Skip to content
Snippets Groups Projects
python-data-extra-scipy-sol.ipynb 90.6 KiB
Newer Older
Patrick Kinnear's avatar
Patrick Kinnear committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Signal processing using Scipy\n",
    "\n",
    "In this notebook we will explore how the [scipy](https://scipy.org/scipylib/) package can be used to perform signal processing.\n",
    "\n",
    "Scipy stands for *sci*entific *py*thon, and is a package with a vast range of modules for a range of scientific computing problems. From linear algebra to optimization; from integration to interpolation: it is the go-to Python package for traditional scientific computing problems. Scipy is built from numpy's `ndarray`, and scipy interfaces with `matlotlib` for visuals. So when working with scipy it is essential we also have numpy and matplotlib imported too."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Scipy is a large package with many submodules. It is standard to just import the modules we will be working with on a givgen task. In this notebook, we'll be using the module `signal`, which give access to methods related to signal processing. We will also need some helper functions for reading in signals, from the `scipy.io` module."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from scipy import signal\n",
    "from scipy.io import wavfile"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will also run the following code to tell Python we don't want it to display warnings when we run code. This is because the functions we will use from `scipy.io` often produce spurious warnings which are not of concern to us here."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import warnings\n",
    "warnings.simplefilter(\"ignore\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Working with signals\n",
    "A signal is a series of measurements over time, related to some phenmomenon. It could be the light emitted from a chemical reaction, sound transmitted through the air, or the heat of an organism throughout some biological process. When we work with signals in python, we are considering digital signals: samples of a signal taken at discrete time-steps. Today we will be working with a familiar signal: we'll be working with audio signals (i.e. those coming from sound waves). \n",
    "\n",
    "### Reading in a wav audio file\n",
    "Let's see how we can represent an audio signal in python. We are going to use the `wavfile.read` helper to read in a recording of a guitar chord (you can listen to it by clicking on the file in the Jupyter folder)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "chord = wavfile.read(\"data/chord-11.wav\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This function returns a tuple. The first element is the sample rate, and the second is the actual data from the file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(44100, array([[ -8,  45],\n",
       "        [ 30,  91],\n",
       "        [ 82, 129],\n",
       "        ...,\n",
       "        [  0,   0],\n",
       "        [  0,   0],\n",
       "        [  0,   0]], dtype=int16))"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chord"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Plotting the data from the wav with `plt` will give the charactersitic plot of the sound wave that we're used to."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8FdX9//HXJzcbAbIS1oAsxoXFBSKi1QqoiNaWqvRXlwqtVGzV1tYuavWrtLWbrd1d6la1i7j1+wWVFnGp1boBxSqbElkDCCEhIRAg2/n9MQPehJAF7r1z7837+Xjcx505c2bmc+cx5MOZOXPGnHOIiIh0RkrQAYiISOJR8hARkU5T8hARkU5T8hARkU5T8hARkU5T8hARkU5T8hARkU6LSPIws4fMbKuZLQ0rm2VmG83sHf9zXtiym8ys1MzeN7Nzwson+2WlZnZjWPkQM3vLzFaZ2eNmlh6JuEVE5NBEquXxMDC5lfJfOedO8D/zAMxsOHAxMMJf524zC5lZCLgLOBcYDlzi1wX4mb+tYmA7MCNCcYuIyCFIjcRGnHP/MrPBHaw+BZjtnNsLrDGzUmCsv6zUObcawMxmA1PMbAUwEbjUr/MIMAu4p62d9OrVyw0e3NGQREQEYPHixducc4Xt1YtI8mjDtWY2DVgEfMs5tx0YALwZVqfMLwPY0KL8ZKAAqHLONbRS/6AGDx7MokWLDjN8EZGuxczWdaReNG+Y3wMMA04ANgN3+uXWSl13COUHMLOZZrbIzBaVl5d3PmIREemQqCUP59wW51yjc64JuJ+PL02VAQPDqhYBm9oo3wbkmllqi/LW9nmfc67EOVdSWNhuq0tERA5R1JKHmfULm70A2NcTay5wsZllmNkQoBh4G1gIFPs9q9LxbqrPdd6wvy8DU/31pwNzohW3iIi0LyL3PMzsMWA80MvMyoDbgPFmdgLeJaa1wFUAzrllZvYEsBxoAK5xzjX627kWmA+EgIecc8v8XdwAzDaz24ElwIORiFtERA6NJev7PEpKSpxumIuIdI6ZLXbOlbRXT0+Yi4hIpyl5iIhIpyl5xBPnYMlfoKEu6EhERNqk5BFPls+BOVfDKz/15puaYMPCYGMSEWmFkkcc2V1TAcCu8vXw9v3w71/Dg2fB6lcCjkxEpLloD08inbB0YzUnAd1XPgkrn9xfvrdiHRmFWyCUBmtegWOnQMNuSO8eXLAi0qUpeSSA3f/6LRnPfQ1yBkH1ejj6U/D+c3BLOaRqdHoRiT1dtoq1x78AqxbAwgehusy7z7G3ps1VcmtWeRPV673v958DwDXsiWakIiIHpZZHrK14xvsAPOeXDZ8C3XvTbU+oU5vatf4delQug3FfjWyMIiLtUPKIB8u9obpGdnK1Hn/9tDdx3OehthJ6HRnZuEREDkKXrZLB3ePg92OCjkJEuhAlj2Swc0vQEYhIF6PkISIinabkEUtJOoKxiHQ9Sh7J5N0n4JWfBx2FiHQB6m2VTP52pfd9xneCjUNEkp5aHrGky1YikiSUPEREpNOUPEREpNOUPJJRU6P3ERGJEiWPmIrRPY/fjYYf9YvNvkSkS1JvqxhyzmGx2NH2tbHYi4h0YWp5iIhIpyl5xJS66opIclDyiKGYP+axZTmUfxDjnYpIV6B7HsnsnlO871nVwcYhIklHLY9Y0hPmIpIklDxERKTTlDxiKLB2x9v3w/K5Qe1dRJJQRJKHmT1kZlvNbGlYWb6ZLTCzVf53nl9uZvZbMys1s3fNbHTYOtP9+qvMbHpY+Rgze89f57dmFpPHJSIvoPQx79vwxOXB7FtEklKkWh4PA5NblN0IvOicKwZe9OcBzgWK/c9M4B7wkg1wG3AyMBa4bV/C8evMDFuv5b5ERCSGIpI8nHP/AipbFE8BHvGnHwE+G1b+qPO8CeSaWT/gHGCBc67SObcdWABM9pdlO+fecM454NGwbYmISACiec+jj3NuM4D/3dsvHwBsCKtX5pe1VV7WSnnCcU1NQYcgIhIRQdwwb+1+hTuE8gM3bDbTzBaZ2aLy8vLDCFFERNoSzeSxxb/khP+91S8vAwaG1SsCNrVTXtRK+QGcc/c550qccyWFhYUR+RFJZfHDsPbfQUchIkkgmsljLrCvx9R0YE5Y+TS/19U4oNq/rDUfmGRmef6N8knAfH9ZjZmN83tZTQvbVoIJ+CHBZ66Dh88LNgYRSQqR6qr7GPAGcLSZlZnZDOCnwNlmtgo4258HmAesBkqB+4GrAZxzlcAPgYX+5wd+GcBXgQf8dT4E/h6JuGMtbp4v/3kxzP1a0FGISAIzl6RDZpSUlLhFixYFHUYz9XtrSftJHL2k6foVkJkD6d2DjkRE4oSZLXbOlbRXT0+Yx1K8JepfHov7oy5jiUjnKXl0cbb5Hbj3NFj6dNChiEgCUfKIoXhreOz30Xu4p2YEHYWIJBAlj5iK1+wBFsexiUj8UfKIIac/0CKSJJQ8YihuL1vt87eZsGlJ0FGISAJQ8oileM8e7z5Ow18vDToKEUkASh7STOWuvUGHICIJQMlDmnMOXvwh1GwJOhIRiWNKHjGUCE/z96YSXv0FtU/ODDoUEYljqUEHkPSWz4H8obC7CstMnJF+126uYHjQQYhI3FLyiLYnpu2fzLBEOtzx30oSkeDoslUMmWsIOoQOK2zcCrNycB88H3QoIhKHlDykVYVN3ru71iy4N+BIRCQeKXlIm6p21QUdgojEISUPaZPR5N30b2oKOhQRiSNKHtKmE2v/DU9Mo+H1u4IORUTiiJKHdMjWhXrfh4h8TMlDOmRbaj945jqo2xV0KCISBxLpwQMJ0HEV86ACqrKOIPfM64MOR0QCppaHdMrKTVVBhyAicUDJQzolEcbnipm6XbC35uP5hjpoTJwHQUUOhy5bSaccUfEqTT8uIuUb70JWftDhxNbyObD+LRrK/kOo7E2aQhmEGvdQXzgC0rJI27SQhoKjSelRCINPo35nBSnDxpPWLRsKj4GsArAUMAv6l4gcNiUP6ZT+1d6bBsuWLKDoE58POJoo21YKq56nrmIt6Yv+sL943z+aUOMeANLKl328rOJ9qHgf1r1GBsDi+wGozexL1p6PqDv1m6Tt3ganfh0rPCpGP0Qk8pQ8omXjYrh/YtBRRM3WqhqKgg4iWnaWw6rn2fv3m8mo2056BDaZtecjANJf/xUAu5bPp/verTRNe5aU+p1QPAlSQhHYk0hsKHlESxInDoBQ/Q5Y+jSMvCjoUCLGrXkV9/g06rJ6k1m50ms5REn3vd7YYSmPng9A/YRZpBUdD0Mn6LKWJAQlDzkkx7/zfXgH6kklbeSUoMM5LK5sETw0maqM/uTtqSRzT2XMY7CXbwca2Dnxx/TYtQHO/gGkRqLNIxIdSh6HqOGBcwAj9cv/CDqUQK1bt5ojRwYdxaFp3LKC0D3jqOh5LL2a6snbvS6wWFLxemn1eOl7AGzftYee654n9Zo3ITM7sLhEDkZddQ9RatmbpJa9EXQYgWskhb1zvglNjUGH0jHbSqFqA40/GsCGp24CoFfNioCDOlDe0j+SWrORir99B2blwK5tsDX+4pSuK+rJw8zWmtl7ZvaOmS3yy/LNbIGZrfK/8/xyM7Pfmlmpmb1rZqPDtjPdr7/KzKZHO+4D7NgMlWtivtt4d/TCW8lY8hBbV74edCit27MD6nfT+KeLaFryV/j9GGrvmUiofieDy18OOrp2FXwwG4DaeybA3eNw1WVQtjjgqERid9lqgnNuW9j8jcCLzrmfmtmN/vwNwLlAsf85GbgHONnM8oHbgBK896MuNrO5zrntMYoffnmM9z2rOma7TCQby9bSe+dKGHtl0KF4Nr8LPXrDnUdTW3giWeVL4MMXAMjyb1Ynkqyd6wGov3cC6bu3wi3l0LAbMnMCjky6qqAuW00BHvGnHwE+G1b+qPO8CeSaWT/gHGCBc67STxgLgMmxDhqA9w9yj6NqPdTG/kZrvDjx9Wth3rfZW/1RoHE0LP4LjZvfgz+czp57zwTwEkeSSN/tJb4d938Kfjoo4GikK4tF8nDA82a22Mxm+mV9nHObAfzv3n75AGBD2LplftnBymPvsYM8GPfrUXDHEKirhbfui21McWTXuneoe/mO2O/49d/BB8+T+szVhP5wGgCZu8piH0eMZG95G4DK2V9h1y9PDDga6YpicdnqE865TWbWG1hgZivbqNtaB3fXRnnzlb3kNBNg0KDo/a9s58u/pse+6Xm3Yj370n3fwh/3i9p+E0H+37zk2vCJ60hNj+aTEr437obuhfD8LdHfVxzKX/kYAJUv/ga3axsFn/lhwBFJVxH15OGc2+R/bzWz/wXGAlvMrJ9zbrN/WWrfRegyYGDY6kXAJr98fIvyf7ayr/uA+wBKSkqiNoJfj1du+3j67d9EazcJrXHLcpq2Lid9zGXR2cGOzd7DdPNvis72E0z+q7d6E2d90/vuauOOScxF9bKVmXU3s577poFJwFJgLrCvx9R0YI4/PReY5ve6GgdU+5e15gOTzCzP75k1yS+TOJXx4HjSn7kaGuu9S3kRsvudp9n97/u8Dgx3Hh2x7SaNO4Z4H5Eoi3bLow/wv+YNt5AK/NU59w8zWwg8YWYzgPXA5/z684DzgFKgFvgSgHOu0sx+CCz06/3AOdd1704nkNoHPkXW5rcOvZfa9nVQtZ6qynIatq2m1xu6LNMRVa/cTUq3XLLHXhp0KJKkLFnfz1BSUuIWLVoUuQ3OUpfIw/K9TeCaIDUTFj4IJ82AUNqB9RobYK/3bAblK+HPF8Y+1mTy7VJIzdBT6tJhZrbYOVfSXj0NTyKx8eP+AFQc+wUKVvyZ7aVvkbP6WerPu5OMZ7/G3uLzyVj1bMBBJqFfHMme9Dwyb1zt3SPSoIsSIWp5dJRaHpLgth8xmbwvPR50GBLnOtry0NhWIl1E3rp/8NGT36Z6adcezFMiQ8lDpAvpu+x+cp76PKx8zuvuLHKIlDxEuqLZl1J110So+BAa9gYdjSQgJQ+RLip37yb43Wg2Pvplr0t0ogyrL3FByUOkixuwfi785jg2Pn0T1GyBJO1EI5Gl5CEiABQs+yPceRRrnrnDe/GUkoi0QclDRADIpA6Aov/cAXePY9NL98C615VEpFVKHh2xRy+Akq4jzX+fep9Xb4Y/nsvG1/7s3VgXCaMnzDug9ucjyAo6CJEYC9EEQPo/fwAvbmXzBX+j34BB0Ks42MCiqbEBGvZ4Q7o07IWmBqivBUvxytN7esPs9CgMOtLAKXl0QFZjTdAhiASmsNF7Y0L63KugsZyqL71Gbu8i6JYXcGSHobEBKlbR1KMvtav+RWNaD+peu4u0jExy1zxHRf8zKNj0CrVp+WTVHzgGa1XecTRkFZKy/UN2FRxHxhElpPcfRcbSxwgd/3nSew2Bnn1h2yov2aakeWO5JdHwMBqepCM0NInIfuU9j6GwZiWN311HKCs36HA6prGe6lfvJTT4FFL+fBHbis5m0NonqUjrR0F9dB6WLMs6lqLaFWzNOY7e1e+y9tiZDF5xH5UX/JWm5c+SP/kmal+7mx6Tb4O9NdCjd/sbjYGODk+i5NERSh4iB1V1xu3kfOIK6jYsIWNQCdRsgvyhwQW0YzN0L2Tjs7eTP/Icuv1pMhv7jGfAln8GF1MbKnoUU7BzFWXFl1O06k/s+Mp/yO47LLB4lDyUPERi7qPs4+i74102TvoDje8+Tf8pt9G4ZQUZJ3yu/ZU7a88OSOvGqgUP0GvEeHb+37dIG/MF+j7/1f1xJKIlp93LiWddEtj+lTyUPETixsYhU8nd+Ap15/+O+p0V9B7+Se8tkwWd+B/2znJITWfvncdRM2QyvT6YzfqC0xlU8Wr0Ag/AqpxTKa5+nT3Xf0hmdq+Y71/JQ8lDJO7tyB+FS82krK47dak96Nn/GCwzh24pDaTVbCC1ez628hnIKiD3o9fZY93IdLuDDjsmPpjyHEedeFrM96uXQYlI3MuufA+A/f8923aQF4Lt8L66SuIAMIvv/9jrIUERkThkKHmIiEgnxfsTIUoeLTTWVlHx2sNBhyEiXVzINcb10EhKHi2UPjiDgheuY9PKN4MORUS6sLQXvgc/HUT93tqgQ2mVkkcLTf6rOau3bw84EhHpygbsWg7Ajh3x2fpQ8mihyT8kTXqrmojEgaaG+qBDaJWSRwvOQgA0NTaydslLbLp9RMARiUhX1tQYn8lDz3m0kNbk9SMf9dK0gCMREYHtmz5k66r/MGpCFIZ4OQxKHi30qv8o/vvIiUiXccw8L2m4My7CUuLnYlH8RBIn1maPDjoEEZED1NXtCTqEZpQ8WjA1O0QkDtXtVfI4JGY22czeN7NSM7sxWvtxSfSmLxFJHmm/Ppamhoagw9gvIZKHmYWAu4BzgeHAJWY2PEp7i85mRUQOQ6bbQ8rtBUGHsV9CJA9gLFDqnFvtnKsDZgNTorGjFBc/mV1E5ACzclj74UrKKyoCDSNRelsNADaEzZcBJ0djR/WZBVATjS2LiETG4D81//O3MGdys/lek65nyIio/IncL1GSR2vXkg4Yr9jMZgIzAQYNGnRIO1qfO5ax5U8f0roiIkEYUL242R/Jyurot0oSJXmUAQPD5ouATS0rOefuA+4D702Ch7KjqZd9BWbdcCiriojE3LJekxlx7ePNyvrFYL+JkjwWAsVmNgTYCFwMXBpsSCIisbN43O8ZM/nyA8qDGkApIZKHc67BzK4F5gMh4CHn3LKAwxIRiZnWEkeQEiJ5ADjn5gHzgo5DREQSp6uuiIjEESUPEZE49kHaMXBrZdBhHEDJowNq6B50CCLSRdX2OxlSQkGHcQAlj1aUjr+72fyyvLMCikREurrjp98ZdAitUvJoxZHjL+Pt4uv3z6fv3RZgNCLSlVkoLegQWqXkcRD5R54EwDt556DBEkUkCItH3hJ0CAel5HEQR449l1UnfZ9jrrhXw7SLSMx9EDqSMVO/E3QYB5Uwz3nEnBnFn/rGvplAQxGRrsfF+d8dtTw6Qi0PEYkxZ/HXwyqckkcHxPv/AEQk+TQccXrQIbRJyaNDlDxEJHZq8kcy8rKfBR1Gm5Q8OkTJQ0RiYxOF9Pz6v+PywcBwSh4dodwhIlFWESrEYdiZ/xN0KB2i3lYdYAe+tFBE5JBUZA6isqCElCNOJrd7Jt2OKGHnR6X0HDoWy+8fkxc5RYKSRwekKHmIxFR5n9PJm3At6/77CkUTZ/LRgt+QdcKF7H7pF/Q4/tNkvfZTdoz+Kpnv/on6PieQu3Yeoaa6oMM+QHm/CYTqa3Cnf4uU9O7kDSuhICWVgtSMZvWyikYGFOGhM+eS8w9jSUmJW7RoUUS29d87P8PxNa9EZFsiArWhbLIad7Dt1FsJvfc4uVc9i1WUwhGnHvpGq9ZD/W4IpYFzVGyvJCWtGzWbS8nM70fjP3+BKz6brCUPUH/85RS+egvrB05h0IY5VGf0I2fvZspyxlBUvZjynsMprFlOTbcieu4uY0e3gWTv3sCWgpPpU/EWG3LHMrDqbbaM+DJ9lj3A1uFfpPfyh6mZ/jJ12zdQMHQ01NdC4dGRO2gxYmaLnXMl7dZT8mjfqz+cxOmNb0VkWyJd0caexzOg5r/s+uwf2b18PgUX3oFVrob+JwYdGpS+CAPHQuVq6DOSps3vktLveNj8DvQ9DlbNh+JJULYQisbCjjLo2R92boHcgUFHH3FKHhFMHit/eS7H7Hg9ItsS6QrKck+iz84V1J3/e3bvrSf/hPNJycgKOizpgI4mD93z6IC+n7oJHvt00GGIxL0do68m++QvUJQ3GNK7kwZ6G06SUvLogJTCY4IOQSTu7M4awJ4+o0kfdwWpuQPJ6FNMdtBBScwoeXREih70EKlL7Ul6Qw1Vn5+LpWWQc+Q4ugUdlARGyaMDTE8JShfUhJGCo/rMn9NUtYG8yTcDkJuWGXBkEg+UPDrAUvQgvnQd5UddQuEHj8F179FYs5mcQWODDknikP4qdoBaHtIVVB81FYDCS+6BWdWk5A0kpMQhB6GWRweY7nlIEmokhRBNVE6+C7f+bQqm/hpSHgw6LEkQSh4dYGqgSRLaMuFO+vftR/7R58K4LwQdjiQYJY8OUMtDksmWMddTkN2d/qdPj/thvyV+KXl0iJKHJK4GUkmlgV2fvJXubhd9zrgBWgzMJ9JZuh7TAe21PEpP+en+6cXDb4p2OCKdUjvmKrjyJbpPuB7OvFWJQyJCyaMDUuzgh6mGLOqzBwOwIm0EodS0GEUl0VCd7Y2CuvP4KwKO5PCVD7sIvjiP7PO+DwPGgKkFLZETteRhZrPMbKOZveN/zgtbdpOZlZrZ+2Z2Tlj5ZL+s1MxuDCsfYmZvmdkqM3vczNKjFfdBfktbS8OeQHeMOnliLEKSCNuQPpSmopPJmf4YzKqmxwW/omrs9VSdlhhvdQu3Z8jZcOVLFF58Nwz+hDdEuUiERfuex6+cc78ILzCz4cDFwAigP/CCmR3lL74LOBsoAxaa2Vzn3HLgZ/62ZpvZvcAM4J4oxx4Wcxs5duSF7LsnYkBowIksGX4DJy6P75fXi6ey+zDyd31I/vhrSTl1RrNluefdBkB992zo2Ye0p6YFEWKH7Bx+MamjLiAzr4jM/CGQruEIJbqCuGE+BZjtnNsLrDGzUmDfk0ilzrnVAGY2G5hiZiuAicClfp1HgFnENHk0b3lsPuIz9Fs3l2p6knPBr0n7z0sAhPwn0evTesYqNDlEdZZB+ufuJ3/w6ZCV3+bIr2mnzPQmuj8D2QPgd6OpHfhJsjb8KyaxHsye7KFknvcjKBhGjwR86ZAktmgnj2vNbBqwCPiWc247MAB4M6xOmV8GsKFF+clAAVDlnGtopX4zZjYTmAkwaNCgSP2GA5JH97O/Bw/MZU+PgeSEUhk2rBiAAWPOa211iTP1xecSOvkqOHJC51Yc8knv+8b1ZKV2g3cfh0Hj2POXy7CJN9P41gNknPwlQk9/iabP/J6Uze/A2Kto+L+rqck+mrwVfz7s2KtP+gaWlU/2qTPITEkFjTMlATms5GFmLwB9W1l0M17L4IeA87/vBK6g9X6vjtbvv7g26h9Y6Nx9wH3gvQyqnfA7rOVlq+wBx1A34VZ6n/B5b3n+EPjmcrJ6Jsqr67uu2pJryDr/x4e3kcwc73v05d7sdW9786OmeN8jppCSEgK85alXvkBeQx38dyyNmfmEnvwCu1Nz6dZQdcCmd2f2ptuerdQOPIOsDa+w98KHcbvKyTzRO9dy9u1bJGCHlTycc2d1pJ6Z3Q8868+WAeHvbiwCNvnTrZVvA3LNLNVvfYTXj42wlkeDSyHVjPQzvtW8Ts7HjaGBhXmxikw6qKb4Anpe9jAxeZddaw/epabDmOmEAEZUk1H6T5rmXE3TZ++hfuHDhAqLSX/1Z3T72htQs5msvqMAUKdaiVdRu2xlZv2cc5v92QuApf70XOCvZvZLvBvmxcDbeC2MYjMbAmzEu6l+qXPOmdnLwFRgNjAdmBOtuFtlRt0p15H+xm9oSmm/50q/Uy+BF66JQWDSIbOqibe7UClHjodvLScFSB12hld45ve87+69ggpLpMOiec/jDjM7Ae8S01rgKgDn3DIzewJYDjQA1zjnGgHM7FpgPhACHnLOLfO3dQMw28xuB5YAMR+9LX3S96nbvo7QSTPar5wS4j89zmD0zleiH5gc3EUPQk5R0FGIJKWoJQ/n3OVtLPsR8KNWyucB81opX83HPbKCYUb6xY8EGoJ00LQ5kN4DikqCjkQkaWlsK0k+Q8cHHYFI0lPykITXkJ5Dal01fOdDcBHrZCcibVDykISX+u0V0NQImdlBhyLSZWhgxBjZMOxSmkJ6oCsS6kZ6zzxw7WL44jxvKA4lDpGYUvKIEmvxHGPV0E+T8j9bAoomsW072huZZu8nva6s6VPvg1nV0OtIb+A/EYk5XbaKlhbX3nUpvvMa0nqSWl9DwTnfhUvu8R6Ym3hD0GGJCEoeUWM0tShpOS8Hs6b3WQzZ+gKp17wONR95w7+ISFxR8oiSlpetrKnhIDVln0ZChGhkwOmXw6invcLcyA1wKSKRo+QRLS2uUw3OaWW8IwGgiRRSaKLxnJ8RKhxK+jC9UEsk3il5RMm+y1YrjruRYxtW0HPEpIAjil9rep/FsHO/Tvrg0/SqVJEEod5WUWJ+y6M2ewj8v0chVeOjtlSX7o0+PPTMK2DI6UocIglELY+o8ZJHSluvsO2itpFLr6NPJX3CzdB3ZKsvbBGR+KbkES3Ou2xlKUoeLWX3zIZLHgs6DBE5DEoeUbK/t5VaHs2d9k3ST7gs6ChE5DApeUSJ+S2PlNbeKtdF1ZdcSdpZs4IOQ0QiQMkjWvZdttJNYM+satp/B6OIJAoljyjZd9mqI/c8GkkhlKxPoI+cCsecF3QUIhJhuiAfJQXdvf9n983JarviN5ayPW9UDCIKyNQHYeRFQUchIhGm5BElvSd/F4BeQ09ovcJX/g1XzIfcgfSa+HUAdtJOokkw7sizgw5BRKJEl62ixI4+1xs2/GD6jvx4etRUGDWV6u8fRQ9XG/3gYmFWtZ7fEEliSh5xpOVgiglp2ETIHxZ0FCISZUoeElmX/2/QEYhIDCh5xNqMBbB1RauLTG+MEpEEoeQRawPHep9WZKalQH2M4zlMrkcfbOcWuGFd0KGISAwpecSRnGFjYeUzQYfRKfaN97wHItO6BR2KiMSQuurGkZQL/wAzXqCxW6+gQ2nfxFug+BxvqHklDpEuRy2PeJLeHQaeRGjGfPjg7/D8LUFHdKCvvAYVpTDigqAjEZEAqeURj3odCad+LegoWtd3lBKHiCh5SMfUT/oJ9Ds+6DBEJE4cVvIws8+Z2TIzazKzkhbLbjKzUjN738zOCSuf7JeVmtmNYeVDzOwtM1tlZo+bWbpfnuHPl/rLBx9OzAnlmrfhgj8EHQUATWOugKv+FXQYIhInDrflsRS4EGj2V8XMhgMXAyOAycDdZhYysxBwF3AuMBy4xK8L8DPgV865YmA7MMMvnwFsd84dCfzKr9c1FB4Nx1+MO+b8oCNBj6CISLjDSh7OuRXOufdbWTQFmO2c2+ucWwPjlTGYAAAHwklEQVSUAmP9T6lzbrVzrg6YDUwx76UXE4Gn/PUfAT4btq1H/OmngDOti70kwy7+S9vjZMVAZppeaiUiH4vWPY8BwIaw+TK/7GDlBUCVc66hRXmzbfnLq/36BzCzmWa2yMwWlZeXR+indG3bT70ZCo+FFHXME5GPtZs8zOwFM1vaymdKW6u1UuYOobytbR1Y6Nx9zrkS51xJYWFhG+ElqBkvwKVPxnSXoeMugmvehK7V2BORdrT730nn3FmHsN0yYGDYfBGwyZ9urXwbkGtmqX7rIrz+vm2VmVkqkANUHkJMiW/gSd73V16D+t3wYPTel7E3qy8ZtR+RnZ0XtX2ISOKK1mWrucDFfk+pIUAx8DawECj2e1al491Un+ucc8DLwFR//enAnLBtTfenpwIv+fW7rr6jDjo+VqR8eMpP4Oo3ISs/qvsRkcR0uF11LzCzMuAU4Dkzmw/gnFsGPAEsB/4BXOOca/RbFdcC84EVwBN+XYAbgOvNrBTvnsaDfvmDQIFffj2wv3uvRM+g3vnQ+9igwxCROGXJ+p/4kpISt2jRoqDDiK5ZORHfZEX+iRRULoFvLoOcoohvX0Tim5ktds6VtFdPT5hLM2uGXALf26zEISJtUvJIZBP/B8bfFNFNDunVA9KzIrpNEUk+Sh6J7JPfhvGRuQVU0d1773jBsNER2Z6IJDclDwFgR/EF8L1NukkuIh2i5CEADOlT4L1PRESkAzTmRDI47xeQVQBPfanTqy7OO48xo0bCSTParywi4lPLIxmMvRJGXnhIqxbk5cDEm73XyYqIdJBaHslkwi1QeBQ01EHfkXD3uHZXGTxseLt1RERaUvJIJmd854Ail5GNnXED1Rl9yXlmBjvS+5DdWAXT5kD9Lhg6MYBARSTRKXkks6kPYf1HQ/4Qcj5aCkDPwkFw5QcBByYiiU7JI5mNvOjj6T4j4IwbsdGXBxePiCQNJY+uwgwmRPZpdBHputTbSkREOk3JQ0REOk3JQ0REOk3JQ0REOk3JQ0REOk3JQ0REOk3JQ0REOk3JQ0REOs2cc0HHEBVmVg6sO8TVewHbIhhOMtIxapuOT/t0jNoXxDE6wjlX2F6lpE0eh8PMFjnnSoKOI57pGLVNx6d9Okbti+djpMtWIiLSaUoeIiLSaUoerbsv6AASgI5R23R82qdj1L64PUa65yEiIp2mloeIiHSakkcLZjbZzN43s1IzuzHoeKLJzAaa2ctmtsLMlpnZdX55vpktMLNV/neeX25m9lv/2LxrZqPDtjXdr7/KzKaHlY8xs/f8dX5rZhb7X3p4zCxkZkvM7Fl/foiZveX/1sfNLN0vz/DnS/3lg8O2cZNf/r6ZnRNWnvDnm5nlmtlTZrbSP5dO0TnUnJl90/83ttTMHjOzzIQ/j5xz+vgfIAR8CAwF0oH/AsODjiuKv7cfMNqf7gl8AAwH7gBu9MtvBH7mT58H/B0wYBzwll+eD6z2v/P86Tx/2dvAKf46fwfODfp3H8Jxuh74K/CsP/8EcLE/fS/wVX/6auBef/pi4HF/erh/LmUAQ/xzLJQs5xvwCPBlfzodyNU51Oz4DADWAN3Czp8vJvp5pJZHc2OBUufcaudcHTAbmBJwTFHjnNvsnPuPP10DrMA70afg/UHA//6sPz0FeNR53gRyzawfcA6wwDlX6ZzbDiwAJvvLsp1zbzjv7H80bFsJwcyKgE8BD/jzBkwEnvKrtDw++47bU8CZfv0pwGzn3F7n3BqgFO9cS/jzzcyygU8CDwI45+qcc1XoHGopFehmZqlAFrCZBD+PlDyaGwBsCJsv88uSnt80PhF4C+jjnNsMXoIBevvVDnZ82iova6U8kfwa+C7Q5M8XAFXOuQZ/Pvw37T8O/vJqv35nj1siGQqUA3/0L+09YGbd0Tm0n3NuI/ALYD1e0qgGFpPg55GSR3OtXUtN+u5oZtYDeBr4hnNuR1tVWylzh1CeEMzsfGCrc25xeHErVV07y5Ly+PhSgdHAPc65E4FdeJepDqbLHSP/fs8UvEtN/YHuwLmtVE2o80jJo7kyYGDYfBGwKaBYYsLM0vASx1+cc3/zi7f4lwvwv7f65Qc7Pm2VF7VSnig+AXzGzNbiXQqYiNcSyfUvP0Dz37T/OPjLc4BKOn/cEkkZUOace8uffwovmegc+thZwBrnXLlzrh74G3AqCX4eKXk0txAo9ntBpOPdrJobcExR419HfRBY4Zz7ZdiiucC+3i7TgTlh5dP8HjPjgGr/ksR8YJKZ5fn/y5oEzPeX1ZjZOH9f08K2Ffecczc554qcc4PxzoWXnHOXAS8DU/1qLY/PvuM21a/v/PKL/V40Q4BivJvACX++Oec+AjaY2dF+0ZnAcnQOhVsPjDOzLP837DtGiX0eBd0TId4+eL1BPsDrvXBz0PFE+beehte8fRd4x/+ch3d99UVglf+d79c34C7/2LwHlIRt6wq8G3ilwJfCykuApf46v8d/MDXRPsB4Pu5tNRTvH20p8CSQ4Zdn+vOl/vKhYevf7B+D9wnrLZQM5xtwArDIP4/+D6+3lM6h5sfo+8BK/3f8Ca/HVEKfR3rCXEREOk2XrUREpNOUPEREpNOUPEREpNOUPEREpNOUPEREpNOUPEREpNOUPEREpNOUPEREpNP+P49AHBvKxR/qAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(chord[1])\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To check we're doing things correctly, let's write that data back to another file. By opening the original file and the file we've written, you should convince yourself that the numpy array created by `wavfile.read` really does represent the audio signal of the wav file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "wavfile.write(\"data/test.wav\", chord[0], chord[1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Converting to Mono\n",
