ede6d3c0b2ca70b276c86bcb0..25668e6a0bbd38aee9a6af8d01745352678aa3fe 100644 --- a/src/extraction/core/extractor.py +++ b/src/extraction/core/extractor.py @@ -39,7 +39,7 @@ RED_FUNS = load_redfuns() class ExtractorParameters(ParametersABC): """ - Base class to define parameters for extraction + Base class to define parameters for extraction. """ def __init__( @@ -55,7 +55,7 @@ class ExtractorParameters(ParametersABC): Nested dictionary indicating channels, reduction functions and metrics to be used. str channel -> U(function,None) reduction -> str metric - If not of depth three, tree will be filled with Nones. + If not of depth three, tree will be filled with None. sub_bg: set multichannel_ops: dict """ @@ -66,7 +66,7 @@ class ExtractorParameters(ParametersABC): @staticmethod def guess_from_meta(store_name: str, suffix="fast"): """ - Find the microscope used from the h5 metadata + Find the microscope used from the h5 metadata. Parameters ---------- @@ -91,25 +91,28 @@ class ExtractorParameters(ParametersABC): class Extractor(ProcessABC): """ - The Extractor applies a metric, such as area or median, to cells identified in the image tiles using the cell masks. + Apply a metric to cells identified in the tiles. - Its methods therefore require both tile images and masks. + Using the cell masks, the Extractor applies a metric, such as area or median, to cells identified in the image tiles. - Usually one metric is applied to the masked area in a tile, but there are metrics that depend on the whole tile. + Its methods require both tile images and masks. - Extraction follows a three-level tree structure. Channels, such as GFP, are the root level; the second level is the reduction algorithm, such as maximum projection; the last level is the metric - the specific operation to apply to the cells in the image identified by the mask, such as median, which is the median value of the pixels in each cell. + Usually the metric is applied to only a tile's masked area, but some metrics depend on the whole tile. + + Extraction follows a three-level tree structure. Channels, such as GFP, are the root level; the reduction algorithm, such as maximum projection, is the second level; the specific metric, or operation, to apply to the masks is the third level. Parameters ---------- parameters: core.extractor Parameters - Parameters that include with channels, reduction and - extraction functions to use. + Parameters that include the channels, and reduction and + extraction functions. store: str - Path to hdf5 storage file. Must contain cell outlines. + Path to the h5 file, which must contain the cell masks. tiler: pipeline-core.core.segmentation tiler - Class that contains or fetches the image to be used for segmentation. + Class that contains or fetches the images used for segmentation. """ + # Alan: should this data be stored here or all such data in a separate file default_meta = { "pixel_size": 0.236, "z_size": 0.6, @@ -150,7 +153,7 @@ class Extractor(ProcessABC): store: str, tiler: Tiler, ): - # initate from tiler + """Initiate from a tiler instance.""" return cls(parameters, store=store, tiler=tiler) @classmethod @@ -160,12 +163,12 @@ class Extractor(ProcessABC): store: str, img_meta: tuple, ): - # initiate from image + """Initiate from images.""" return cls(parameters, store=store, tiler=Tiler(*img_meta)) @property def channels(self): - # returns a tuple of strings of the available channels + """Get a tuple of the available channels.""" if not hasattr(self, "_channels"): if type(self.params.tree) is dict: self._channels = tuple(self.params.tree.keys()) @@ -226,7 +229,7 @@ class Extractor(ProcessABC): self._all_funs = {**self._custom_funs, **FUNS} def load_meta(self): - # load metadata from h5 file whose name is given by self.local + """Load metadata from h5 file.""" self.meta = load_attributes(self.local) def get_tiles( @@ -237,8 +240,9 @@ class Extractor(ProcessABC): **kwargs, ) -> t.Optional[np.ndarray]: """ - Finds traps for a given time point and given channels and z-stacks. - Returns None if no traps are found. + Find tiles for a given time point and given channels and z-stacks. + + Returns None if no tiles are found. Any additional keyword arguments are passed to tiler.get_tiles_timepoint @@ -378,7 +382,6 @@ class Extractor(ProcessABC): self.reduce_dims(trap, method=RED_FUNS[red_fun]) for trap in traps ] - d = { red_fun: self.extract_funs( metrics=metrics, @@ -395,6 +398,7 @@ class Extractor(ProcessABC): ) -> np.ndarray: """ Collapse a z-stack into 2d array using method. + If method is None, return the original data. Parameters @@ -419,7 +423,7 @@ class Extractor(ProcessABC): **kwargs, ) -> t.Dict[str, t.Dict[str, t.Dict[str, tuple]]]: """ - Core extraction method for an individual time-point. + Extract for an individual time-point. Parameters ---------- @@ -561,7 +565,7 @@ class Extractor(ProcessABC): def get_imgs(self, channel: t.Optional[str], traps, channels=None): """ - Returns the image from a correct source, either raw or bgsub + Return image from a correct source, either raw or bgsub. Parameters ---------- @@ -586,7 +590,7 @@ class Extractor(ProcessABC): def run_tp(self, tp, **kwargs): """ - Wrapper to add compatiblibility with other steps of the pipeline. + Wrapper to add compatibility with other steps of the pipeline. """ return self.run(tps=[tp], **kwargs) @@ -680,7 +684,7 @@ def flatten_nesteddict( nest: dict, to="series", tp: int = None ) -> t.Dict[str, pd.Series]: """ - Converts a nested extraction dict into a dict of pd.Series + Convert a nested extraction dict into a dict of pd.Series. Parameters ---------- @@ -709,6 +713,7 @@ def flatten_nesteddict( class hollowExtractor(Extractor): """ Extractor that only cares about receiving images and masks. + Used for testing. """