diff --git a/src/agora/utils/indexing.py b/src/agora/utils/indexing.py
index 0e50be02012bf7ca0198dbdaf07e28d984c976d8..a86fce665cc8aa610fc9a96458d76f2f4109e991 100644
--- a/src/agora/utils/indexing.py
+++ b/src/agora/utils/indexing.py
@@ -21,6 +21,8 @@ def validate_association(
 
     We use broadcasting for speed.
 
+    Both mother and bud in association must be in indices.
+
     Parameters
     ----------
     association : np.ndarray
@@ -49,12 +51,22 @@ def validate_association(
     >>> indices = np.array([ [0, 1], [0, 2], [0, 3]])
     >>> print(indices.T)
 
-    >>> valid_associations, valid_indices = validate_association(association, indices)
+    >>> valid_association, valid_indices = validate_association(association, indices)
+
+    >>> print(valid_association)
+     array([ True, False, False, False])
+    >>> print(valid_indices)
+     array([ True, False, True])
+
+    and
 
-    >>> print(valid_associations)
-    array([ True, False, False, False])
+    >>> association = np.array([[[0,3], [0,1]], [[0,2], [0,4]]])
+    >>> indices = np.array([[0,1], [0,2], [0,3]])
+    >>> valid_association, valid_indices = validate_association(association, indices)
+    >>> print(valid_association)
+     array([ True, False])
     >>> print(valid_indices)
-    array([ True, False, True])
+     array([ True, False, True])
     """
     if association.ndim == 2:
         # reshape into 3D array for broadcasting
@@ -69,33 +81,29 @@ def validate_association(
     valid_ndassociation = (
         association[..., np.newaxis] == indicesT[np.newaxis, ...]
     )
+    # find matches in association
+    ###
     # make True comparisons have both trap_ids and cell labels matching
     valid_cell_ids = valid_ndassociation.all(axis=2)
     if match_column is None:
-        # 1. find matches in association
         # make True comparisons match at least one row in indices
         va_intermediate = valid_cell_ids.any(axis=2)
-        # make True comparisons have both mother and daughter matching rows in indices
+        # make True comparisons have both mother and bud matching rows in indices
         valid_association = va_intermediate.all(axis=1)
-        # 2. find matches in indices
-        # make True comparisons match for at least one mother or daughter in association
-        ind_intermediate = valid_cell_ids.any(axis=1)
-        # make True comparisons match for at least one row in association
-        valid_indices = ind_intermediate.any(axis=0)
-        # OLD
-        # valid_indices = (
-        #     valid_ndassociation[valid_association].all(axis=2).any(axis=(0, 1))
-        # )
     else:
         # match_column selects mothers if 0 and daughters if 1
         # make True match at least one row in indices
         valid_association = valid_cell_ids[:, match_column].any(axis=1)
-        # make True match at least one row in association
-        valid_indices = valid_cell_ids[:, match_column].any(axis=0)
-        # OLD
-        # valid_association = (
-        #     valid_cell_ids[:, match_column] & valid_indices
-        # ).any(axis=1)
+    # find matches in indices
+    ###
+    # make True comparisons have a validated association for both the mother and bud
+    # make True comparisons have both trap_ids and cell labels matching
+    valid_cell_ids_va = valid_ndassociation[valid_association].all(axis=2)
+    if match_column is None:
+        # make True comparisons match at least one mother or bud in association
+        valid_indices = valid_cell_ids_va.any(axis=1)[0]
+    else:
+        valid_indices = valid_cell_ids_va[:, match_column][0]
     return valid_association, valid_indices
 
 
@@ -132,7 +140,7 @@ def _assoc_indices_to_3d(ndarray: np.ndarray):
 
 
 def _3d_index_to_2d(array: np.ndarray):
-    """Perform opposite switch to _assoc_indices_to_3d."""
+    """Revert switch from _assoc_indices_to_3d."""
     result = array
     if len(array):
         result = np.concatenate(
@@ -143,7 +151,8 @@ def _3d_index_to_2d(array: np.ndarray):
 
 def compare_indices(x: np.ndarray, y: np.ndarray) -> np.ndarray:
     """
-    Fetch two 2-D indices and return a binary 2-D matrix
-    where a True value links two cells where all cells are the same.
+    Compare two 2D arrays using broadcasting.
+
+    Return a binary array where a True value links two cells where all cells are the same.
     """
-    return (x[..., None] == y.T[None, ...]).all(axis=1)
+    return (x[..., np.newaxis] == y.T[np.newaxis, ...]).all(axis=1)
diff --git a/src/postprocessor/core/reshapers/picker.py b/src/postprocessor/core/reshapers/picker.py
index e6d8b5982445b7419923b849e95c21584c2f31e1..168b022af5bccb85139cfd2e4c385da840f56b45 100644
--- a/src/postprocessor/core/reshapers/picker.py
+++ b/src/postprocessor/core/reshapers/picker.py
@@ -12,6 +12,14 @@ from postprocessor.core.lineageprocess import LineageProcess
 
 
 class PickerParameters(ParametersABC):
+    """
+    A dictionary specifying the sequence of picks in order.
+
+    "lineage" is further specified by "mothers", "daughters", "families" (mother-bud pairs), and "orphans", where orphans picks cells that are not in families.
+
+    "condition" is further specified by "present", "continuously_present", "any_present", or "growing" and a threshold, either a number of time points or a fraction of the total duration of the experiment.
+    """
+
     _defaults = {
         "sequence": [
             ["lineage", "families"],
@@ -22,18 +30,7 @@ class PickerParameters(ParametersABC):
 
