Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Notebook 2 - pandas\n",
"[pandas](http://pandas.pydata.org) provides high-level data structures and functions designed to make working with structured or tabular data fast, easy and expressive. The primary objects in pandas that we will be using are the `DataFrame`, a tabular, column-oriented data structure with both row and column labels, and the `Series`, a one-dimensional labeled array object.\n",
"\n",
"pandas blends the high-performance, array-computing ideas of NumPy with the flexible data manipulation capabilities of spreadsheets and relational databases. It provides sophisticated indexing functinoality to make it easy to reshape , slice and perform aggregations.\n",
"\n",
"While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n",
"\n",
"<br>\n",
"**Table of Contents:**\n",
"- Data Structures\n",
" - Series\n",
" - DataFrame\n",
"- Essential Functionality\n",
" - Reindexing\n",
" - Dropping Entries\n",
" - Indexing, Slicing and Filtering\n",
" - Arithmetic Operations\n",
" - Sorting and ranking\n",
"- Summarizing and Computing Descriptive Statistics\n",
" - Correlation and Covariance\n",
" - Unique values, value counts and Membership\n",
"- Reading and storing data\n",
" - Text Format\n",
" - Text Format Writing\n",
" - XML and HTML Web Scraping\n",
" - Reading excel files\n",
" - mention that pandas allow interfacing with web APIs and SQL databases\n",
"- Data Cleaning and preperation\n",
" - Missing data\n",
" - Data transformation\n",
" - String manipulation incl. regexp\n",
"- Data wrangling\n",
"- Plotting?\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Common pandas import statement\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Structures\n",
"## Series\n",
"a one-dimensional array-like object containing a sequence of values and an associated array of data labels, called its index.\n",
"\n",
"The easiest way to make a Series is from an array of data:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"data = pd.Series([4, 7, -5, 3])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now try printing out data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The string representation of a Seires displayed interactively shows the index on the left and the values on the right. Because we didn't specify an index, the default on is simply integers 0 through N-1.\n",
"\n",
"You can output only the values of a Series using \n",
"```python\n",
"data.values\n",
"```\n",
"or you can get only the indeces using\n",
"```python\n",
"data.index\n",
"```\n",
"Try it out below!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can specify custom indeces when intialising the Series"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"data2 = pd.Series([4, 7, -5, 3], index=[\"a\", \"b\", \"c\", \"d\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you can use these labels to access the data similar to a normal array"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2[\"a\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another way to think about Serieses is as a fixed-length ordered dictionary. Furthermore, you can actually define a Series in a similar manner to a dictionary"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"cities = {\"Glasgow\" : 599650, \"Edinburgh\" : 464990, \"Abardeen\" : 196670, \"Dundee\" : 147710}\n",
"data3 = pd.Series(cities)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Abardeen 196670\n",
"Dundee 147710\n",
"Edinburgh 464990\n",
"Glasgow 599650\n",
"dtype: int64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can do arithmetic operations between Serieses similar to NumPy arrays. Even if you have 2 datasets with different data, arithmetic operations will be aligned according to their indeces.\n",
"\n",
"Let's look at an example"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"cities_uk = {\"Birmingham\" : 1092330, \"Leeds\": 751485, \"Glasgow\" : 599650,\n",
" \"Manchester\" : 503127, \"Edinburgh\" : 464990}\n",
"data4 = pd.Series(cities_uk)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Abardeen NaN\n",
"Birmingham NaN\n",
"Dundee NaN\n",
"Edinburgh 929980.0\n",
"Glasgow 1199300.0\n",
"Leeds NaN\n",
"Manchester NaN\n",
"dtype: float64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3 + data4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice how some of the results are NaN? Well that is because there were no instances of those cities within both of the datasets. You can usually extract NaNs from a Series with\n",
"```python\n",
"data4.isnull()\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## DataFrame\n",
"A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type. The DataFrame has both row and column index and can be thought of as a dict of Series all sharing the same index.\n",
"\n",
"The most common way to create a DataFrame is with dicts"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"data = {\"cities\" : [\"Glasgow\", \"Edinburgh\", \"Abardeen\", \"Dundee\"],\n",
" \"population\" : [599650, 464990, 196670, 147710],\n",
" \"year\" : [2011, 2013, 2013, 2013]}\n",
"frame = pd.DataFrame(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Try printing it out"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>2011</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cities population year\n",
"0 Glasgow 599650 2011\n",
"1 Edinburgh 464990 2013\n",
"2 Abardeen 196670 2013\n",
"3 Dundee 147710 2013"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frame"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jupyter Notebooks prints it out in a nice table but the basic version of this is also just as readable!\n",
"\n",
"Additionally you can also specify the order of columns during initialisation"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"frame2 = pd.DataFrame(data, columns=[\"year\", \"cities\", \"population\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can retrieve a particular column from a DataFrame with\n",
"```python\n",
"frame[\"cities\"]\n",
"```\n",
"The result is going to be a Series\n",
"\n",
"Additionally you can retrieve a row from the dataset using\n",
"```python\n",
"frame[1]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is also possible to add and modify the columns of a DataFrame"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"frame2[\"size\"] = 100"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>year</th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>size</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2011</td>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2013</td>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2013</td>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2013</td>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>100</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" year cities population size\n",
"0 2011 Glasgow 599650 100\n",
"1 2013 Edinburgh 464990 100\n",
"2 2013 Abardeen 196670 100\n",
"3 2013 Dundee 147710 100"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frame2"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"frame2[\"size\"] = [175, 264, 65.1, 60] # in km^2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similar to dicts, columns can be deleted using\n",
"```python\n",
"del frame2[\"size\"]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another common way of creating DataFrames is from a nested dict of dicts:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data2 = {\"cities\" : [\"Glasgow\", \"Edinburgh\", \"Abardeen\", \"Dundee\"],\n",
" \"population\" : [599650, 464990, 196670, 147710],\n",
" \"year\" : [2011, 2013, 2013, 2013]}\n",
"\n",
"data2 = {\"Glasgow\": {2011: 599650},\n",
" \"Edinburgh\": {2013:464990},\n",
" \"Abardeen\": }\n",
"\n",
"frame3 = pd.DataFrame(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a table of different ways of intialising a DataFrame for your reference\n",
"\n",
"| Type | Notes |\n",
"| --- | --- |\n",
"| 2D ndarray | A matrix of data; passing optional row and column labels |\n",
"| dict of arrays, lists, or tuples | Each sequence becomes a column in the DataFrame; all sequences must be the same length |\n",
"| NumPy structured/recorded array | Treated as with the \"dict of arrays, lists or tuples\" case |\n",
"| dict of Serires | Each value becomes a column; indexes from each Series are unioned together to<br>form the result's row index if not explicit index is passed |\n",
"| dict of dicts | Each inner dict becomes a column; keys are unioned to form the row<br>index as in the \"dict of Series\" case |\n",
"| List of dicts or Series | Each item becomes a row in the DataFrame; union of dict keys or<br>Series indeces become the DataFrame's column labels |\n",
"| List of lists or tuples | Treated as the \"2D ndarray\" case |\n",
"| Another DataFrame | The DataFrame's indexes are used unless different ones are passed |\n",
"| NumPy MaskedArray | Like the \"2D ndarray\" case except masked values become NA/missing in the DataFrame |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Essential Functionality\n",
"In this section we will go through the fundemental mechanics of interacting with the data contained in a Series or DaraFrame.\n",
"\n",
"## Reindexing"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}