    "Many sound signals are multi-channel, and often we store audio in stereo. In fact, the audio signal `chord` is in stereo. The audio data is a list of pairs. Each pair represents a point in time: the first value is the data from the L channel, and the secon is the data from the R channel."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[ -8,  45],\n",
       "       [ 30,  91],\n",
       "       [ 82, 129],\n",
       "       ...,\n",
       "       [  0,   0],\n",
       "       [  0,   0],\n",
       "       [  0,   0]], dtype=int16)"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chord[1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For simplicity, we will work only with mono signals for the remainder of this notebook. Your first task is to write a function `to_mono`, which takes a tuple representing a sound signal, and returns another sound signal by averaging the data fro each time-step. The data part of your sound signal should be an array of `np.int16` data.\n",
    "\n",
    "_(Hint: remember that a signal is represented as a tuple: so your function must return a tuple including the sample frequency!)_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def to_mono(sound):\n",
    "    if sound[1].shape ==1:\n",
    "        return sound\n",
    "    else:\n",
    "        aves = []\n",
    "        for t in sound[1]:\n",
    "            aves.append(np.mean(t))\n",
    "        return sound[0], np.array(aves, dtype=np.int16)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, replace `chord` with its mono version. Plot this signal, and write it to a wav file. Does it sound similar to the file you started with?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 18,  60, 105, ...,   0,   0,   0], dtype=int16)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chord = to_mono(chord)\n",
    "chord[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4VOXd//H3NzsJSxI2CSEEMICArBHcN0TApaBVq+2j2GrpU7VP/Wntg0urdWmptdrqY22pYtWquLRWrQvFXSsIQauAbGEPIAkk7IRs9++POWASQpIJMzkzk8/runJl5p4z53zncMhnzn3uc4455xAREQlGnN8FiIhI9FF4iIhI0BQeIiISNIWHiIgETeEhIiJBU3iIiEjQQhIeZjbTzIrNbHGttjvMbKOZ/cf7OafWazebWaGZLTez8bXaJ3hthWY2rVZ7HzP7xMxWmtlzZpYUirpFRKRlQrXn8RdgQgPtDzjnhns/rwOY2SDgUmCw954/mFm8mcUDDwMTgUHAZd60AL/25pUHlAFXhahuERFpgZCEh3PuA6C0mZNPAmY55/Y759YAhcBo76fQObfaOVcBzAImmZkBZwIveu9/ApgcirpFRKRlEsI8/+vM7AqgALjROVcG9ATm1ZqmyGsD2FCvfQzQGdjunKtqYPrD6tKli8vNzT2y6kVE2piFCxdudc51bWq6cIbHI8BdgPN+/xb4HmANTOtoeC/INTL9IcxsKjAVICcnh4KCguCrFhFpw8xsXXOmC9toK+fcFudctXOuBvgzgW4pCOw59Ko1aTawqZH2rUC6mSXUa29omTOcc/nOufyuXZsMThERaaGwhYeZ9aj19ALgwEisV4BLzSzZzPoAecB8YAGQ542sSiJwUP0VF7hy47vARd77pwAvh6tuERFpWki6rczsWeB0oIuZFQG3A6eb2XACXUxrgR8AOOeWmNnzwJdAFXCtc67am891wGwgHpjpnFviLeJ/gVlmdjfwGfBYKOoWEZGWsVi9JHt+fr7TMQ8RkeCY2ULnXH5T0+kMcxERCZrCQ0REgqbwEBGRoCk8IohzjhcKNlBRVeN3KSIijVJ4RJA3Fn/FTS9+we/fXgFAdY3j/RUlPlclInIohUcE2bGvEoCisn3c++Yyfv/WCqbMnM+7y4t9rkxEpK5wX9tKWuDl/9Q9gX7z9nIWrC1lcFZHFhXt4LjcTCqqa0hJjPepQhFp6xQeUeC+fy2ndE8FOZmprC/dy7lDe/DaF5tZcfdEkhK08ygirU9/eVrZg2+vZPHGHTxfsIGvdpTz3IL17Nhb2eh7SvdUALC+dC8Ar32xGYCKah1YFxF/aM+jld0/ZwX3z1lRp232ki30TG9HRmpiUPNavHEHSzbt5KqT+4SyRBGRJik8IsA7y1p2QPzSGYHbokwensW2PRX0794hlGWJiByWuq1iwLgHPuDsBz7wuwwRaUMUHjHgwDEREZHWovAQEZGgKTxERCRoCo8Y8nzBBu59c5nfZYhIG6DwiCE/ffEL/vDeKr/LEJE2QOEhIiJBU3i0oli95a+ItD0KDxERCZrCIwbtrahi9/4qv8sQkRim8GhFrdVrNequtxhy++zWWZiItEkKjxi0r7La7xJEJMYpPEREJGgKj1aksVYiEisUHjFs2Vc7KSze5XcZIhKDdD+PGDbhdx8CsHb6uT5XIiKxRnserUgnCYpIrFB4iIhI0BQebcBt/1jEI7pgooiEUEjCw8xmmlmxmS2u1ZZpZnPMbKX3O8NrNzN70MwKzewLMxtZ6z1TvOlXmtmUWu2jzGyR954HzcxCUXdb8dd56/m1LtUuIiEUqj2PvwAT6rVNA952zuUBb3vPASYCed7PVOARCIQNcDswBhgN3H4gcLxpptZ6X/1lRQUd8RCRWBGS8HDOfQCU1mueBDzhPX4CmFyr/UkXMA9IN7MewHhgjnOu1DlXBswBJnivdXTOzXWBI85P1pqXiIj4IJzHPLo75zYDeL+7ee09gQ21pivy2hprL2qg/RBmNtXMCsysoKSkJCQfQkREDuXHAfOGjle4FrQf2ujcDOdcvnMuv2vXrkdQYnhopK6IxIpwhscWr8sJ73ex114E9Ko1XTawqYn27AbaJUiP/3sN76/QHpmIHLlwhscrwIERU1OAl2u1X+GNujoe2OF1a80GzjazDO9A+dnAbO+1XWZ2vDfK6opa85Ig/OLVL5kycz41NU4nLIrIEQnVUN1ngbnAADMrMrOrgOnAODNbCYzzngO8DqwGCoE/A9cAOOdKgbuABd7PnV4bwA+BR733rALeCEXdrc1FyHirvre8zhUz5/tdhohEsZBc28o5d9lhXhrbwLQOuPYw85kJzGygvQAYciQ1Sl0frtxK8a5yOqYkkpIY73c5IhJldIZ5Gzb6nre57M/z/C5DRKKQwqMVReJhhs/Wb+f8hz7i1c81BkFEmk/hISzauIMfPfuZ32WISBRReIiISNAUHiIiEjSFhxz08LuFbCjd63cZIhIFFB5y0G9mL+fKx3X+h4g0TeHRiiJxtFV9eyuq/S5BRKKAwkPqqKpx3PLSIorK1H0lIoen8JA6Snbt55lP1nPj85/7XYqIRLCQXJ5EDu9fS74ip3MqX+0oJyu9nd/lNFtNNPSxiYhvFB5hNvWphX6X0CI1Diqra0iM186piBxKfxmkQatLdpN36xv847ONfpciIhFI4SENKttbCcAbizf7XImIRCKFhzSqRoc+RKQBCg9plHPw3vJi3XlQROpQeEij3lq6hSsfX8DTn6z3uxQRiSAKD2kWXfNKRGpTeEizlO6p4Ibn/sPu/VV+lyIiEUDneUizvLCwCICBPTow9dR+PlcjIn7TnocERaOvRAQUHhIkDbr6WtmeCkp27T/4vKbGaVSatBnqtpKgfFRYwq/fXMb8W8bSrWOK3+W0qo8Lt7J40w7eW17CJ2tKqfZ2w3p0SiEtOYHC4t0c27MTyQlxnNCvM/NWb+O8oVl0SElgVO8MendO8/kTiISOwkOC8u/CbQB8ur6MCUN6+FxNeK0q2c07S4vZVV7Jw++tOhgW9W3eUX7w8aKNOwAoWFcGwIK1gd8piXGUV9Zw7Rn9WLC2jFvOOYbhvdLD/AlEwkfhESY79lZy7kMf+l1G2FRUx273TOmeCj5YUcIdry5hu3eZliNVXlkDwMPvrgLg+08WULJrP09dNZqEuDjG9MkkLs5CsiyR1qDwCJNhd/7L7xLCand5FR+uLOGUvK5+lxIyH64sYcrM+fTv3oFlX+0K67IOHCu58vEFVNc4bjv3GLIz2jF+8FGYKUQk8ik8pEXun7OCrbv388p1JzE0O7q7X+at3salM+aRk5lKjSPswVHbga6wu19bCsBN4wewqmQ3v7zgWFIS41utDpFgKTxa6EfPfgbAQ5eN8LkSf2zdHfjmXBaibh0/zF9TyiV/mktOZioA6yPgLPrfzF4OQFpSAu8sK+bN60+hQ0qiz1WJHEpDdVvo1c838ernm/wuw3eLirZzwq/epqKqxu9SmmXzjn2sLtlN7rTX+N1bK4DICI36npq3jo3b9zHtb4vInfYam3fs4/MN2/0uS+SgsIeHma01s0Vm9h8zK/DaMs1sjpmt9H5neO1mZg+aWaGZfWFmI2vNZ4o3/UozmxLuuusr3VPBV7VG1UjAff9aweYd5cxfU+p3KQ3auns/5ZXV/PCvC3nti82c8Kt3uGLmfAA+XrXN5+qa9tqiwP1UJv3fv5n08L8p2bWfwuLdPlcl0np7Hmc454Y75/K959OAt51zecDb3nOAiUCe9zMVeAQCYQPcDowBRgO3Hwic1jLyrjkc/6u3W3ORUWX7vgoe/XC132UctHjjDrbsLCf/7re48A8f88bir7j2mU8BKCrb53N1wSv2DrBfOmMuZ93/PnsrqijepS8z4h+/uq0mAU94j58AJtdqf9IFzAPSzawHMB6Y45wrdc6VAXOACa1dNMD7K0oabC/eWc7O8ujt/z9S1z3zGXe/tvTgsRC/PPrhahauK+O8hz7iwj98DMCXm3f6WlMorSrZA8BFj8xl9D36MiP+aY3wcMC/zGyhmU312ro75zYDeL+7ee09gQ213lvktR2uvdVN8bo86hv9y7cZese/2FdRzbPz2+69L5Zu3sn9c1a0+nKf+HgtH64s4e7XlvLNRwKhsXF79O1hNNeBQPzeXxbQ75bXfa5G2qLWGG11knNuk5l1A+aY2bJGpm1ogLtrpL3umwPhNBUgJyenJbU2y8V//Pjg43vfXEa3DskHnx/z8zfDttxocPljgXD90ZlHkxgf/u8mz85fT0ZqEre/siTsy4pE7ywrBuCXry+leGc5v7u0bY7+k9YX9vBwzm3yfheb2UsEjllsMbMezrnNXrdUsTd5EdCr1tuzgU1e++n12t9rYFkzgBkA+fn5YTsF+sAlJwD+8N6qcC0mqq3cspsVW3YxeUR4dhA3bd9HnBk3/31RWOYfbWZ8EDjedNfkIQAa3ithF9bwMLM0IM45t8t7fDZwJ/AKMAWY7v1+2XvLK8B1ZjaLwMHxHV7AzAZ+Wesg+dnAzeGsXY7MOQ8GLs0yaXgWzhGyS288v2ADpXsrmP5GYzuwbdexdwSubLB2+rk+VyKxLtx7Ht2Bl7zLLSQAzzjn3jSzBcDzZnYVsB642Jv+deAcoBDYC3wXwDlXamZ3AQu86e50zkXm2FCp47t/WcB7y0ta/MdsQ+leisr2sXrrblZu2c1fPl4b2gJj1L1vLiMzLYmrT+nrdykSo8IaHs651cCwBtq3AWMbaHfAtYeZ10xgZqhrlPB6b3lgdNr+qmqcg4Q447mCDXwrvxcJDRwTqaquYWd5FdU1jrXb9nDxH+e2dskx4UB36nlDs2iXGE+nVHVjSWjp8iTSKgbcFhhIcNnoHJ6dv54vN+3ko8KtTJswkBue/5zJI7J4dv6GJuYiwTr+V2/TITmBL+44G0AXXZSQsVi981l+fr4rKCgI2fxyp70WsnmJ+OGsY7rz6JT8pieUNs3MFtY6ofuwdG0rkTbiraVbuP3lxYc90VUkGAoPkTbkibnrmDJzPu8s26LLm8gRUXiItEHf+0sBl/xxLqtKdrO/qtrvciQKKTxE2qi12/Yy9rfvc9MLX7Bm6x6qqqPjsvoSGRQeIm3cK59v4oz73mP6G8tYuWXXwbsbijRG4SEiADz27zWMe+ADHnx7Jeu37SVWR2JKaCg8RASAA1nxpw9Wcepv3uWFgiIK1pYqRKRBOkmwGXbvr/K7BJFWU14ZOPZx28uLqaiq4YFvDWNA944Myuroc2USSRQezTDu/vf9LkGk1R24L/3P/7GEXfurmDX1eHp0SqF35zSfKwu/mhpHjXNUVNew3wvTyuoaUpLicQ46tdPlXhQezbBZ9y6XNmyXt+d94/Ofs3H7Pt6+8TSyM9qRnBDvc2UtV13jKCzeTfeOyXxUuJXM1CQe+2gNfbqk8ehHaxg/uDuzl2yhV2Y7NpTuw+zrbj2AsQO7kZmWxDvLisnPzeDU/l3J69aBnfsqyevenl3lVeR0TmXT9n3kdk6jvLKajimJIbu6dCTQ5UmaQZcmEfnamD6ZfLKmlEV3nB019w2pqKrh6U/WcVxuJlfMnM/4wUfx7Pz1dO+YzJadob11cnycUV3j6Nc1jVUle8jvnUHBujKuPDGXZ+ev5/HvHsfcVdu4+uS+/HPRJr6V34vt+yrp0j6ZyuqaVrmJWmOae3kShUczKDxEDu+XFxzL5BFZfLZ+O8flZrJtz356dGrnWz3FO8vJSEviwbdXcvqAbnzzkY85rX/XiL0sy8icdD5dv53Lj+/NU/PW8cFNZ5DTOdW3ehQeCg+RVje6Tybz15Ry/yXDeL5gA9MvHMqabXs4Y0C3kC+rusYRZ/DiwiKOy83knteXcsGInlzz9KcM65XO5xu2h3yZrWHG5aM4e/BRvi1f4aHwEIkYPzy9H299uYUHvjWckt37GdyjI1U1jqz05u+h7CyvJCHO+P1bKxnSsxM/evYzzh+Wxaufbwpj5a3vzIHdeGdZMZ/9bBwZaUmtvvzmhocOmItI2D1y4OZUD31Up/3obu3ZvreSU/O6sLO8kqHZ6aQlJ5CWFDgYv7eimk/WbKNbhxSemreOLu2T2Lq74uD7Yy