diff --git a/src/wela/butterfilter.py b/src/wela/butterworth_filter.py similarity index 96% rename from src/wela/butterfilter.py rename to src/wela/butterworth_filter.py index 7322a9dd10945a14cc76c67f292cfd63826351a8..a9e100b98343e76032f2acbce78479fa718209fe 100644 --- a/src/wela/butterfilter.py +++ b/src/wela/butterworth_filter.py @@ -2,7 +2,7 @@ import numpy as np from scipy import signal -def butterfilter(timeseries, params=None): +def butterworth_filter(timeseries, params=None): """Apply Butterworth filter to time series arranged in rows.""" # second-order-sections output # by default, using a digital filter diff --git a/src/wela/plotting.py b/src/wela/plotting.py index 0d9de10e01f8a56eea3f5d00d9e4395246429198..99189d942c026a50ad8f4c4597c221fce4f7628f 100644 --- a/src/wela/plotting.py +++ b/src/wela/plotting.py @@ -4,7 +4,7 @@ import matplotlib.cm import matplotlib.pylab as plt import numpy as np import numpy.matlib -from wela.butterfilter import butterfilter +from wela.butterworth_filter import butterworth_filter def kymograph( @@ -571,7 +571,7 @@ def bud_to_bud_plot( title: str, optional Title for plot. filter: boolean - If True, apply a butter filter to each time series. + If True, apply a butterworth filter to each time series. Example ------- @@ -585,7 +585,7 @@ def bud_to_bud_plot( t, signal_data = dl.get_time_series(signal, group=group, df=df) t, buddings = dl.get_time_series("buddings", group=group, df=df) if filter: - signal_data = butterfilter(signal_data) + signal_data = butterworth_filter(signal_data) if np.max(t) > 48: # convert to hours t = t / 60