import typing as t import bottleneck as bn import h5py import numpy as np import pandas as pd from agora.abc import ParametersABC, StepABC from agora.io.cells import Cells from agora.io.writer import Writer, load_attributes from aliby.tile.tiler import Tiler from extraction.core.functions.defaults import exparams_from_meta from extraction.core.functions.distributors import reduce_z, trap_apply from extraction.core.functions.loaders import ( load_custom_args, load_funs, load_redfuns, ) # define types reduction_method = t.Union[t.Callable, str, None] extraction_tree = t.Dict[ str, t.Dict[reduction_method, t.Dict[str, t.Collection]] ] extraction_result = t.Dict[ str, t.Dict[reduction_method, t.Dict[str, t.Dict[str, pd.Series]]] ] # Global variables used to load functions that either analyse cells or their background. These global variables both allow the functions to be stored in a dictionary for access only on demand and to be defined simply in extraction/core/functions. CELL_FUNS, TRAPFUNS, FUNS = load_funs() CUSTOM_FUNS, CUSTOM_ARGS = load_custom_args() RED_FUNS = load_redfuns() # Assign datatype depending on the metric used # m2type = {"mean": np.float32, "median": np.ubyte, "imBackground": np.ubyte} class ExtractorParameters(ParametersABC): """Base class to define parameters for extraction.""" def __init__( self, tree: extraction_tree, sub_bg: set = set(), multichannel_ops: t.Dict = {}, ): """ Initialise. Parameters ---------- tree: dict Nested dictionary indicating channels, reduction functions and metrics to be used. str channel -> U(function, None) reduction -> str metric If not of depth three, tree will be filled with None. sub_bg: set multichannel_ops: dict """ self.tree = tree self.sub_bg = sub_bg self.multichannel_ops = multichannel_ops @staticmethod def guess_from_meta(store_name: str, suffix="fast"): """ Find the microscope name from the h5 metadata. Parameters ---------- store_name : str or Path For a h5 file suffix : str Added at the end of the predicted parameter set """ with h5py.File(store_name, "r") as f: microscope = f["/"].attrs.get("microscope") assert microscope, "No metadata found" return "_".join((microscope, suffix)) @classmethod def default(cls): return cls({}) @classmethod def from_meta(cls, meta): return cls(**exparams_from_meta(meta)) class Extractor(StepABC): """ Apply a metric to cells identified in the tiles. Using the cell masks, the Extractor applies a metric, such as area or median, to cells identified in the image tiles. Its methods require both tile images and masks. Usually the metric is applied to only a tile's masked area, but some metrics depend on the whole tile. Extraction follows a three-level tree structure. Channels, such as GFP, are the root level; the reduction algorithm, such as maximum projection, is the second level; the specific metric, or operation, to apply to the masks, such as mean, is the third level. """ # Alan: should this data be stored here or all such data in a separate file default_meta = { "pixel_size": 0.236, "z_size": 0.6, "spacing": 0.6, } def __init__( self, parameters: ExtractorParameters, store: t.Optional[str] = None, tiler: t.Optional[Tiler] = None, ): """ Initialise Extractor. Parameters ---------- parameters: core.extractor Parameters Parameters that include the channels, reduction and extraction functions. store: str Path to the h5 file containing the cell masks. tiler: pipeline-core.core.segmentation tiler Class that contains or fetches the images used for segmentation. """ self.params = parameters if store: self.local = store self.load_meta() else: # if no h5 file, use the parameters directly self.meta = {"channel": parameters.to_dict()["tree"].keys()} if tiler: self.tiler = tiler self.load_funs() @classmethod def from_tiler( cls, parameters: ExtractorParameters, store: str, tiler: Tiler, ): """Initiate from a tiler instance.""" return cls(parameters, store=store, tiler=tiler) @classmethod def from_img( cls, parameters: ExtractorParameters, store: str, img_meta: tuple, ): """Initiate from images.""" return cls(parameters, store=store, tiler=Tiler(*img_meta)) @property def channels(self): """Get a tuple of the available channels.""" if not hasattr(self, "_channels"): if type(self.params.tree) is dict: self._channels = tuple(self.params.tree.keys()) return self._channels @property def current_position(self): return str(self.local).split("/")[-1][:-3] @property def group(self): """Return path within the h5 file.""" if not hasattr(self, "_out_path"): self._group = "/extraction/" return self._group def load_custom_funs(self): """ Incorporate the extra arguments of custom functions into their definitions. Normal functions only have cell_masks and