04AN5ZVgzAutK9voRHcyk8RMQ3hcW7Afj7ZxsBeGtpcaPT1w4O8ZfOMBcRkaApPEREJGgKj3r2VlQx58stfpchIm2ccy6i77Wi8Kjntn8s5vtPFrB0806/SxGRNuzeN5cz4LY3IzZAFB71rNu2F9DFEEXEX3NXbwNgz36FR1SIt8C1Z3RDHBGJBJF6h0eFRz0J8V+Hx8ertjLqrjk+VyQibVl1hJ7IrfM86imvDOwifufRT3yuREQEtuzcz4bSfYzuk+l3KXUoPOoJ9RU2RUSOxIV/+Dc1DtZOP9fvUupQt1U9I3LS/S5BROSgA4dfD9ycK1IoPOqJs9i5WYuIxI59FZE16ipqwsPMJpjZcjMrNLNp4VtOuOYsItJy0/7+BTURNAo0KsLDzOKBh4GJwCDgMjMbFI5lRdquoYgIwBuLv+KOV5f4XcZBUREewGig0Dm32jlXAcwCJoVjQRE6Kk5EhCfnriN32mts2+3/wJ5oGW3VE9hQ63kRMCYcC+reMTkcsxURCZlRd79V5/nFo7LrPL/qlD4MPKpjWGuIlvBo6EjEIfsIZjYVmAqQk5PTogX17pzWoveJiPjlg5UlB6+OAXDhyOxGpg6NaAmPIqBXrefZwCG3EHPOzQBmQOA2tC1Z0PdO7sOd//yyJW8VEQm77Ix2FJXtO/j85okD+cFp/Vq9jmgJjwVAnpn1ATYClwLf9rckEZHW88h3RjLx2B5+l3FQVISHc67KzK4DZgPxwEznXOQMOxARCbNICg6IkvAAcM69Drzudx0iIhI9Q3VFRNqsk4/u4ncJh1B4iIhEsONyM/jr1WE5M+GIKDyaIScz1e8SRKSNOrFf5O11gMKjQX+/5kTOOqYbAKcP6MrEIUf5XJGItFU/HpvndwkNUng0YGROBpefkAsE7ii4dtsefwsSkTYrLi4yr9aq8DiMDimBgWid05KwBk9wFxEJr16Z7fwu4bAUHocxolc6935zKHdNHqLLtItIqxvQvQMf/vRMv8s4rKg5z6O1mRmXHNfLe+xzMSLS5kT63x3teTSDuq1EpLVF+l1NFR7NEdn/hiISg84c2M3vEhql8GgGZYeItKarTu7DDeP6+11Go3TMoxkswncfRSR2dE5L4mfnheUu2yGlPY9mUHSISLjldk6lQ3ICPz8/8oMDtOchItKqju7Wno4pCZzWvxt9u6YxKKsjG8v2MSirI13aR89tsBUezaBeK5HWkZYUT3pqEjmZqVx9Sh+WbNrJN0dl89TcdYzuk8GvXl/GTeMH8NS8dZx0dBf+Om8dEwYfxTvLiinbW0HZ3kq/P0Idk4ZnUVldw38d35vkhDgGZ3UiPs5IjK/b6dOva3ufKmw5c65Fd2uNePn5+a6goCAk87psxjzmrt4WknmJCPTtksbqrXv41YXH8nzBBh6bchxrtu5mVO/MFs9zz/4qKqtr2FdZTXWNY/OOclIS4ln21U56ZrRj5kdrOHNgd2YtWM/Fo7L52ctLGD+4O7OXbOHobu0pLN5Nfu8MCtaVcVr/rry/ooRje3Zi0cYdDDyqA8u+2sUZA7ry7vISzhzYjXeWFXP1yX149KM13DVpMC99tpE7Jw1h845yhvTsyN6K6ugMBbOFzrn8JqdTeDQtd9prIZmPSFs1uk8m89eUMvPKfOavKeP6s/LYvreSozql+FbTnv1VtEuMp2BdGcf27ERh8W4GZXVkzdY99OuaxqqSPeR2TuX9FSWc1r8rX27eyeCsTmzbs5/M1CR27KukcxR1MzWXwiOE4XHO7z/ky807QzIvkbZgVO8MVpXs5v5LhrFzXxVnD+5OapJ6yaNBc8ND/5rN8OiUfE6c/o7fZYhEtIzURK4+pS+n9e9Kbpc02ifrz0ss079uM6TpG5PIIfp3b8+Qnp04f1gWvTJSObpb9PXvS8vpr2JzaLSVCO2TE9i9v4rHrzyOlMR4TujX2e+SxEcKj2bQUF1pi9olxrOvspr7LxlGUdk+pp7aF+egXVK836VJBFB4NIOyQ9qSb47M5m+fFvH+TadTvGs/Q3p28rskiUC6PEkz6NpW0hZceWIuAPddPJS108+lW8cUBYcclsKjGRQdEsvumjSYswd152fnDWLt9HP1ZUmaRd1WzaD/SxKL7r1oKEnxcUwe0ZPLT8j1uxyJMgqPZtCdBCWW3DR+AEnxcVw0Mpu4OG3b0jIKj2bQnodEs4Q4o6rGcdu5x7C/qoapp/Y95MJ8IsHSFhQC91087ODj2849xsdKRA513ZlH8+p1J3PVyX249oyjFRwSEtrzaIbG9jw6piSQlR64uNuYPpmk6ZIMUW1ETjqfrd/Oucf24LVFm/0u54icN7QH1515NHndOhCv7ikJsbD9pTOzO4DvAyVe0y3Oude9124GrgKqgf9xzs322icAvwfigUedc9O99j7ALCAT+BS43DlXEa7aD/ksTRzziPPSxRG4eqhEn8FZHenRKYVfTBpCz/R2AHR+eTGpSQn88f1VPlcXnItHZXPBiJ4Mz0nXxQglbMK9ZT3gnLuvdoOZDQIuBQYDWcBbZnbgTu8PA+OAImCBmb3inPsS+LU3r1lm9kcCwfNImGuvVfPhX/vO8b2/fuICN3X5zUVDuenFL8JfmByxHp1S2LyjnAtHZnPVyX3qvHbnpCEAZKYl0r1jCj+e9R8/SmyWK0/M5exB3cnr3oH01ER1TUnY+fG1ZBIwyzm3H1hjZoXAaO+1QufcagAzmwVMMrOlwJnAt71pngDuoDXDo97zA/cm6JXZjp+OH8C81aUNTygRKzHeuO3cQUwcchRpyQmkNnLJjamn9gOga4dkenRqxxn3vXfwJkJ+6pnejlvOOYZ+3dIYeFRHX2uRtifc4XGdmV0BFAA3OufKgJ7AvFrTFHltABvqtY8BOgPbnXNVDUzfKuLq7XrcM3kI4x74gKT4OMyM7IxAN8fpA7oCge4riVz/dXwOF4zIZlTvjKDed2K/LgCsuHsi8XHGM5+sY0zfzlzz9Kf8eGweD79byPVn5fHff/2Up64azbLNu/jG8Cx+/vJiurRP5ulP1re45sR4o7LaMXHIUXTtkMyN4waQlBCn60yJb44oPMzsLeCoBl66lcCewV0E/pbeBfwW+B4Nfz93NDzyyzUyfUP1TAWmAuTk5DRRffPV77bq17U93z0pl8u9LqtemanMv3UsXdJi765iseaa0/vx0wkDj2geSQmBTfXAiXVv3XAaAOcPywJg7fRzATglL/Bl4k+X51NeWU2fLmn07pzG958sICczlfWlew+Zd2pSPHsrqhmZk86n67fzp8tHUbangknDA9+XFBYSKY4oPJxzZzVnOjP7M/BP72kR0KvWy9nAJu9xQ+1bgXQzS/D2PmpPX7+eGcAMCNxJsJkfozn113keF2fcfv7gOm3dOnx9O836eyriv7EDu/HYlcf5tvyUxHiuPqUvEAiXLTvL+dunRYzOzeSxj9YweURP/v5pEXd8YzAbSvcxqncG1TXuYFCJRJpwjrbq4Zw7MNbxAmCx9/gV4Bkzu5/AAfM8YD6BPYw8b2TVRgIH1b/tnHNm9i5wEYERV1OAl8NV9+H89uJh3PjC580a8nj+sB785IXPW6EqaY7CeyZGXKB375jCNacfDUB+bmCE3vjBgZ34Hp0C3aAaXiuRLJzHPO41s+EEupjWAj8AcM4tMbPngS+BKuBa51w1gJldB8wmMFR3pnNuiTev/wVmmdndwGfAY2Gsu0EXjuzJu8uLuWx0091hyQnxMXGeQLR7bEo+3TumkKCRRyIhZ87F5uHd/Px8V1BQ4Nvyr336U4WHT/561RhSk+MZmRPcAXERATNb6JzLb2o6nUEkMefkvC5+lyAS8xQeYeI0YLfVZKQmUra3kvm3jvW7FJE2Q+EhUe/jaWOpqqmhQ0qi36WItBk6kthKLsnPJlnDLkPiwPkU7/3kdF747xNolxSv4BBpZfprFib1xyGcNzSL5XdP9KeYKHfBiMAJcgdOynzoshGsnX4uuV3SOC5XF6IU8YO6rVqJjoAELzMtidI9Fdwwrj8PfGs4AHdNHuJzVSICCo9Wo9O9mu+kozvz78JtvPjfJ7B7fxW9MlP9LklE6lF4SMS59Lgcnr76eL/LEJFGKDxaSYRdHSMi3XrOMWRntGPCkIautSkikUThESYHDpjfOK4/C9aV6cBuI84b2oNvDMvirGO6E6frOYlEBYVHmNR46ZHXvT0/GpvnczWRqUNKArvKqzhvaA/OHqy9DZFoovAIkwPhEWlXc40EGamJ5HZJ4+fnDWKErj8lEpUUHmFS43Vb6bLah8pMS+Kla07yuwwROQIKjzCprtGeR0NunjiQc47t4XcZInKEFB5hcrDbSnseB104sic/OK2f32WISAgoPMLkQHjEa88DgMW/GE+Kru0lEjMUHmHydbdV09OmJMZRXlkT5or8MaZPJt8YnkX7ZG1qIrFEXwXDpMbLgqa6rT7/+dkM6tGxFSryx3M/OIHvjOntdxkiEmIKjzC5flweHVMSGJTVcDDMvflM3vvJ6XRKTeSKE3IBYu7b+fBe6X6XICJhElt/rSLIif268MUd4w/7eo9O7Q4+njyiJ5NH9OTkX7/D7v1VrVFe2C27awIJGiwgErMUHhGk/j1AotGw7E707dqelMR4v0sRkTBSeEhIvXzdyX6XICKtQOHRyp6bejzLvtrldxkiIkdE4dHKxvTtzJi+nf0uI2SSE+LYX1XD/FvHYrrllUibofCIIMflZrDxP/v8LiMoC382jupqR6fURL9LEZFWpKG6EWT6N4fyxo9PISUx8v9ZfnBqX4b1Sqd9coKCQ6QN0p5HBElJjOeYHh352w9P5PVFm3n43VV+l3SIZ74/hi837eTqU/r6XYqI+EjhEYEGZ3VicFaniAyPE/t14cR+XfwuQ0R8Fvn9I21YJJ1j98PT+5EUr81FRAKO6K+BmV1sZkvMrMbRiAKqAAAInElEQVTM8uu9drOZFZrZcjMbX6t9gtdWaGbTarX3MbNPzGylmT1nZklee7L3vNB7PfdIao4mb91wGg9dNsLvMgC4/qw8Vtwz0e8yRCRCHOlXycXAhcAHtRvNbBBwKTAYmAD8wczizSweeBiYCAwCLvOmBfg18IBzLg8oA67y2q8CypxzRwMPeNO1CX27tuf8YVkM6N7B71I0DFdE6jii8HDOLXXOLW/gpUnALOfcfufcGqAQGO39FDrnVjvnKoBZwCQzM+BM4EXv/U8Ak2vN6wnv8YvAWG/6NuOla09kwa1n+V2GiMhB4erE7glsqPW8yGs7XHtnYLtzrqpee515ea/v8KZvM1KTEujaIdmXZU89tS9JCXG6yKGI1NHkaCszews4qoGXbnXOvXy4tzXQ5mg4rFwj0zc2r0MXajYVmAqQk5NzmNKi1z+uPYmyvRV89/EFrbbM/xrTm1vOOabVlici0aHJ8HDOtaS/pAjoVet5NrDJe9xQ+1Yg3cwSvL2L2tMfmFeRmSUAnYDSw9Q6A5gBkJ+fHwPXqK3rwP0xXv+fU9hXWcU3H5kbtmV1SE5g1/4qUpI0wkpEDhWu8zxeAZ4xs/uBLCAPmE9gLyLPzPoAGwkcVP+2c86Z2bvARQSOg0wBXq41rynAXO/1d5yLhYuXt9zhbjAVSg98azgdUhLo1iEl7MsSkehzpEN1LzCzIuAE4DUzmw3gnFsCPA98CbwJXOucq/b2Kq4DZgNLgee9aQH+F7jBzAoJHNN4zGt/DOjstd8AHBzeK+GTmhwfUxdwFJHQOqI9D+fcS8BLh3ntHuCeBtpfB15voH01gdFY9dvLgYuPpE5pvtF9Mpm/ppTczml+lyIiEUyXJ5E6vjMmh6euGk1ygu4EKCKHp6OhUew3Fw1l+oXHhny+Cg4RaYrCI4pdnN+LS0eHZkhyp3aBy6r3TG8XkvmJSGxTt5UAgZMBT+vflSE9O/ldiohEAe15CBC4nayCQ0SaS3seMeD3lw4nPTWJKTPnB/3ei0Zl071jMpef0DsMlYlIrFJ4xIBJw3s2PdFhtEuM56bxA0NYjYi0BQqPGHLtGf3o370DcWYMPKoD4x74oMn3HDhQLiISDIVHDGloD6JDSgIXjcpmcFYnfvLC53ROS2LbngoevSKfTTv28a3jejUwJxGRxik8YthDl41gWHY6OZ1TWf7VLgB6Zaay8GfjfK5MRKKdwiOGnT8s6+Dj/t3bc/1ZeVySrz0NETlyCo82wsy4/qz+fpchIjFC53mIiEjQFB4iIhI0hYeIiARN4SEiIkFTeIiISNAUHiIiEjSFh4iIBE3hISIiQTPnnN81hIWZlQDrWvj2LsDWEJYTi7SOGqf10zSto6b5sY56O+e6NjVRzIbHkTCzAudcvt91RDKto8Zp/TRN66hpkbyO1G0lIiJBU3iIiEjQFB4Nm+F3AVFA66hxWj9N0zpqWsSuIx3zEBGRoGnPQ0REgqbwqMfMJpjZcjMrNLNpftcTTmbWy8zeNbOlZrbEzH7stWea2RwzW+n9zvDazcwe9NbNF2Y2sta8pnjTrzSzKbXaR5nZIu89D5qZtf4nPTJmFm9mn5nZP73nfczsE++zPmdmSV57sve80Hs9t9Y8bvbal5vZ+FrtUb+9mVm6mb1oZsu8bekEbUN1mdn/8/6PLTazZ80sJeq3I+ecfrwfIB5YBfQFkoDPgUF+1xXGz9sDGOk97gCsAAYB9wLTvPZpwK+9x+cAbwAGHA984rVnAqu93xne4wzvtfnACd573gAm+v25W7CebgCeAf7pPX8euNR7/Efgh97ja4A/eo8vBZ7zHg/ytqVkoI+3jcXHyvYGPAFc7T1OAtK1DdVZPz2BNUC7WtvPldG+HWnPo67RQKFzbrVzrgKYBUzyuaawcc5tds596j3eBSwlsKFPIvAHAe/3ZO/xJOBJFzAPSDezHsB4YI5zrtQ5VwbMASZ4r3V0zs11ga3/yVrzigpmlg2cCzzqPTfgTOBFb5L66+fAensRGOtNPwmY5Zzb75xbAxQS2Naifnszs47AqcBjAM65CufcdrQN1ZcAtDOzBCAV2EyUb0cKj7p6AhtqPS/y2mKet2s8AvgE6O6c2wyBgAG6eZMdbv001l7UQHs0+R3wU6DGe94Z2O6cq/Ke1/5MB9eD9/oOb/pg11s06QuUAI97XXuPmlka2oYOcs5tBO4D1hMIjR3AQqJ8O1J41NVQX2rMD0czs/bA34DrnXM7G5u0gTbXgvaoYGbnAcXOuYW1mxuY1DXxWkyuH08CMBJ4xDk3AthDoJvqcNrcOvKO90wi0NWUBaQBExuYNKq2I4VHXUVAr1rPs4FNPtXSKswskUBwPO2c+7vXvMXrLsD7Xey1H279NNae3UB7tDgJ+IaZrSXQFXAmgT2RdK/7Aep+poPrwXu9E1BK8OstmhQBRc65T7znLxIIE21DXzsLWOOcK3HOVQJ/B04kyrcjhUddC4A8bxREEoGDVa/4XFPYeP2ojwFLnXP313rpFeDAaJcpwMu12q/wRswcD+zwuiRmA2ebWYb3LetsYLb32i4zO95b1hW15hXxnHM3O+eynXO5BLaFd5xz3wHeBS7yJqu/fg6st4u86Z3Xfqk3iqYPkEfgIHDUb2/Oua+ADWY2wGsaC3yJtqHa1gPHm1mq9xkOrKPo3o78HokQaT8ERoOsIDB64Va/6wnzZz2ZwO7tF8B/vJ9zCPSvvg2s9H5netMb8LC3bhYB+bXm9T0CB/AKge/Was8HFnvv+T+8E1Oj7Qc4na9HW/Ul8J+2EHgBSPbaU7znhd7rfWu9/1ZvHSyn1mihWNjegOFAgbcd/YPAaCltQ3XX0S+AZd7neIrAiKmo3o50hrmIiARN3VYiIhI0hYeIiARN4SEiIkFTeIiISNAUHiIiEjSFh4iIBE3hISIiQVN4iIhI0P4/EEwdHVX242oAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(chord[1])\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "wavfile.write(\"data/test.wav\", chord[0], chord[1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Power Spectral Density\n",
