Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • swain-lab/aliby/aliby-mirror
  • swain-lab/aliby/alibylite
2 results
Show changes
import numpy as np
import pandas as pd
import pytest
from postprocessor.core.multisignal.crosscorr import (
crosscorr,
crosscorrParameters,
)
def generate_sinusoids_df(
time_axis,
num_replicates,
):
t = time_axis
ts = np.tile(t, num_replicates).reshape((num_replicates, len(t)))
s = 3 * np.sin(
2 * np.pi * ts + 2 * np.pi * np.random.rand(num_replicates, 1)
)
s_df = pd.DataFrame(s)
return s_df
@pytest.mark.parametrize("time_axis", [np.linspace(0, 4, 200)])
@pytest.mark.parametrize("num_replicates", [333])
def test_crosscorr(
time_axis,
num_replicates,
):
"""Tests croscorr.
Tests whether a crosscorr runner can be initialised with default
parameters and runs without errors.
"""
dummy_signal1 = generate_sinusoids_df(time_axis, num_replicates)
dummy_signal2 = generate_sinusoids_df(time_axis, num_replicates)
crosscorr_runner = crosscorr(crosscorrParameters.default())
_ = crosscorr_runner.run(dummy_signal1, dummy_signal2)
@pytest.mark.parametrize("time_axis", [np.linspace(0, 4, 200)])
@pytest.mark.parametrize("num_replicates", [333])
def test_autocorr(
time_axis,
num_replicates,
):
"""Tests croscorr.
Tests whether a crosscorr runner can be initialised with default
parameters and runs without errors, when performing autocorrelation.
"""
dummy_signal1 = generate_sinusoids_df(time_axis, num_replicates)
crosscorr_runner = crosscorr(crosscorrParameters.default())
_ = crosscorr_runner.run(dummy_signal1, dummy_signal1)