trap_image as their arguments, and here custom functions are made the same by setting the values of their extra arguments. Any other parameters are taken from the experiment's metadata and automatically applied. These parameters therefore must be loaded within an Extractor instance. """ # find functions specified in params.tree funs = set( [ fun for ch in self.params.tree.values() for red in ch.values() for fun in red ] ) # consider only those already loaded from CUSTOM_FUNS funs = funs.intersection(CUSTOM_FUNS.keys()) # find their arguments self._custom_arg_vals = { k: {k2: self.get_meta(k2) for k2 in v} for k, v in CUSTOM_ARGS.items() } # define custom functions self._custom_funs = {} for k, f in CUSTOM_FUNS.items(): def tmp(f): # pass extra arguments to custom function # return a function of cell_masks and trap_image return lambda cell_masks, trap_image: trap_apply( f, cell_masks, trap_image, **self._custom_arg_vals.get(k, {}), ) self._custom_funs[k] = tmp(f) def load_funs(self): """Define all functions, including custum ones.""" self.load_custom_funs() self._all_cell_funs = set(self._custom_funs.keys()).union(CELL_FUNS) # merge the two dicts self._all_funs = {**self._custom_funs, **FUNS} def load_meta(self): """Load metadata from h5 file.""" self.meta = load_attributes(self.local) def get_tiles( self, tp: int, channels: t.Optional[t.List[t.Union[str, int]]] = None, z: t.Optional[t.List[str]] = None, **kwargs, ) -> t.Optional[np.ndarray]: """ Find tiles for a given time point, channels, and z-stacks. Any additional keyword arguments are passed to tiler.get_tiles_timepoint Parameters ---------- tp: int Time point of interest. channels: list of strings (optional) Channels of interest. z: list of integers (optional) Indices for the z-stacks of interest. """ if channels is None: # find channels from tiler channel_ids = list(range(len(self.tiler.channels))) elif len(channels): # a subset of channels was specified channel_ids = [self.tiler.get_channel_index(ch) for ch in channels] else: # a list of the indices of the z stacks channel_ids = None if z is None: # gets the tiles data via tiler z = list(range(self.tiler.shape[-3])) res = ( self.tiler.get_tiles_timepoint( tp, channels=channel_ids, z=z, **kwargs ) if channel_ids else None ) # data arranged as (tiles, channels, time points, X, Y, Z) return res def extract_traps( self, traps: t.List[np.ndarray], masks: t.List[np.ndarray], metric: str, labels: t.Dict[int, t.List[int]], ) -> t.Tuple[t.Union[t.Tuple[float], t.Tuple[t.Tuple[int]]]]: """ Apply a function to a whole position. Parameters ---------- traps: list of arrays t.List of images. masks: list of arrays t.List of masks. metric: str Metric to extract. labels: dict A dict of cell labels with trap_ids as keys and a list of cell labels as values. pos_info: bool Whether to add the position as an index or not. Returns ------- res_idx: a tuple of tuples A two-tuple comprising a tuple of results and a tuple of the tile_id and cell labels """ if labels is None: self._log("No labels given. Sorting cells using index.") cell_fun = True if metric in self._all_cell_funs else False idx = [] results = [] for trap_id, (mask_set, trap, lbl_set) in enumerate( zip(masks, traps, labels.values()) ): # ignore empty traps if len(mask_set): # apply metric either a cell function or otherwise result = self._all_funs[metric](mask_set, trap) if cell_fun: # store results for each cell separately for lbl, val in zip(lbl_set, result): results.append(val) idx.append((trap_id, lbl)) else: # background (trap) function results.append(result) idx.append(trap_id) res_idx = (tuple(results), tuple(idx)) return res_idx def extract_funs( self, traps: t.List[np.array], masks: t.List[np.array], metrics: t.List[str], **kwargs, ) -> t.Dict[str, pd.Series]: """ Return dict with metrics as key and metrics applied to data as values. Data from one time point is used. """ d = { metric: self.extract_traps( traps=traps, masks=masks, metric=metric, **kwargs ) for metric in metrics } return d def reduce_extract( self, traps: np.ndarray, masks: t.List[np.ndarray], red_metrics: t.Dict[reduction_method, t.Collection[str]], **kwargs, ) -> t.Dict[str, t.Dict[reduction_method, t.Dict[str, pd.Series]]]: """ Wrapper to apply reduction and then extraction. Parameters ---------- tiles_data: array An array of image data arranged as (tiles, X, Y, Z) masks: list of arrays An array of masks for each trap: one per cell at the trap red_metrics: dict dict for which keys are reduction functions and values are either a list or a set of strings giving the metric functions. For example: {'np_max': {'max5px', 'mean', 'median'}} **kwargs: dict All other arguments passed to Extractor.extract_funs. Returns ------ Dict of dataframes with the corresponding reductions and metrics nested. """ # create dict with keys naming the reduction in the z-direction and the reduced data as values reduced_tiles_data = {} if traps is not None: for red_fun in red_metrics.keys(): reduced_tiles_data[red_fun] = [ self.reduce_dims(tile_data, method=RED_FUNS[red_fun]) for tile_data in traps ] d = { red_fun: self.extract_funs( metrics=metrics, traps=reduced_tiles_data.get(red_fun, [None for _ in masks]), masks=masks, **kwargs, ) for red_fun, metrics in red_metrics.items() } return d def reduce_dims( self, img: np.ndarray, method: reduction_method = None ) -> np.ndarray: """ Collapse a z-stack into 2d array using method. If method is None, return the original data. Parameters ---------- img: array An array of the image data arranged as (X, Y, Z). method: function The reduction function. """ reduced = img if method is not None: reduced = reduce_z(img, method) if reduced.shape[0] < 10: print("ahoy") return reduced def extract_tp( self, tp: int, tree: t.Optional[extraction_tree] = None, tile_size: int = 117, masks: t.Optional[t.List[np.ndarray]] = None, labels: t.Optional[t.List[int]] = None, **kwargs, ) -> t.Dict[str, t.Dict[str, t.Dict[str, tuple]]]: """ Extract for an individual time point. Parameters ---------- tp : int Time point being analysed. tree : dict Nested dictionary indicating channels, reduction functions and metrics to be used. For example: {'general': {'None': ['area', 'volume', 'eccentricity']}} tile_size : int Size of the tile to be extracted. masks : list of arrays A list of masks per trap with each mask having dimensions (ncells, tile_size, tile_size). labels : dict A dictionary with trap_ids as keys and cell_labels as values. **kwargs : keyword arguments Passed to extractor.reduce_extract. Returns ------- d: dict Dictionary of the results with three levels of dictionaries. The first level has channels as keys. The second level has reduction metrics as keys. The third level has cell or background metrics as keys and a two-tuple as values. The first tuple is the result of applying the metrics to a particular cell or trap; the second tuple is either (trap_id, cell_label) for a metric applied to a cell or a trap_id for a metric applied to a trap. An example is d["GFP"]["np_max"]["mean"][0], which gives a tuple of the calculated mean GFP fluorescence for all cells. """ # TODO Can we split the different extraction types into sub-methods to make this easier to read? if tree is None: # use default tree: extraction_tree = self.params.tree # dictionary with channel: {reduction algorithm : metric} ch_tree = {ch: v for ch, v in tree.items() if ch != "general"} # tuple of the channels tree_chs = (*ch_tree,) # create a Cells object to extract information from the h5 file cells = Cells(self.local) # find the cell labels and store as dict with trap_ids as keys if labels is None: raw_labels = cells.labels_at_time(tp) labels = { trap_id: raw_labels.get(trap_id, []) for trap_id in range(cells.ntraps) } # find the cell masks for a given trap as a dict with trap_ids as keys if masks is None: raw_masks = cells.at_time(tp, kind="mask") masks = {trap_id: [] for trap_id in range(cells.ntraps)} for trap_id, cells in raw_masks.items(): if len(cells): masks[trap_id] = np.stack(np.array(cells)).astype(bool) # convert to a list of masks masks = [np.array(v) for v in masks.values()] # find image data at the time point # stored as an array arranged as (traps, channels, time points, X, Y, Z) tiles = self.get_tiles(tp, tile_shape=tile_size, channels=tree_chs) # generate boolean masks for background as a list with one mask per trap bgs = [] if self.params.sub_bg: # bgs = [ # ~np.sum(m, axis=0).astype(bool) # if np.any(m) # else np.zeros((tile_size, tile_size)).astype(bool) # for m in masks # ] bgs = ~np.array( list( map( lambda x: np.sum(x, axis=0) if np.any(x) else np.zeros((tile_size, tile_size)), masks, ) ) ).astype(bool) # perform extraction by applying metrics d = {} self.img_bgsub = {} for ch, red_metrics in tree.items(): # NB ch != is necessary for threading if ch != "general" and tiles is not None and len(tiles): # image data for all traps and z sections for a particular channel # as an array arranged as (tiles, Z, X, Y, ) img = tiles[:, tree_chs.index(ch), 0] else: img = None # apply metrics to image data d[ch] = self.reduce_extract( traps=img, masks=masks, red_metrics=red_metrics, labels=labels, **kwargs, ) # apply metrics to image data with the background subtracted if bgs.any() and ch in self.params.sub_bg and img is not None: # calculate metrics with subtracted bg ch_bs = ch + "_bgsub" # subtract median background