    "The [Power Spectral Density](https://en.wikipedia.org/wiki/Spectral_density) (psd) is a way of estimating how a signal breaks into its component parts. With audio signals, it tells us how we could have built up our original signal by combining certain elementary (sin and cosine) sound waves. It's a bit like trying to \"unmix\" coloured paint to figure out how much red, blue and yellow went into a given colour. The process is quite complicated, so for the purposes of this notebook we will just understand it at this high level: given a signal, the PSD gives us an estimate of its decomposition into elementary waves, which is like a kind of fingerprint unique to that signal. The PSD is related to the Fourier transform, which you may have heard of - in fact, we can use the Fourier transform to estimate PSD.\n",
    "\n",
    "In `scipy.signal`, the `periodogram` method computes the PSD of a signal. We need to supply the signal data, as well as the sample rate. Then `signal.periodogram` returns an array of frequencies, and a corresponding array representing the Power Spectral Density: how much of each pure frequency went into the original signal."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(array([0.00000000e+00, 5.26315789e-01, 1.05263158e+00, ...,\n",
       "        2.20489474e+04, 2.20494737e+04, 2.20500000e+04]),\n",
       " array([2.9092380e-26, 6.8505745e+00, 6.6323647e+00, ..., 2.3682150e-03,\n",
       "        2.6045353e-05, 4.7440056e-04], dtype=float32))"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "psd = signal.periodogram(chord[1], fs = chord[0])\n",
    "psd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEWCAYAAACjYXoKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+0FeV97/H3J+APElEwoBeBBBNJG2MTNEeCy7bXahYiaYpZ1QZvq8TSkljsSu5NGjHJvaZRb0xvEru8UVsTiGCTILXxSlMtIWp++4ODwR9oLCeKcoTIURAxGiz4vX/M98TxsPfZ++wBNnA+r7X22jPfeeZ5Zh4O+7tnntkzigjMzMyqeF27N8DMzPZ9TiZmZlaZk4mZmVXmZGJmZpU5mZiZWWVOJmZmVpmTidl+QtIESSFpaLu3pUzS70l6tN3bYbuXk4ntcZLWSnpJ0guSnpb0dUmHtHu7ekk6UNKXJHXnNj4u6crd3OaHJP14N7fR2+9bJT0n6aeSPiJpt34ORMSPIuK3+mzHe3dnm7bnOZlYu7w/Ig4BTgBOBD7Tjo2o8y3+YqADmAwMB/4A+Nme3K5aJA3ZBdW8PyKGA28GrgAuAubvgnptkHMysbaKiKeA24DjACQdJWmppE2SuiT9ZcYPzm/Vo3L+M5K2Szo05y+T9Pc5fZCkL0p6Mo98/kHSsFx2Sh5xXCTpl8DXa2zWicDNEbE+CmsjYlHvwvxmfbGkhyVtziOrg0vL/1DSqtK3/3eWlo2X9G1JPZKelfQVSW8H/gE4KY+Ensuy10u6VtKtkn4F/IGk90n6maTnJa2T9NkW+31LRCwFPgjMktTb/8303cclbZS0QdL5pX2bnn2yVdJTkj5RXi+nbwDeBPxr7usnJf2bpL8ub5+kBySd2cq+WXs4mVhbSRoPTOfVb/7fArqBo4CzgP8t6bSI+DWwAvivWe73gSeAk0vzP8jpLwBvAyYBxwBjgf9Vava/AIdTfDufU2Oz7gb+h6S/kvQ7klSjzJ8CpwNvzbY+k/tzArAA+DDwRuAfgaX5IT0E+E5u94TcrsUR8QjwEeCuiDgkIkaU2vlvwOUUR0g/Bn4FnAeMAN4HXFDlQzci7qXo79/LUDN9d1jGZwNXSxqZy+YDH84jn+OAO2q0dy7wJHlkGhF/BywE/qy3jKR3Zf23trpf1gYR4Zdfe/QFrAVeAJ6j+GC9BhgGjAd2AMNLZT8PXJ/TlwJXAUOBXwIfpThVczDwEjAKEMUH7ltLdZwEPJ7TpwAvAwf3s31DgLnAT4BtwHpgVp/t/0hpfjrwi5y+Fri0T32PUiTBk4AeYGiNNj8E/LhP7HpgUYO+/HvgypyeAESt+kvb/d4a8buBTzfZdy+V6wc2AlNy+kmKJHpon/pPAbrrbQdwELAJmJjzXwSuafffqV8De/nIxNrlzIgYERFvjoi/ioiXKI5GNkXE1lK5Jyi+pUJx5HEKxTjLg8Byig/pKUBXRDwDjAZeD6zM00zPAf+e8V49URzp1BQROyLi6og4meII4HJgQZ6O6rWuzzYeldNvBj7e23a2Pz6XjweeiIjtTfXQzu0g6T2S7szTZFsojmhGDaC+WsZSfJg303fP9tn+F4Heiyf+mCKxPiHpB5JOaqbxiNgGLAH+LC8GOAe4ocoO2Z7nZGJ7k/XA4ZKGl2JvAp7K6Z8CvwV8APhBRDycy9/Hq6e4nqH49vyOTFYjIuKwKAb7ezV9q+yIeCkirgY2A8eWFo3vs43rc3odcHmp7RER8fqI+FYue1OdQf9629Q3/k1gKTA+Ig6jGGupdRquKZJOpEgmP6a5vqsrIlZExAzgCOD/USSImkVrxBZSnDo8DXgxIu4a4K5YmzmZ2F4jItZRJIzP54D7OynOy38jl78IrKQ4BdWbPH5KcWrlB1nmFeCrwJWSjgCQNFbS6c1uh6SP5aDxMElDJc2iGLMoX9E1V9I4SYcDnwJuzPhXgY/kEYQkvSEHzYcD9wIbgCsyfrCk3jGfp4Fxkg5ssHnDKY7efi1pMsWYyoBJOlTSHwKLgX+KiAer9J2Ky6n/VNJhEfGfwPMUpyxreRp4SzmQyeMV4Ev4qGSf5GRie5tzKM79rwduBi6JiOWl5T8ADqD4YO6dHw78sFTmIqALuFvS88D3KI5omvUSxYfaLym+rc8F/jgiHiuV+SbwXeCxfF0GEBGdwF8CX6E4mumiGA8hInYA76cY2H6SYuD7g1nfHcBq4JeSnuln2/4K+JykrRQD4/W+/dfzr7nuOopxki8D55eWV+m7c4G1ud5HKA2q9/F54DN5Ku0Tpfgi4HeAf2p2Z2zvoQg/HMtsICStBf4iIr7X7m3Zn0g6D5gTEb/b7m2xgfORiZm1naTXUxx1XdfubbHWOJmYWVvlmEwPxVjKN9u8OdYin+YyM7PKfGRiZmaV7VW3qt6dRo0aFRMmTGj3ZpiZ7VNWrlz5TESMblRu0CSTCRMm0NnZ2e7NMDPbp0h6oplyPs1lZmaVNZ1MJA3JW19/J+ePlnSPpDWSbuz95W7eHfVGFbcPv0fShFIdF2f80fKvaiVNy1iXpHml+IDbMDOzPW8gRyYfBR4pzX+B4m6lEyl+6Ts747OBzRFxDHBllkPSscBM4B3ANOCaTFBDgKuBMyjufXROlh1wG2Zm1h5NJRNJ4yhupve1nBdwKnBTFlkI9D5TYUbOk8tPy/IzKJ7dsC0iHqe4ZcPkfHVFxGMR8TLFvYJmtNiGmZm1QbNHJn8PfJLiRmxQPPTnudKtqLt59TbhY8nbZufyLVn+N/E+69SLt9LGa0iaI6lTUmdPT0+Tu2pmZgPVMJnknUU3RsTKcrhG0WiwbFfFG7X/aiDiuojoiIiO0aMbXtlmZmYtaubS4JOBP5I0neKJdodSHKmMkDQ0jwzG8erzHLopnvXQnc9tOIziwTu98V7ldWrFn2mhDTMza4OGRyYRcXFEjIuICRQD6HdExJ8Cd1I8oxtgFnBLTi/NeXL5HVHcs2UpMDOvxDoamEhxG/EVwMS8cuvAbGNprjPQNna7H63p4clnX9wTTZmZ7TOq/GjxImCxpMsoHho0P+PzgRskdVEcLcwEiIjVkpYADwPbgbn5fAckXQgso3j29oKIWN1KG3vCufOLx2isveJ9e6pJM7O93qC50WNHR0fsil/AT5j3b4CTiZkNDpJWRkRHo3L+BbyZmVXmZGJmZpU5mZiZWWVOJmZmVpmTiZmZVeZkYmZmlTmZmJlZZU4mZmZWmZOJmZlV5mRiZmaVOZmYmVllTiZmZlaZk4mZmVXmZGJmZpU5mZiZWWVOJmZmVlnDZCLpYEn3Srpf0mpJf5vx6yU9LmlVviZlXJKuktQl6QFJJ5TqmiVpTb5mleLvlvRgrnOVJGX8cEnLs/xySSMbtWFmZnteM0cm24BTI+JdwCRgmqQpuexvImJSvlZl7AyK57tPBOYA10KRGIBLgPcAk4FLepNDlplTWm9axucBt0fEROD2nK/bhpmZtUfDZBKFF3L2gHz196zfGcCiXO9uYISkMcDpwPKI2BQRm4HlFIlpDHBoRNwVxTOEFwFnlupamNML+8RrtWFmZm3Q1JiJpCGSVgEbKRLCPbno8jzNdKWkgzI2FlhXWr07Y/3Fu2vEAY6MiA0A+X5Egzb6bvccSZ2SOnt6eprZVTMza0FTySQidkTEJGAcMFnSccDFwG8DJwKHAxdlcdWqooV4f5paJyKui4iOiOgYPXp0gyrNzKxVA7qaKyKeA74PTIuIDXmaaRvwdYpxECiOEsaXVhsHrG8QH1cjDvB07+mrfN/YoA0zM2uDZq7mGi1pRE4PA94L/Lz0IS+KsYyHcpWlwHl5xdUUYEueoloGTJU0MgfepwLLctlWSVOyrvOAW0p19V71NatPvFYbZmbWBkObKDMGWChpCEXyWRIR35F0h6TRFKecVgEfyfK3AtOBLuBF4HyAiNgk6VJgRZb7XERsyukLgOuBYcBt+QK4AlgiaTbwJHB2f22YmVl7NEwmEfEAcHyN+Kl1ygcwt86yBcCCGvFO4Lga8WeB0wbShpmZ7Xn+BbyZmVXmZGJmZpU5mZiZWWVOJmZmVpmTiZmZVeZkYmZmlTmZmJlZZU4mZmZWmZOJmZlV5mRiZmaVOZmYmVllTiZmZlaZk4mZmVXmZGJmZpU5mZiZWWVOJmZmVlkzj+09WNK9ku6XtFrS32b8aEn3SFoj6UZJB2b8oJzvyuUTSnVdnPFHJZ1eik/LWJekeaX4gNswM7M9r5kjk23AqRHxLmASMC2fu/4F4MqImAhsBmZn+dnA5og4BrgyyyHpWGAm8A5gGnCNpCH5OOCrgTOAY4FzsiwDbcPMzNqjYTKJwgs5e0C+AjgVuCnjC4Ezc3pGzpPLT5OkjC+OiG0R8TjF89sn56srIh6LiJeBxcCMXGegbZiZWRs0NWaSRxCrgI3AcuAXwHMRsT2LdANjc3ossA4gl28B3liO91mnXvyNLbTRd7vnSOqU1NnT09PMrpqZWQuaSiYRsSMiJgHjKI4k3l6rWL7XOkKIXRjvr43XBiKui4iOiOgYPXp0jVXMzGxXGNDVXBHxHPB9YAowQtLQXDQOWJ/T3cB4gFx+GLCpHO+zTr34My20YWZmbdDM1VyjJY3I6WHAe4FHgDuBs7LYLOCWnF6a8+TyOyIiMj4zr8Q6GpgI3AusACbmlVsHUgzSL811BtqGmZm1wdDGRRgDLMyrrl4HLImI70h6GFgs6TLgZ8D8LD8fuEFSF8XRwkyAiFgtaQnwMLAdmBsROwAkXQgsA4YACyJiddZ10UDaMDOz9miYTCLiAeD4GvHHKMZP+sZ/DZxdp67LgctrxG8Fbt0VbZiZ2Z7nX8CbmVllTiZmZlaZk4mZmVXmZGJmZpU5mZiZWWVOJmZmVpmTiZmZVeZkYmZmlTmZmJlZZU4mZmZWmZOJmZlV5mRiZmaVOZmYmVllTiZmZlaZk4mZmVXmZGJmZpU5mZiZWWXNPAN+vKQ7JT0iabWkj2b8s5KekrQqX9NL61wsqUvSo5JOL8WnZaxL0rxS/GhJ90haI+nGfBY8+bz4G7P8PZImNGpjT+nZum1PN2lmttdq5shkO/DxiHg7MAWYK+nYXHZlREzK160AuWwm8A5gGnCNpCH5DPmrgTOAY4FzSvV8IeuaCGwGZmd8NrA5Io4BrsxyddtouRdacOLl39uTzZmZ7dUaJpOI2BAR9+X0VuARYGw/q8wAFkfEtoh4HOiieI77ZKArIh6LiJeBxcAMSQJOBW7K9RcCZ5bqWpjTNwGnZfl6bZiZWRsMaMwkTzMdD9yToQslPSBpgaSRGRsLrCut1p2xevE3As9FxPY+8dfUlcu3ZPl6dfXd3jmSOiV19vT0DGRXzcxsAJpOJpIOAf4F+FhEPA9cC7wVmARsAL7UW7TG6tFCvJW6XhuIuC4iOiKiY/To0TVWMTOzXaGpZCLpAIpE8o2I+DZARDwdETsi4hXgq7x6mqkbGF9afRywvp/4M8AISUP7xF9TVy4/DNjUT11mZtYGzVzNJWA+8EhEfLkUH1Mq9gHgoZxeCszMK7GOBiYC9wIrgIl55daBFAPoSyMigDuBs3L9WcAtpbpm5fRZwB1Zvl4bZmbWBkMbF+Fk4FzgQUmrMvYpiquxJlGcXloLfBggIlZLWgI8THEl2NyI2AEg6UJgGTAEWBARq7O+i4DFki4DfkaRvMj3GyR1URyRzGzUhpmZ7Xkqvujv/zo6OqKzs7NyPRPm/dtvptde8b7K9ZmZ7c0krYyIjkbl/At4MzOrzMnEzMwqczIxM7PKnEzMzKwyJxMzM6vMycTMzCpzMjEzs8qcTMzMrDInEzMzq8zJZAAW/Pjxdm+CmdleycmkSd2bX+Rz33m43ZthZrZXcjJp0o5XBsc9zMzMWuFkYmZmlTmZmJlZZU4mZmZWmZNJk1TzsfNmZgbNPbZ3vKQ7JT0iabWkj2b8cEnLJa3J95EZl6SrJHVJekDSCaW6ZmX5NZJmleLvlvRgrnNVPiq4pTbMzGzPa+bIZDvw8Yh4OzAFmCvpWGAecHtETARuz3mAMyieyT4RmANcC0ViAC4B3gNMBi7pTQ5ZZk5pvWkZH1AbZmbWHg2TSURsiIj7cnor8AgwFpgBLMxiC4Ezc3oGsCgKdwMjJI0BTgeWR8SmiNgMLAem5bJDI+KuKJ4hvKhPXQNpw8zM2mBAYyaSJgDHA/cAR0bEBigSDnBEFhsLrCut1p2x/uLdNeK00Ebf7Z0jqVNSZ09Pz0B21czMBqDpZCLpEOBfgI9FxPP9Fa0Rixbi/W5OM+tExHUR0RERHaNHj25QZYMGPf5uZlZXU8lE0gEUieQbEfHtDD/de2op3zdmvBsYX1p9HLC+QXxcjXgrbZiZWRs0czWXgPnAIxHx5dKipUDvFVmzgFtK8fPyiqspwJY8RbUMmCppZA68TwWW5bKtkqZkW+f1qWsgbZiZWRsMbaLMycC5wIOSVmXsU8AVwBJJs4EngbNz2a3AdKALeBE4HyAiNkm6FFiR5T4XEZty+gLgemAYcFu+GGgbZmbWHg2TSUT8mNpjFACn1SgfwNw6dS0AFtSIdwLH1Yg/O9A2zMxsz/Mv4M3MrDInEzMzq8zJxMzMKnMyMTOzypxMzMysMieTJvkX8GZm9TmZmJlZZU4mZmZWmZOJmZlV5mTSJHnQxMysLicTMzOrzMnEzMwqczIxM7PKnEzMzKwyJ5MmefjdzKw+JxMzM6usmcf2LpC0UdJDpdhnJT0laVW+ppeWXSypS9Kjkk4vxadlrEvSvFL8aEn3SFoj6UZJB2b8oJzvyuUTGrVhZmbt0cyRyfXAtBrxKyNiUr5uBZB0LDATeEeuc42kIZKGAFcDZwDHAudkWYAvZF0Tgc3A7IzPBjZHxDHAlVmubhsD220zM9uVGiaTiPghsKlRuTQDWBwR2yLicYpntE/OV1dEPBYRLwOLgRkqfgl4KnBTrr8QOLNU18Kcvgk4LcvXa8PMzNqkypjJhZIeyNNgIzM2FlhXKtOdsXrxNwLPRcT2PvHX1JXLt2T5enXtRNIcSZ2SOnt6elrbSzMza6jVZHIt8FZgErAB+FLGa130FC3EW6lr52DEdRHREREdo0ePrlXEzMx2gZaSSUQ8HRE7IuIV4Ku8epqpGxhfKjoOWN9P/BlghKShfeKvqSuXH0Zxuq1eXWZm1iYtJRNJY0qzHwB6r/RaCszMK7GOBiYC9wIrgIl55daBFAPoSyMigDuBs3L9WcAtpbpm5fRZwB1Zvl4bZmbWJkMbFZD0LeAUYJSkbuAS4BRJkyhOL60FPgwQEaslLQEeBrYDcyNiR9ZzIbAMGAIsiIjV2cRFwGJJlwE/A+ZnfD5wg6QuiiOSmY3aMDOz9lDxZX//19HREZ2dnS2vv2HLS5z0+TteE1t7xfuqbpaZ2V5N0sqI6GhUzr+ANzOzypxMzMysMicTMzOrzMnEzMwqczJpknwTejOzupxMzMysMicTMzOrzMnEzMwqczJpkjxkYmZWl5OJmZlV5mRiZmaVOZmYmVllTiZmZlaZk0mTPP5uZlafk4mZmVXmZGJmZpU1TCaSFkjaKOmhUuxwScslrcn3kRmXpKskdUl6QNIJpXVmZfk1kmaV4u+W9GCuc5VU/KKjlTbMzKw9mjkyuR6Y1ic2D7g9IiYCt+c8wBkUz2SfCMwBroUiMVA87vc9wGTgkt7kkGXmlNab1kobZmbWPg2TSUT8kOIZ7GUzgIU5vRA4sxRfFIW7gRGSxgCnA8sjYlNEbAaWA9Ny2aERcVcUzw9e1KeugbSxe3kE3sysrlbHTI6MiA0A+X5ExscC60rlujPWX7y7RryVNnYiaY6kTkmdPT09A9pBMzNr3q4egK/1/T1aiLfSxs7BiOsioiMiOkaPHt2gWjMza1WryeTp3lNL+b4x493A+FK5ccD6BvFxNeKttGFmZm3SajJZCvRekTULuKUUPy+vuJoCbMlTVMuAqZJG5sD7VGBZLtsqaUpexXVen7oG0oaZmbXJ0EYFJH0LOAUYJamb4qqsK4AlkmYDTwJnZ/FbgelAF/AicD5ARGySdCmwIst9LiJ6B/UvoLhibBhwW74YaBu7mx/ba2ZWX8NkEhHn1Fl0Wo2yAcytU88CYEGNeCdwXI34swNtw8zM2sO/gDczs8qcTMzMrDInEzMzq8zJxMzMKnMyMTOzypxMzMysMicTMzOrzMmkSfJvFs3M6nIyMTOzypxMzMysMicTMzOrzMnEzMwqczJpksffzczqczIxM7PKnEzMzKwyJxMzM6vMycTMzCqrlEwkrZX0oKRVkjozdrik5ZLW5PvIjEvSVZK6JD0g6YRSPbOy/BpJs0rxd2f9Xbmu+mtjd5J/Am9mVteuODL5g4iYFBEdOT8PuD0iJgK35zzAGcDEfM0BroUiMVA8V/49wGTgklJyuDbL9q43rUEbZmbWBrvjNNcMYGFOLwTOLMUXReFuYISkMcDpwPKI2BQRm4HlwLRcdmhE3JXPfV/Up65abZiZWRtUTSYBfFfSSklzMnZkRGwAyPcjMj4WWFdatztj/cW7a8T7a+M1JM2R1Cmps6enp8VdNDOzRoZWXP/kiFgv6QhguaSf91O21qBDtBBvWkRcB1wH0NHRMaB1zcyseZWOTCJifb5vBG6mGPN4Ok9Rke8bs3g3ML60+jhgfYP4uBpx+mnDzMzaoOVkIukNkob3TgNTgYeApUDvFVmzgFtyeilwXl7VNQXYkqeolgFTJY3MgfepwLJctlXSlLyK67w+ddVqw8zM2qDKaa4jgZvzktmhwDcj4t8lrQCWSJoNPAmcneVvBaYDXcCLwPkAEbFJ0qXAiiz3uYjYlNMXANcDw4Db8gVwRZ02zMysDVpOJhHxGPCuGvFngdNqxAOYW6euBcCCGvFO4Lhm2zAzs/bwL+DNzKwyJxMzM6vMycTMzCpzMjEzs8qcTMzMrDInEzMzq8zJxMzMKnMyMTOzypxMzMysMieTJhU/4Dczs1qcTMzMrDInkybVOi7p3vwi376vu8YSM7PBperDsQaNWme5zrr2Ln75/K+ZMWksQ15X61leZmaDg49MmhQ1jk16XtgGwNZf/ycX/NNKnsl5M7PBxsmkgt6DkW/c8yS3PfRLrr6zq70bZGbWJk4mzapxmut1eu2prR2v+IovMxuc9ulkImmapEcldUmatzvbqpUmepNJ7/t2JxMzG6T22WQiaQhwNXAGcCxwjqRjd1d7tQbgewfdew9QduzoP5m8vP2VXb1ZZmZ7hX35aq7JQFc+PhhJi4EZwMO7spE7H93Ipd95mMd6frXTshe2bQfgitt+DsCNneu4sXMdYw47mNcfOOQ1Zbdtf4XuzS8BcMwRh+Brv8xsT/ngieP5i997y25tY19OJmOBdaX5buA95QKS5gBzAN70pje11MiIYQfw9jGHcvJbR3HLqqd4/tdFAnnLqDcw/OCh3N+9hT9611EsvX/9b9Y59OADOObIQ3aqq3vzS/zO2MMYf/iwlrbFzKwVow45aLe3oX31NiGSzgZOj4i/yPlzgckR8de1ynd0dERnZ+ee3EQzs32epJUR0dGo3D47ZkJxJDK+ND8OWF+nrJmZ7Ub7cjJZAUyUdLSkA4GZwNI2b5OZ2aC0z46ZRMR2SRcCy4AhwIKIWN3mzTIzG5T22WQCEBG3Are2ezvMzAa7ffk0l5mZ7SWcTMzMrDInEzMzq8zJxMzMKttnf7Q4UJJ6gCdaXH0U8Mwu3Jz9gftkZ+6TnblPdrav9cmbI2J0o0KDJplUIamzmV+ADibuk525T3bmPtnZ/tonPs1lZmaVOZmYmVllTibNua7dG7AXcp/szH2yM/fJzvbLPvGYiZmZVeYjEzMzq8zJxMzMKnMyaUDSNEmPSuqSNK/d27O7SVor6UFJqyR1ZuxwScslrcn3kRmXpKuybx6QdEKpnllZfo2kWe3an1ZIWiBpo6SHSrFd1geS3p193JXr7vVPca7TJ5+V9FT+raySNL207OLcv0clnV6K1/z/lI+SuCf76sZ8rMReTdJ4SXdKekTSakkfzfjg/FuJCL/qvChubf8L4C3AgcD9wLHt3q7dvM9rgVF9Yn8HzMvpecAXcno6cBsgYApwT8YPBx7L95E5PbLd+zaAPvh94ATgod3RB8C9wEm5zm3AGe3e5xb75LPAJ2qUPTb/rxwEHJ3/h4b09/8JWALMzOl/AC5o9z430SdjgBNyejjwH7nvg/JvxUcm/ZsMdEXEYxHxMrAYmNHmbWqHGcDCnF4InFmKL4rC3cAISWOA04HlEbEpIjYDy4Fpe3qjWxURPwQ29Qnvkj7IZYdGxF1RfFosKtW116rTJ/XMABZHxLaIeBzoovi/VPP/U37bPhW4Kdcv9+9eKyI2RMR9Ob0VeAQYyyD9W3Ey6d9YYF1pvjtj+7MAvitppaQ5GTsyIjZA8R8IOCLj9fpnf+y3XdUHY3O6b3xfdWGeslnQezqHgffJG4HnImJ7n/g+Q9IE4HjgHgbp34qTSf9qnZ/c36+lPjkiTgDOAOZK+v1+ytbrn8HUbwPtg/2pb64F3gpMAjYAX8r4oOoTSYcA/wJ8LCKe769ojdh+0y9OJv3rBsaX5scB69u0LXtERKzP943AzRSnJp7OQ27yfWMWr9c/+2O/7ao+6M7pvvF9TkQ8HRE7IuIV4KsUfysw8D55huKUz9A+8b2epAMoEsk3IuLbGR6UfytOJv1bAUzMK00OBGYCS9u8TbuNpDdIGt47DUwFHqLY594rTGYBt+T0UuC8vEplCrAlD+uXAVMljcxTH1Mzti/bJX2Qy7ZKmpJjBeeV6tqn9H5gpg9Q/K1A0SczJR0k6WhgIsVAcs3/TzkecCdwVq5f7t+9Vv77zQceiYgvlxYNzr+Vdl8BsLe/KK7A+A+Kq1A+3e7t2c37+haKK2zuB1b37i/FOe3bgTX5fnjGBVydffMg0FGq688pBl67gPPbvW8D7IdvUZy2+U+Kb4ezd2UfAB0UH7y/AL5C3olib37V6ZMbcp8foPigHFMq/+ncv0cpXYFU7/9T/u3dm331z8BB7d7nJvrkdylOOz0ArMrX9MH6t+LbqZjZjMvoAAADeklEQVSZWWU+zWVmZpU5mZiZWWVOJmZmVpmTiZmZVeZkYmZmlTmZ2KAjaUfpTrer8lYY+w1Jx0v6Wk5/SNJX+iz/vqSOftZfLGni7t5O278MbVzEbL/zUkRMqrdQ0tB49T5R+6JPAZdVWP9a4JPAX+6azbHBwEcmZvzmG/w/S/pX4LsZ+xtJK/JGhn9bKvvpfCbH9yR9S9InMv6bb/ySRklam9NDJP2fUl0fzvgpuc5Nkn4u6Ru9z6uQdKKkn0q6X9K9koZL+pGkSaXt+Imkd/bZj+HAOyPi/ib2+Y9KR2ePSno8F/0IeG/p9iZmDfmPxQajYZJW5fTjEfGBnD6J4oN4k6SpFLcBmUzxy+WledPLX1HcBuR4iv8/9wErG7Q3m+LWGSdKOgj4iaTv5rLjgXdQ3HPpJ8DJku4FbgQ+GBErJB0KvAR8DfgQ8DFJb6P4lfgDfdrq/cV02Qcl/W5p/hiAiFhK3h5I0hLgBxl/RVIX8K4m9s0McDKxwaneaa7lEdH7zI6p+fpZzh9CkVyGAzdHxIsAkpq5V9tU4J2Seu89dVjW9TJwb0R0Z12rgAnAFmBDRKwAiLwTraR/Bv6npL+huP3G9TXaGgP09IndGBEX9s5I+n55oaRPUvTJ1aXwRuAonEysSU4mZq/6VWlawOcj4h/LBSR9jPq3Ad/Oq6eOD+5T119HxGtudinpFGBbKbSD4v+karURES9KWk7xkKU/oTgK6eulPm33S9JpwNkUT1IsOzjrMmuKx0zMalsG/LmKZ1UgaaykI4AfAh+QNCzHJ95fWmct8O6cPqtPXReouF05kt6Wd2Wu5+fAUZJOzPLDS+MXXwOuAlaUjqLKHiFPYzUi6c3ANcCfRETfxPE2ipt9mjXFRyZmNUTEdyW9Hbgrx8RfAP4sIu6TdCPFHWKfoBis7vVFYImkc4E7SvGvUZy+ui8H2Hvo5/GrEfGypA8C/1fSMIojhPcCL0TESknPA1+vs+7PJR0maXgUj5Ltz4co7nB7c+7j+oiYLulIitNeGxqsb/YbvmuwWQWSPkvxIf/FPdTeUcD3gd+O4qFUtcr8d2BrRHytxTb+O/B8RMxveUNt0PFpLrN9hKTzKJ4x/ul6iSRdy2vHYgbqOWBhhfVtEPKRiZmZVeYjEzMzq8zJxMzMKnMyMTOzypxMzMysMicTMzOr7P8Dmvsv7LSC1gMAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(psd[0], psd[1])\n",
    "plt.xlabel(\"Frequency (Hz)\")\n",
    "plt.title(\"Power Spectral Density\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Comparing Yes and No\n",
    "Suppose we want to classify between recordings of the word \"yes\", and the word \"no\". Of course, speech recognition is a huge problem and we would need much more than just the PSD to tackle it in general. But if we know in advance that a signal will be saying \"yes\" or \"no\" (for example suppose we were creating an automatic phone system for a big company, that asks the caller a question and routes them according to their answer). Then it turns out that the PSD is in fact enough to differentiate between them.\n",
    "\n",
    "Let's see this in action."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Obtain mono versions of the recordings\n",
    "yes = to_mono(wavfile.read(\"data/yes_male.wav\"))\n",
    "no = to_mono(wavfile.read(\"data/no_male.wav\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get psds\n",
    "yes_psd = signal.periodogram(yes[1], fs=yes[0])\n",
    "no_psd = signal.periodogram(no[1], fs=no[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAG6JJREFUeJzt3X901fWd5/HniwRQEAU0WAewwTZbq/YXZhW3PT0zsoVgu8VO9SzubOG0zKHT0d3Onu1pcbp7cLW22tnW1l1rVwsrOJ2iYzsLM2Jpqp6xdQQN/gARhagVIghRfohVfiR57x/3E/o1uUm+uTfhBng9jvfc7/f9/Xy/9/P9mNxXvj8uVxGBmZlZHsMq3QEzMzt2ODTMzCw3h4aZmeXm0DAzs9wcGmZmlptDw8zMcnNomJlZbg4NMzPLzaFhZma5VVe6AwPtjDPOiNra2kp3w8zsmLJu3brXI6Kmr3bHXWjU1tbS1NRU6W6YmR1TJL2Sp51PT5mZWW4ODTMzy82hYWZmuTk0zMwsN4eGmZnl5tAwM7PcHBpmZpabQ6OLp7ft5dlX91W6G2ZmQ9Jx9+G+cl1+26MA/O6mT1e4J2ZmQ4+PNMzMLLc+Q0PSEkm7JD1bZNnXJIWkM9K8JN0qqVnSeklTM23nSdqSHvMy9QslbUjr3CpJqT5eUmNq3yhp3MDsspmZlSrPkcZdQEPXoqTJwKeArZnyLKAuPRYAt6e244FFwMXARcCiTAjcntp2rtf5WguBByOiDngwzZuZWQX1GRoR8Qiwu8iiW4CvA5GpzQaWRcEaYKyks4CZQGNE7I6IPUAj0JCWnRoRj0VEAMuAyzPbWpqml2bqZmZWISVd05D0WeDViHimy6KJwLbMfEuq9VZvKVIHODMidgCk5wml9NXMzAZOv++ekjQK+CYwo9jiIrUood7fPi2gcIqLs88+u7+rm5lZTqUcabwPmAI8I+l3wCTgSUnvoXCkMDnTdhKwvY/6pCJ1gJ3p9BXpeVdPHYqIOyKiPiLqa2r6/A4RMzMrUb9DIyI2RMSEiKiNiFoKb/xTI+I1YCUwN91FNQ3Yl04trQZmSBqXLoDPAFanZfslTUt3Tc0FVqSXWgl03mU1L1M3M7MKyXPL7c+Ax4APSGqRNL+X5quAl4Bm4E7gLwEiYjdwA/BEelyfagBfAX6S1nkReCDVbwI+JWkLhbu0burfrpmZ2UDr85pGRFzVx/LazHQAV/fQbgmwpEi9CbigSP0NYHpf/TMzs6PHnwg3M7PcHBpmZpabQ8PMzHJzaJiZWW4ODTMzy82hYWZmuTk0zMwsN4eGmZnl5tAwM7PcHBpmZpabQ8PMzHJzaJiZWW4ODTMzy82hYWZmuTk0zMwsN4eGmZnl5tAwM7PcHBpmZpabQ8PMzHLrMzQkLZG0S9KzmdrfSHpe0npJ/yBpbGbZtZKaJb0gaWam3pBqzZIWZupTJK2VtEXSPZJGpPrINN+cltcO1E6bmVlp8hxp3AU0dKk1AhdExIeBzcC1AJLOA+YA56d1fiSpSlIVcBswCzgPuCq1BbgZuCUi6oA9wPxUnw/siYj3A7ekdmZmVkF9hkZEPALs7lL7VUS0pdk1wKQ0PRtYHhEHI+JloBm4KD2aI+KliDgELAdmSxJwKXBfWn8pcHlmW0vT9H3A9NTezMwqZCCuaXwJeCBNTwS2ZZa1pFpP9dOBvZkA6qy/a1tp+b7UvhtJCyQ1SWpqbW0te4fMzKy4skJD0jeBNuCnnaUizaKEem/b6l6MuCMi6iOivqampvdOm5lZyapLXVHSPOAzwPSI6HwzbwEmZ5pNAran6WL114GxkqrT0US2fee2WiRVA6fR5TSZmZkdXSUdaUhqAL4BfDYi3s4sWgnMSXc+TQHqgMeBJ4C6dKfUCAoXy1emsHkYuCKtPw9YkdnWvDR9BfBQJpzMzKwC+jzSkPQz4I+BMyS1AIso3C01EmhM16bXRMRfRMRGSfcCz1E4bXV1RLSn7VwDrAaqgCURsTG9xDeA5ZK+BTwFLE71xcDdkpopHGHMGYD9NTOzMvQZGhFxVZHy4iK1zvY3AjcWqa8CVhWpv0Th7qqu9QPAlX31z8zMjh5/ItzMzHJzaJiZWW4ODTMzy82hYWZmuTk0zMwsN4eGmZnl5tAwM7PcHBpmZpabQ8PMzHJzaJiZWW4ODTMzy82hYWZmuTk0zMwsN4eGmZnl5tAwM7PcHBpmZpabQ8PMzHJzaJiZWW59hoakJZJ2SXo2UxsvqVHSlvQ8LtUl6VZJzZLWS5qaWWdear9F0rxM/UJJG9I6typ96XhPr2FmZpWT50jjLqChS20h8GBE1AEPpnmAWUBdeiwAbodCAACLgIspfB/4okwI3J7adq7X0MdrmJlZhfQZGhHxCLC7S3k2sDRNLwUuz9SXRcEaYKyks4CZQGNE7I6IPUAj0JCWnRoRj0VEAMu6bKvYa5iZWYWUek3jzIjYAZCeJ6T6RGBbpl1LqvVWbylS7+01zMysQgb6QriK1KKEev9eVFogqUlSU2tra39XNzOznEoNjZ3p1BLpeVeqtwCTM+0mAdv7qE8qUu/tNbqJiDsioj4i6mtqakrcJTMz60upobES6LwDah6wIlOfm+6imgbsS6eWVgMzJI1LF8BnAKvTsv2SpqW7puZ22Vax1zAzswqp7quBpJ8BfwycIamFwl1QNwH3SpoPbAWuTM1XAZcBzcDbwBcBImK3pBuAJ1K76yOi8+L6VyjcoXUy8EB60MtrmJlZhfQZGhFxVQ+LphdpG8DVPWxnCbCkSL0JuKBI/Y1ir2FmZpXjT4SbmVluDg0zM8vNoWFmZrk5NMzMLDeHhpmZ5ebQMDOz3BwaZmaWm0PDzMxyc2iYmVluDg0zM8vNoWFmZrk5NMzMLDeHhpmZ5ebQMDOz3BwaZmaWm0PDzMxyc2iYmVluDg0zM8vNoWFmZrmVFRqS/oukjZKelfQzSSdJmiJpraQtku6RNCK1HZnmm9Py2sx2rk31FyTNzNQbUq1Z0sJy+mpmZuUrOTQkTQT+M1AfERcAVcAc4GbgloioA/YA89Mq84E9EfF+4JbUDknnpfXOBxqAH0mqklQF3AbMAs4DrkptzcysQso9PVUNnCypGhgF7AAuBe5Ly5cCl6fp2WmetHy6JKX68og4GBEvA83ARenRHBEvRcQhYHlqa2ZmFVJyaETEq8D/BLZSCIt9wDpgb0S0pWYtwMQ0PRHYltZtS+1Pz9a7rNNTvRtJCyQ1SWpqbW0tdZfMzKwP5ZyeGkfhL/8pwB8BoymcSuoqOlfpYVl/692LEXdERH1E1NfU1PTVdTMzK1E5p6f+LfByRLRGxGHgF8C/Acam01UAk4DtaboFmAyQlp8G7M7Wu6zTU93MzCqknNDYCkyTNCpdm5gOPAc8DFyR2swDVqTplWmetPyhiIhUn5PurpoC1AGPA08AdelurBEULpavLKO/ZmZWpuq+mxQXEWsl3Qc8CbQBTwF3APcDyyV9K9UWp1UWA3dLaqZwhDEnbWejpHspBE4bcHVEtANIugZYTeHOrCURsbHU/pqZWflKDg2AiFgELOpSfonCnU9d2x4AruxhOzcCNxaprwJWldNHMzMbOP5EuJmZ5ebQMDOz3BwaZmaWm0PDzMxyc2iYmVluDg0zM8vNoWFmZrk5NMzMLDeHhpmZ5ebQMDOz3BwaZmaWm0PDzMxyc2iYmVluDg0zM8vNoWFmZrk5NMzMLDeHhpmZ5ebQMDOz3MoKDUljJd0n6XlJmyRdImm8pEZJW9LzuNRWkm6V1CxpvaSpme3MS+23SJqXqV8oaUNa51ZJKqe/ZmZWnnKPNH4I/DIizgU+AmwCFgIPRkQd8GCaB5gF1KXHAuB2AEnjKXzP+MUUvlt8UWfQpDYLMus1lNlfMzMrQ8mhIelU4JPAYoCIOBQRe4HZwNLUbClweZqeDSyLgjXAWElnATOBxojYHRF7gEagIS07NSIei4gAlmW2ZWZmFVDOkcY5QCvwfyU9JeknkkYDZ0bEDoD0PCG1nwhsy6zfkmq91VuK1M3MrELKCY1qYCpwe0R8DPg9fzgVVUyx6xFRQr37hqUFkpokNbW2tvbeazMzK1k5odECtETE2jR/H4UQ2ZlOLZGed2XaT86sPwnY3kd9UpF6NxFxR0TUR0R9TU1NGbtkZma9KTk0IuI1YJukD6TSdOA5YCXQeQfUPGBFml4JzE13UU0D9qXTV6uBGZLGpQvgM4DVadl+SdPSXVNzM9syM7MKqC5z/f8E/FTSCOAl4IsUguheSfOBrcCVqe0q4DKgGXg7tSUidku6AXgitbs+Inan6a8AdwEnAw+kh5mZVUhZoRERTwP1RRZNL9I2gKt72M4SYEmRehNwQTl9NDOzgeNPhJuZWW4ODTMzy82hYWZmuTk0zMwsN4eGmZnl5tAwM7PcHBpmZpabQ8PMzHJzaJiZWW4ODTMzy82hYWZmuTk0zMwsN4eGmZnl5tAwM7PcHBpmZpabQ8PMzHJzaJiZWW4ODTMzy63s0JBUJekpSf+U5qdIWitpi6R70veHI2lkmm9Oy2sz27g21V+QNDNTb0i1ZkkLy+2rmZmVZyCONL4KbMrM3wzcEhF1wB5gfqrPB/ZExPuBW1I7JJ0HzAHOBxqAH6UgqgJuA2YB5wFXpbZmZlYhZYWGpEnAp4GfpHkBlwL3pSZLgcvT9Ow0T1o+PbWfDSyPiIMR8TLQDFyUHs0R8VJEHAKWp7ZmZlYh5R5p/AD4OtCR5k8H9kZEW5pvASam6YnANoC0fF9qf6TeZZ2e6mZmViElh4akzwC7ImJdtlykafSxrL/1Yn1ZIKlJUlNra2svvTYzs3KUc6TxceCzkn5H4dTRpRSOPMZKqk5tJgHb03QLMBkgLT8N2J2td1mnp3o3EXFHRNRHRH1NTU0Zu2RmZr0pOTQi4tqImBQRtRQuZD8UEX8GPAxckZrNA1ak6ZVpnrT8oYiIVJ+T7q6aAtQBjwNPAHXpbqwR6TVWltpfMzMrX3XfTfrtG8BySd8CngIWp/pi4G5JzRSOMOYARMRGSfcCzwFtwNUR0Q4g6RpgNVAFLImIjYPQ36KefXUfNWNGcuapJx2tlzQzG/JU+GP/+FFfXx9NTU0lr1+78P4j0yOqhrH5xlkD0S0zsyFN0rqIqO+rnT8R3otD7R19NzIzO4E4NMzMLDeHhpmZ5ebQMDOz3BwaZmaWm0PDzMxyc2iYmVluDg0zM8vNoWFmZrk5NMzMLDeHhpmZ5ebQMDOz3BwaZmaWm0PDzMxyc2iYmVluDg0zM8vNoWFmZrk5NMzMLDeHhpmZ5VZyaEiaLOlhSZskbZT01VQfL6lR0pb0PC7VJelWSc2S1kuamtnWvNR+i6R5mfqFkjakdW6VpHJ21szMylPOkUYb8F8j4oPANOBqSecBC4EHI6IOeDDNA8wC6tJjAXA7FEIGWARcDFwELOoMmtRmQWa9hjL6a2ZmZSo5NCJiR0Q8mab3A5uAicBsYGlqthS4PE3PBpZFwRpgrKSzgJlAY0Tsjog9QCPQkJadGhGPRUQAyzLbGhSFlzEzs54MyDUNSbXAx4C1wJkRsQMKwQJMSM0mAtsyq7WkWm/1liL1QePMMDPrXdmhIekU4OfAX0XEm701LVKLEurF+rBAUpOkptbW1r663CNnhplZ78oKDUnDKQTGTyPiF6m8M51aIj3vSvUWYHJm9UnA9j7qk4rUu4mIOyKiPiLqa2pqSt4fn54yM+tdOXdPCVgMbIqI72cWrQQ674CaB6zI1Oemu6imAfvS6avVwAxJ49IF8BnA6rRsv6Rp6bXmZrY1KBwZZma9qy5j3Y8DXwA2SHo61f4auAm4V9J8YCtwZVq2CrgMaAbeBr4IEBG7Jd0APJHaXR8Ru9P0V4C7gJOBB9Jj0PhAw8ysdyWHRkT8luLXHQCmF2kfwNU9bGsJsKRIvQm4oNQ+9lf4WMPMrFf+RHiGjzTMzHrn0DAzs9wcGhk+0jAz651DI8PXNMzMeufQyPCRhplZ7xwaGc4MM7PeOTQy/IlwM7PeOTQyHBlmZr1zaGQUO9DYse8d9vz+0NHvjJnZEFTOPyNy/CkSGpd85yGqh4nmb1929PtjZjbE+Egjo6dbbts6fOLqWHKwrZ3/9v82sNtHiGYDzqGRMVjXwfe9fZi29o7B2bh184/P7OBv12zlO6s2VborZscdh0ZGb5lx4/3PcdejLwPww19v4RM3P0R7jiOQg23tfOT6X7Fo5cYB6qX1pfMuuHbfDWc24BwaGb3dcnvnb17mun98DoBbfr2Zlj3vsOS3L/e5zYNthSOMFU8X/f4oGwSFr1/Bt8OZDQJfCM/I8x5z37o/fG15y563+2zfkY5G/BmQwffmgcO0tXuczQaTjzQy8ryvf+3vnzkynef6+GG/iQ2K1RtfY+sb7w7tC29oZOoNjUe+5CXPyL91sI39Bw4PeP/MjlcOjYz+/oOFHTlS5nC6AP77Q+380/rtHGrzBfGB8OW71/HJv3mY1RtfO1LrDOhXdhfCJM/dUxcsWs2HrvsVHR3Bv7z4OhHBI5tb2fnmgcHpuNkxzqGR1c+Dgr97fGuvy5/b/iYv7Nx/ZP6av3uKH/x6c9G2u/Yf4OZfPp/r4vqJKiLYvHM/n/lfvzlS+/Ld6/jEzQ8dCWeAWx/cAsA/b27l7jWvsOvNAxw43E7zrrcA+MLitdQuvJ/v/vL5I+vcveYV/sOda1m9cSdzlzzO5257lG273+Yb963noed3sm1336cizU4EGurn2iU1AD8EqoCfRMRNvbWvr6+Ppqamfr9Oe0fwoetW8/ah9n6tt/F/zGT0yO6Xhjo6gnP+elW3+szzz+T/fKG+W/3PfrKGR5vf4M659UwYM5KPTB4LwNPb9jJM8OFJY/vVr2PR/gOHWbRiI4v+3fmcNmo4HR3BV+95mv/+6Q9y2qjhLP7ty3z3ly+UtO2Pv/90Hm1+gx//xwv5i79d12351LPH8uTWvZz7njE8/9r+IluAF799GVXDun/D8RtvHaStIzjz1JNK6pvZUCBpXUR0f3Pq2m4oh4akKmAz8CmgBXgCuCoinutpnVJD409/9ChPbt3b7/Uuqh3PPV+e9oc7doDnX3uThh/8pmj7C987jroJp7Bw1rnsfPMgZ5wygku/98/se+fd59V/8/U/YfL4UdQuvB+ATdc3MKJ6WNE3rYH26t532H/gMOe+51QOtrVz28MvMrJ6GJ+fOolTTqqmvSM47eTh3L9+B6efMoKLp4x/1/73Zdf+Azy/Yz+H2jr482VN/OnHJvKLp14dxD0aOCuu/jirNuzg3qZt3Pi5D/GXP33yyLLvfv7DTP/gBE4/ZWS/t/vsq/s4aXgVo0dWcdZpJ/fa9vW3DnLy8CqAon+wmJXieAmNS4DrImJmmr8WICK+09M6pYZG55tzOT4yeSytbx5g+77BOR8++6N/xCXnnM7M89/D2FHDkUREvOu5v9raO2hufYvqYcMYNaKKK3/8GK/ufWdA+/29Kz/C9xs3D/h2DWrGjOQbDecyfvRwvnRXExPGjOSWf/9R6mvHUT1sGG8famPMScP5lxdfZ9yoEfyrM8d0+8PjnUPtHO7o4NSThhMRvHO4nbaO4KTqKkZU+wz2ieJ4CY0rgIaI+PM0/wXg4oi4pqd1KhkalTBMxe/iOn30CE47eTgvvf77o98pO2FMHHsyVcPE1nTN5301o48s6/yxHNblj5qILrecRKHtMFH0D5/se1QpfxidSL79uQ9x0ZTxJa2bNzSG+rFtsZ+Qbm+RkhYACwDOPvvskl5o7iXvZdljrxRd9vmpk/j5k4XPZ5xzxmj+de14rr/8fObcsYanejilNbxKvH/CGA61tfPRyeP4bXMrO9882Gsf/uQDNTz8QmuPyzsD4qLa8Wx4dR8fnnQar7zxNkG8a9snDR/GpHEnF72u/4Ezx/DWwTb/1W9lGz2iio9OHsvBtnb2vXOYs8eP4uzxowq/tQHF7n0OAiHSfyksCg07ersJpLNxPxx5rRPI6JFVg/4aQ/1I46idnjIzO5HlPdIY6icsnwDqJE2RNAKYA6yscJ/MzE5YQ/r0VES0SboGWE3hltslEeF/+c/MrEKGdGgARMQqoPsHHszM7Kgb6qenzMxsCHFomJlZbg4NMzPLzaFhZma5OTTMzCy3If3hvlJIagWKf7S7b2cArw9gd44HHpPuPCbdeUy6O9bG5L0RUdNXo+MuNMohqSnPJyJPJB6T7jwm3XlMujtex8Snp8zMLDeHhpmZ5ebQeLc7Kt2BIchj0p3HpDuPSXfH5Zj4moaZmeXmIw0zM8vNoZFIapD0gqRmSQsr3Z/BJOl3kjZIelpSU6qNl9QoaUt6HpfqknRrGpf1kqZmtjMvtd8iaV6l9qdUkpZI2iXp2UxtwMZB0oVpnJvTukP+G4F6GJPrJL2afl6elnRZZtm1af9ekDQzUy/6+5S+5mBtGqt70lceDFmSJkt6WNImSRslfTXVT9yfk4g44R8U/tn1F4FzgBHAM8B5le7XIO7v74AzutS+CyxM0wuBm9P0ZcADFL47bRqwNtXHAy+l53Fpelyl962f4/BJYCrw7GCMA/A4cEla5wFgVqX3ucQxuQ74WpG256XflZHAlPQ7VNXb7xNwLzAnTf8Y+Eql97mP8TgLmJqmxwCb036fsD8nPtIouAhojoiXIuIQsByYXeE+HW2zgaVpeilweaa+LArWAGMlnQXMBBojYndE7AEagYaj3elyRMQjwO4u5QEZh7Ts1Ih4LArvDMsy2xqyehiTnswGlkfEwYh4GWim8LtU9Pcp/QV9KXBfWj87vkNSROyIiCfT9H5gEzCRE/jnxKFRMBHYlplvSbXjVQC/krQufb86wJkRsQMKvyjAhFTvaWyO1zEbqHGYmKa71o9V16TTLUs6T8XQ/zE5HdgbEW1d6scESbXAx4C1nMA/Jw6NgmLnEI/n28o+HhFTgVnA1ZI+2UvbnsbmRBuz/o7D8TQ+twPvAz4K7AC+l+onzJhIOgX4OfBXEfFmb02L1I6rMXFoFLQAkzPzk4DtFerLoIuI7el5F/APFE4n7EyHyqTnXal5T2NzvI7ZQI1DS5ruWj/mRMTOiGiPiA7gTgo/L9D/MXmdwuma6i71IU3ScAqB8dOI+EUqn7A/Jw6NgieAunRnxwhgDrCywn0aFJJGSxrTOQ3MAJ6lsL+dd3TMA1ak6ZXA3HRXyDRgXzocXw3MkDQuna6YkWrHugEZh7Rsv6Rp6Vz+3My2jimdb47J5yj8vEBhTOZIGilpClBH4aJu0d+ndM7+YeCKtH52fIek9P9uMbApIr6fWXTi/pxU+kr8UHlQuOthM4W7Pr5Z6f4M4n6eQ+FulmeAjZ37SuF884PAlvQ8PtUF3JbGZQNQn9nWlyhc/GwGvljpfSthLH5G4XTLYQp/8c0fyHEA6im8wb4I/G/Sh2mH8qOHMbk77fN6Cm+KZ2XafzPt3wtk7vrp6fcp/fw9nsbq74GRld7nPsbjExROF60Hnk6Py07knxN/ItzMzHLz6SkzM8vNoWFmZrk5NMzMLDeHhpmZ5ebQMDOz3BwaZmaWm0PDzMxyc2iYmVlu/x/yPNL4K5QQoQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# PSD for yes\n",