 class Picker(LineageProcess):
     """
-
-    Parameters
-    ----------
-    cells: Cell object
-        Passed to the class's constructor.
-    condition: tuple
-        Tuple with condition and associated parameter(s), conditions can be
-        "present", "nonstoply_present" or "quantile".
-        Determine the thresholds or fractions of signals to use.
-    lineage: str
-        Either "mothers", "daughters", "families" (mothers AND daughters), "orphans". Mothers or daughters picks cells with those tags, families picks the union of
-        both, and orphans picks the difference between the total and families.
+    Picker selects cells from a signal using lineage information and by how long and by how they are retained in the data set.
     """
 
     def __init__(
@@ -51,10 +48,10 @@ class Picker(LineageProcess):
         how: str,
         mothers_daughters: t.Optional[np.ndarray] = None,
     ) -> pd.MultiIndex:
-        """"""
+        """Return rows of a signal corresponding to either mothers, daughters, or mother-daughter pairs using lineage information."""
         cells_present = drop_mother_label(signal.index)
         mothers_daughters = self.get_lineage_information(signal)
-        valid_indices = slice(None)
+        #: might be better if match_column defined as a string to make everything one line
         if how == "mothers":
             _, valid_indices = validate_association(
                 mothers_daughters, cells_present, match_column=0
@@ -64,18 +61,20 @@ class Picker(LineageProcess):
                 mothers_daughters, cells_present, match_column=1
             )
         elif how == "families":
-            # mothers and daughters that are still present
+            # mother-daughter pairs
             _, valid_indices = validate_association(
                 mothers_daughters, cells_present
             )
+        else:
+            valid_indices = slice(None)
         return signal.index[valid_indices]
 
-    def pick_by_condition(self, signal, condition, thresh):
-        idx = self.switch_case(signal, condition, thresh)
-        return idx
-
     def run(self, signal):
-        """Pick indices from the index of a signal's dataframe and return as an array."""
+        """
+        Pick indices from the index of a signal's dataframe and return as an array.
+
+        Typically, we first pick by lineage, then by condition.
+        """
         self.orig_signal = signal
         indices = set(signal.index)
         lineage = self.get_lineage_information(signal)
@@ -83,63 +82,74 @@ class Picker(LineageProcess):
             self.mothers = lineage[:, [0, 1]]
             self.daughters = lineage[:, [0, 2]]
             for alg, *params in self.sequence:
-                new_indices = tuple()
                 if indices:
-                    # pick new indices
                     if alg == "lineage":
+                        # pick mothers, buds, or mother-bud pairs
                         param1 = params[0]
                         new_indices = getattr(self, "pick_by_" + alg)(
                             signal.loc[list(indices)], param1
                         )
                     else:
+                        # pick by condition
                         param1, *param2 = params
                         new_indices = getattr(self, "pick_by_" + alg)(
                             signal.loc[list(indices)], param1, param2
                         )
-                        new_indices = [tuple(x) for x in new_indices]
+                else:
+                    new_indices = tuple()
+                # number of indices reduces for each iteration of the loop
                 indices = indices.intersection(new_indices)
         else:
             self._log("No lineage assignment")
             indices = np.array([])
+        # convert to array
         indices_arr = np.array([tuple(map(_str_to_int, x)) for x in indices])
         return indices_arr
 
-    def switch_case(
+    # def pick_by_condition(self, signal, condition, thresh):
+    #     idx = self.switch_case(signal, condition, thresh)
+    #     return idx
+
+    def pick_by_condition(
         self,
         signal: pd.DataFrame,
         condition: str,
         threshold: t.Union[float, int, list],
     ):
+        """Pick indices from signal by any_present, present, continuously_present, and growing."""
         if len(threshold) == 1:
             threshold = [_as_int(*threshold, signal.shape[1])]
+            #: is this correct for "growing"?
         case_mgr = {
             "any_present": lambda s, thresh: any_present(s, thresh),
             "present": lambda s, thresh: s.notna().sum(axis=1) > thresh,
+            #: continuously_present looks incorrect
             "continuously_present": lambda s, thresh: s.apply(thresh, axis=1)
             > thresh,
             "growing": lambda s, thresh: s.diff(axis=1).sum(axis=1) > thresh,
         }
-        return set(signal.index[case_mgr[condition](signal, *threshold)])
+        # apply condition
+        idx = set(signal.index[case_mgr[condition](signal, *threshold)])
+        new_indices = [tuple(x) for x in idx]
+        return new_indices
 
 
 def _as_int(threshold: t.Union[float, int], ntps: int):
+    """Convert a fraction of the total experiment duration into a number of time points."""
     if type(threshold) is float:
         threshold = ntps * threshold
     return threshold
 
 
 def any_present(signal, threshold):
-    """
-    Return a mask for cells, True if there is a cell in that trap that was present for more than :threshold: timepoints.
-    """
+    """Return pd.Series for cells where True indicates that cell was present for more than threshold time points."""
+    #: isn't full_traps all we need?
+    full_traps = (signal.notna().sum(axis=1) > threshold).groupby("trap")
     any_present = pd.Series(
         np.sum(
             [
-                np.isin([x[0] for x in signal.index], i) & v
-                for i, v in (signal.notna().sum(axis=1) > threshold)
-                .groupby("trap")
-                .any()
-                .items()
+                np.isin([x[0] for x in signal.index], i) & full
+                for i, full in full_traps.any().items()
             ],
             axis=0,
         ).astype(bool),