self.img_bgsub[ch_bs] = np.moveaxis( np.stack( list( map( lambda tile, mask: np.moveaxis(tile, 0, -1) - bn.median(tile[:, mask], axis=1), img, bgs, ) ) ), -1, 1, ) # End with tiles, z, y, x # apply metrics to background-corrected data d[ch_bs] = self.reduce_extract( red_metrics=ch_tree[ch], traps=self.img_bgsub[ch_bs], masks=masks, labels=labels, **kwargs, ) # apply any metrics using multiple channels, such as pH calculations for name, ( chs, merge_fun, red_metrics, ) in self.params.multichannel_ops.items(): if len( set(chs).intersection( set(self.img_bgsub.keys()).union(tree_chs) ) ) == len(chs): channels_stack = np.stack( [self.get_imgs(ch, tiles, tree_chs) for ch in chs], axis=-1 ) merged = RED_FUNS[merge_fun](channels_stack, axis=-1) d[name] = self.reduce_extract( red_metrics=red_metrics, traps=merged, masks=masks, labels=labels, **kwargs, ) return d def get_imgs(self, channel: t.Optional[str], tiles, channels=None): """ Return image from a correct source, either raw or bgsub. Parameters ---------- channel: str Name of channel to get. tiles: ndarray An array of the image data having dimensions of (tile_id, channel, tp, tile_size, tile_size, n_zstacks). channels: list of str (optional) t.List of available channels. Returns ------- img: ndarray An array of image data with dimensions (no tiles, X, Y, no Z channels) """ if channels is None: channels = (*self.params.tree,) if channel in channels: # TODO start here to fetch channel using regex return tiles[:, channels.index(channel), 0] elif channel in self.img_bgsub: return self.img_bgsub[channel] def _run_tp( self, tps: t.List[int] = None, tree=None, save=True, **kwargs, ) -> dict: """ Wrapper to add compatibility with other steps of the pipeline. Parameters ---------- tps: list of int (optional) Time points to include. tree: dict (optional) Nested dictionary indicating channels, reduction functions and metrics to be used. For example: {'general': {'None': ['area', 'volume', 'eccentricity']}} save: boolean (optional) If True, save results to h5 file. kwargs: keyword arguments (optional) Passed to extract_tp. Returns ------- d: dict A dict of the extracted data with a concatenated string of channel, reduction metric, and cell metric as keys and pd.Series of the extracted data as values. """ if tree is None: tree = self.params.tree if tps is None: tps = list(range(self.meta["time_settings/ntimepoints"][0])) elif isinstance(tps, int): tps = [tps] # store results in dict d = {} for tp in tps: # extract for each time point and convert to dict of pd.Series new = flatten_nesteddict( self.extract_tp(tp=tp, tree=tree, **kwargs), to="series", tp=tp, ) # concatenate with data extracted from early time points for k in new.keys(): d[k] = pd.concat((d.get(k, None), new[k]), axis=1) # add indices to pd.Series containing the extracted data for k in d.keys(): indices = ["experiment", "position", "trap", "cell_label"] idx = ( indices[-d[k].index.nlevels :] if d[k].index.nlevels > 1 else [indices[-2]] ) d[k].index.names = idx # save if save: self.save_to_hdf(d) return d def save_to_hdf(self, dict_series, path=None): """ Save the extracted data to the h5 file. Parameters ---------- dict_series: dict A dictionary of the extracted data, created by run. path: Path (optional) To the h5 file. """ if path is None: path = self.local self.writer = Writer(path) for extract_name, series in dict_series.items(): dset_path = "/extraction/" + extract_name self.writer.write(dset_path, series) self.writer.id_cache.clear() def get_meta(self, flds: t.Union[str, t.Collection]): """Obtain metadata for one or multiple fields.""" if isinstance(flds, str): flds = [flds] meta_short = {k.split("/")[-1]: v for k, v in self.meta.items()} return { f: meta_short.get(f, self.default_meta.get(f, None)) for f in flds } ### Helpers def flatten_nesteddict( nest: dict, to="series", tp: int = None ) -> t.Dict[str, pd.Series]: """ Convert a nested extraction dict into a dict of pd.Series. Parameters ---------- nest: dict of dicts Contains the nested results of extraction. to: str (optional) Specifies the format of the output, either pd.Series (default) or a list tp: int Time point used to name the pd.Series Returns ------- d: dict A dict with a concatenated string of channel, reduction metric, and cell metric as keys and either a pd.Series or a list of the corresponding extracted data as values. """ d = {} for k0, v0 in nest.items(): for k1, v1 in v0.items(): for k2, v2 in v1.items(): d["/".join((k0, k1, k2))] = ( pd.Series(*v2, name=tp) if to == "series" else v2 ) return d class hollowExtractor(Extractor): """ Extractor that only cares about receiving images and masks. Used for testing. """ def __init__(self, parameters): self.params = parameters