    "plt.plot(yes_psd[0], yes_psd[1])\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFghJREFUeJzt3X+M3PV95/Hnm7XNr+DYgJNQG2qnca6Y9JoQl7jNKToRBIaeaq6XqERVcXNE6CKQgnpVYpq7S64tSnJSkooe5codViDKlfhIUqwESh0goVUJsCQEMAa8OAQ2BmxiY8wPr7277/tjPl7PrmdnPrvYnvXu8yGt9jvv7+f7Yz47M6/9fj/fmYnMRJKkGsd0ewckSUcPQ0OSVM3QkCRVMzQkSdUMDUlSNUNDklTN0JAkVTM0JEnVDA1JUrVZ3d6BQ+3UU0/NxYsXd3s3JOmo8tBDD72UmQs6tZt2obF48WJ6e3u7vRuSdFSJiJ/XtPP0lCSpmqEhSapmaEiSqhkakqRqhoYkqZqhIUmqZmhIkqoZGh0MDSfrep9jaNivxZUkQ6OD//vAs3z61kf42r880+1dkaSuMzQ62L1nHwDbdw90eU8kqfsMjQ7m9DS6aN/QcJf3RJK6z9DoYLahIUkjDI0OZvUEYGhIEhgaHR0TjdBIL56SJENDklTP0JAkVTM0JEnVDI1KjmlIkqHRUXR7ByRpCjE0JEnVDA1JUjVDQ5JUzdCQJFUzNCRJ1QwNSVI1Q0OSVM3QqJT47j5JMjQ6CN/dJ0kjDA1JUjVDQ5JUrTo0IqInIn4SEd8tt5dExP0RsTkivhkRc0r92HK7r8xf3LSOq0v9yYi4oKm+stT6ImJNU73lNrrBDyyUpIkdaXwK2NR0+0vAVzNzKbATuKzULwN2Zua7gK+WdkTEMuAS4CxgJfA3JYh6gOuAC4FlwMdK23bbOGLCjyyUpBFVoRERi4DfBf5PuR3AucCtpclNwMVlelW5TZn/4dJ+FXBLZg5k5s+APuCc8tOXmVsycy9wC7CqwzYkSV1Qe6TxV8CngeFy+xTg5cwcLLf7gYVleiHwHECZv6u0H6mPWWa8erttSJK6oGNoRMS/A7Zl5kPN5RZNs8O8Q1VvtY+XR0RvRPRu3769VRNJ0iFQc6TxQeD3IuIZGqeOzqVx5DEvImaVNouArWW6HzgdoMx/K7CjuT5mmfHqL7XZxiiZeUNmLs/M5QsWLKi4S+399V2bWbzme6Sj35I0SsfQyMyrM3NRZi6mMZB9d2b+IXAP8JHSbDVwW5leX25T5t+djVff9cAl5eqqJcBS4AHgQWBpuVJqTtnG+rLMeNs4rL684akjsRlJOuq8mfdpfAb4k4joozH+cGOp3wicUup/AqwByMyNwDrgceAfgCsyc6iMWVwJ3Enj6qx1pW27bUiSumBW5yYHZOYPgB+U6S00rnwa22YP8NFxlr8GuKZF/Xbg9hb1ltuQJHWH7wiXJFUzNCo5JC5JhkZnviFckkYYGm14xa0kjWZoSJKqGRqVPOqQJEOjI4c0JOkAQ0OSVM3QkCRVMzTacBhDkkYzNCRJ1QwNSVI1Q0OSVM3QkCRVMzQqpcPikmRotJOZRPj2Pknaz9CQJFUzNCRJ1QwNSVI1Q6OW4+CSZGh04jC4JB1gaLThwYUkjWZoSJKqGRodeLQhSQcYGpKkaoZGBw6ES9IBhoYkqZqhIUmqZmi0kQl7Boca013eF0maCgyNDj77nccAeGHXni7viSR1n6FR6fW9g93eBUnqOkNDklTN0JAkVTM0KjkQLkkVoRERx0XEAxHx04jYGBH/vdSXRMT9EbE5Ir4ZEXNK/dhyu6/MX9y0rqtL/cmIuKCpvrLU+iJiTVO95TaOFL8XXJJGqznSGADOzczfBN4LrIyIFcCXgK9m5lJgJ3BZaX8ZsDMz3wV8tbQjIpYBlwBnASuBv4mInojoAa4DLgSWAR8rbWmzDUlSF3QMjWx4tdycXX4SOBe4tdRvAi4u06vKbcr8D0dElPotmTmQmT8D+oBzyk9fZm7JzL3ALcCqssx425AkdUHVmEY5IngY2AZsAJ4GXs7M/deh9gMLy/RC4DmAMn8XcEpzfcwy49VPabMNSVIXVIVGZg5l5nuBRTSODM5s1az8bvUZf3kI6weJiMsjojcierdv396qyZvmBxdK0gSvnsrMl4EfACuAeRExq8xaBGwt0/3A6QBl/luBHc31McuMV3+pzTbG7tcNmbk8M5cvWLBgIndJkjQBNVdPLYiIeWX6eOA8YBNwD/CR0mw1cFuZXl9uU+bfnZlZ6peUq6uWAEuBB4AHgaXlSqk5NAbL15dlxtvGEZFNxzVeRyVJMKtzE04DbipXOR0DrMvM70bE48AtEfGXwE+AG0v7G4GvR0QfjSOMSwAyc2NErAMeBwaBKzJzCCAirgTuBHqAtZm5sazrM+NsQ5LUBR1DIzMfAd7Xor6FxvjG2Poe4KPjrOsa4JoW9duB22u30Q3poYYk+Y5wSVI9Q0OSVM3QkCRVMzQkSdUMDUlSNUNDklTN0JAkVTM0JEnVDI1KfiGTJBkakqQJMDTa8KNDJGk0Q0OSVM3QqBR+DZMkGRq1HAiXJENDkjQBhoYkqZqh0cbA4FC3d0GSphRDo43B4QPjGF5+K0mGhiRpAgyNSh5pSJKh0dbeweFu74IkTSmGRhv9O98YmQ7f2ydJhoYkqZ6hIUmqZmi04SkpSRrN0GjDzJCk0QyNNpqPNLzkVpIMDUnSBBgakqRqhkYb806YMzLtoLgkGRptzek50D2OaUiSoVHNzJAkQ0OSNAGGhiSpWsfQiIjTI+KeiNgUERsj4lOlfnJEbIiIzeX3/FKPiLg2Ivoi4pGIOLtpXatL+80Rsbqp/v6IeLQsc21EY9h5vG1Ikrqj5khjEPjPmXkmsAK4IiKWAWuAuzJzKXBXuQ1wIbC0/FwOXA+NAAA+B3wAOAf4XFMIXF/a7l9uZamPt40jwsFvSRqtY2hk5vOZ+eMyvRvYBCwEVgE3lWY3AReX6VXAzdnwI2BeRJwGXABsyMwdmbkT2ACsLPPmZuZ9mZnAzWPW1WobR0Q6/C1Jo0xoTCMiFgPvA+4H3p6Zz0MjWIC3lWYLgeeaFusvtXb1/hZ12mxDktQF1aEREW8BvgVclZmvtGvaopaTqFeLiMsjojcierdv3z6RReu3cVjWKklHl6rQiIjZNALjG5n57VJ+sZxaovzeVur9wOlNiy8CtnaoL2pRb7eNUTLzhsxcnpnLFyxYUHOXqjimIUmj1Vw9FcCNwKbM/ErTrPXA/iugVgO3NdUvLVdRrQB2lVNLdwLnR8T8MgB+PnBnmbc7IlaUbV06Zl2ttnHEmR+SBLMq2nwQ+CPg0Yh4uNT+DPgisC4iLgOeBT5a5t0OXAT0Aa8DHwfIzB0R8RfAg6Xdn2fmjjL9SeBrwPHAHeWHNts4IgwKSRqtY2hk5j8z/in9D7don8AV46xrLbC2Rb0XeE+L+i9bbaMb0nNVkuQ7wttx8FuSRjM02vDYQpJGMzTa8JSUJI1maEiSqhkabXicIUmjGRqSpGqGhiSpmqHRhuPgkjSaoSFJqmZoSJKqGRqSpGqGRhtDww5qSFIzQ6ONHz7V8us7JGnGMjTaGPRIQ5JGMTTa8JJbSRrN0KhkgEiSodGWn3IrSaMZGpKkaoZGGx5oSNJohkYbZoYkjWZotPHqwODIdPiF4ZJkaLRzw71bRqaHPVclSYaGJKmeoSFJqmZojPH09le7vQuSNGUZGmO8uGtPy7pDGpJkaEiSJsDQGOOVPYOdG0nSDGVojHHLg892exckacoyNCr55j5JMjSqORAuSYaGJGkCDI0xnv3l693eBUmasgyNMba89Fq3d0GSpqyOoRERayNiW0Q81lQ7OSI2RMTm8nt+qUdEXBsRfRHxSESc3bTM6tJ+c0Ssbqq/PyIeLctcG9EYch5vG93ikIYk1R1pfA1YOaa2BrgrM5cCd5XbABcCS8vP5cD10AgA4HPAB4BzgM81hcD1pe3+5VZ22EZX+NWvklQRGpl5L7BjTHkVcFOZvgm4uKl+czb8CJgXEacBFwAbMnNHZu4ENgAry7y5mXlfNl6Vbx6zrlbb6IrwmltJmvSYxtsz83mA8vttpb4QeK6pXX+ptav3t6i324YkqUsO9UB4q3/HcxL1iW004vKI6I2I3u3bt0908SqenpKkyYfGi+XUEuX3tlLvB05varcI2NqhvqhFvd02DpKZN2Tm8sxcvmDBgkneJUlSJ5MNjfXA/iugVgO3NdUvLVdRrQB2lVNLdwLnR8T8MgB+PnBnmbc7IlaUq6YuHbOuVtvoCsc0JAlmdWoQEX8H/Fvg1Ijop3EV1BeBdRFxGfAs8NHS/HbgIqAPeB34OEBm7oiIvwAeLO3+PDP3D65/ksYVWscDd5Qf2myjKzw9JUkVoZGZHxtn1odbtE3ginHWsxZY26LeC7ynRf2XrbYhSeoe3xFeyeMMSTI06pkakmRo1DrpuI5n8iRp2jM0ann1lCQZGrWMDEkyNKo5pCFJhkY936chSYZGNcc0JMnQkCTVMzRqeXpKkgwNSVI9Q0OSVM3QkCRVMzQkSdUMDUlSNUOjktdOSZKhIUmaAEOjku8HlyRDo9r23QMA9G3bzdaX3+jy3khSdxgalbbu2gPAeV+5l9/54t0Hzb/v6V/y6//1Dna9vu9I75okHTGGxiFy/Q+fZs++YX787M5u74okHTaGxiFy/OxGV76xb6jLeyJJh4+hcYiEQ+WSZgBD4xDx6zYkzQSGxiTt2TfEu/7sdr77yNZRdT9BXdJ0ZmhM0j9vfonB4eTqbz0KHDjSSN87LmkaMzQm6RM39wKwe2AQcExD0sxgaEiSqs3q9g5MFQODQ/zTUy9NfgX7T095dkrSNGZoFP/t7zfyzd7n2rZ57Be7Oq7HzJA0nXl6qugUGAB9214dd97AvmEAhoeNDUnTl6ExAQODrd/tnZl8f9OLAAyW0HjihVfY9YafQyVpejE0JuAz5fLasdY1HaUMDTeOOFb+1T/xB3973xHZL0k6UgyNQ+Bvf7hlZHqw6fTUEy/s7sbuSNJhM+VDIyJWRsSTEdEXEWu6vT+tbHnptZHp1wYG+a1rvt/FvZGkw2dKh0ZE9ADXARcCy4CPRcSy7u5Ve1+444mRL2xqZXBomM0v7mZgcIjBoeHq9e7es4/0el5JXTbVL7k9B+jLzC0AEXELsAp4vKt71cbY1/Xv/KSfT9/6CF/6D/+a+SfO4T99/SEGBkeHxVXnLeWq897No/27GM7kN0+fx/BwsndomONm9/D9x1/kEzf3sviUE/iHqz7Edff0sey0uVz4G6cxPJy8vm+Itxx76P+UX/7HJ/nru/v40/PfzR9/cAk//vlOzllyMsfN7uGxX+xids8x/Kt3nNRxPZlJjPlEx8xkOKHnmBi3TSeDQ8PM6pnS//dI005M5f9eI+IjwMrM/ES5/UfABzLzyvGWWb58efb29k54W4vXfG/S+3movXPBifTvfIO9g8O8Y+5xvPDKno7L/NqCE0feIxIw4RfgzCQThjLZ8erekY9H6WTJqSc2thkHtj2cMDg8zJ59w7w2MMjxs3t4dWCQBOYeN4vjZvfQv7PxlbknnziHHa/tHVnf4lNOGAmTiEYIZ+aBcCnttmw/cErwjJNPYM6swxMeR+L50elv1WkfImKkzUT/7ppe1q7+Lc445YRJLRsRD2Xm8k7tpvqRRqtnwEHPoIi4HLgc4IwzzpjUhubMOoa9TUcAf/w7i/n8753F0HByTMAN927hC3c8wRd//zdY8+0DV1H94QfO4Bv3P3vQ+v7L757JX35v04T348zT5vLOBSfy7redxPc3vcjsWa1fBJb/6nx6f37gWwJ//R1zD/TWJF/n9r/ePPjMjrahccbJJ/DsjtcBOOtX5pI0Np1l2xEwu+cYjpvdw8C+IV5+Yx/bdw/wxAuvcNavvJWTjps1EhrvO30em55/ha279nDemW/n+Dk9Iy+A+9d7TARDmQcKwKlvOZYHfraDE+b08J6Fc4/MZ38djk3U/q3G23Y2PiQzInxnqQ7bP0/NpvqRxm8Dn8/MC8rtqwEy8wvjLTPZIw1JmslqjzSm+gnhB4GlEbEkIuYAlwDru7xPkjRjTenTU5k5GBFXAncCPcDazNzY5d2SpBlrSocGQGbeDtze7f2QJE3901OSpCnE0JAkVTM0JEnVDA1JUjVDQ5JUbUq/uW8yImI78PNJLn4q8Ca+KHxask8OZp8czD452NHWJ7+amQs6NZp2ofFmRERvzTsiZxL75GD2ycHsk4NN1z7x9JQkqZqhIUmqZmiMdkO3d2AKsk8OZp8czD452LTsE8c0JEnVPNKQJFUzNIqIWBkRT0ZEX0Ss6fb+HE4R8UxEPBoRD0dEb6mdHBEbImJz+T2/1CMiri398khEnN20ntWl/eaIWN2t+zNZEbE2IrZFxGNNtUPWDxHx/tLPfWXZKf21euP0x+cj4hflsfJwRFzUNO/qct+ejIgLmuotn0vlKw7uL/30zfJ1B1NaRJweEfdExKaI2BgRnyr1Gfs4KV/zObN/aHzs+tPAO4E5wE+BZd3er8N4f58BTh1T+x/AmjK9BvhSmb4IuIPGd8etAO4v9ZOBLeX3/DI9v9v3bYL98CHgbOCxw9EPwAPAb5dl7gAu7PZ9nkR/fB740xZtl5XnybHAkvL86Wn3XALWAZeU6f8FfLLb97miT04Dzi7TJwFPlfs+Yx8nHmk0nAP0ZeaWzNwL3AKs6vI+HWmrgJvK9E3AxU31m7PhR8C8iDgNuADYkJk7MnMnsAFYeaR3+s3IzHuBHWPKh6Qfyry5mXlfNl4Zbm5a15Q0Tn+MZxVwS2YOZObPgD4az6OWz6Xy3/O5wK1l+ea+nbIy8/nM/HGZ3g1sAhYygx8nhkbDQuC5ptv9pTZdJfCPEfFQ+X51gLdn5vPQeKIAbyv18fpmuvbZoeqHhWV6bP1odGU51bJ2/2kYJt4fpwAvZ+bgmPpRIyIWA+8D7mcGP04MjYZW5xCn82VlH8zMs4ELgSsi4kNt2o7XNzOtzybaD9Olf64Hfg14L/A88OVSn1H9ERFvAb4FXJWZr7Rr2qI2rfrF0GjoB05vur0I2NqlfTnsMnNr+b0N+A6NUwovlkNlyu9tpfl4fTNd++xQ9UN/mR5bP6pk5ouZOZSZw8D/pvFYgYn3x0s0TtXMGlOf8iJiNo3A+EZmfruUZ+zjxNBoeBBYWq7umANcAqzv8j4dFhFxYkSctH8aOB94jMb93X9Fx2rgtjK9Hri0XBWyAthVDsfvBM6PiPnllMX5pXa0OyT9UObtjogV5Xz+pU3rOmrsf2Es/j2Nxwo0+uOSiDg2IpYAS2kM6LZ8LpXz9fcAHynLN/ftlFX+djcCmzLzK02zZu7jpNsj8VPlh8ZVD0/RuPLjs93en8N4P99J44qWnwIb999XGuec7wI2l98nl3oA15V+eRRY3rSu/0hjALQP+Hi379sk+uLvaJxy2UfjP77LDmU/AMtpvMg+DfxPyptpp+rPOP3x9XJ/H6HxgnhaU/vPlvv2JE1X/Iz3XCqPvQdKP/0/4Nhu3+eKPvk3NE4XPQI8XH4umsmPE98RLkmq5ukpSVI1Q0OSVM3QkCRVMzQkSdUMDUlSNUNDklTN0JAkVTM0JEnV/j+qO8zU8hwGYwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# PSD for no\n",
    "plt.plot(no_psd[0], no_psd[1])\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can see that the signal for \"no\" does not contain as much high-frequency as the signal for \"yes\". We will try to create a classifier based on this feature."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Developing a Feature\n",
    "We will now develop a feature based on the observation above. Given a signal, a feature is a number we can compute whose value is significantly different based on whether a recording is a \"yes\" or a \"no\". We will then use such a feature to classify our recordings.\n",
    "\n",
    "One possibility is to add up the PSD for low frequencies, and divide it by the PSD for high frequencies. Then a recording of the word \"no\" should have a higher value than a recording of the word \"yes\". This feature is not sensitive to the length of the recording, and neither is it affected by different volume leves since it is a ratio.\n",
    "\n",
    "The easiest way to do this is to choose a hard cutoff between what we regard as high vs low frequency. Then to compute our feature, we just add up the PSD for all frequencies below/above the cutoff, and take their ratio. Looking at the plots above, we can try placing the line between low and high frequency at 5000 Hz.\n",
    "\n",
    "Write a function `get_feature` which accepts the PSD of a signal, and returns the feature."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_feature(psd):\n",
    "    lo = 0\n",
    "    hi = 0\n",
    "    for i in range(len(psd[0])):\n",
    "        if psd[0][i] <= 5000:\n",
    "            lo += psd[1][i]\n",
    "        else:\n",
    "            hi += psd[1][i]\n",
    "    return hi/lo"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we need to try our function on some known recordings, to find a threshold value for the feature which distinguishes \"yes\" from \"no\". In `data/yes` and `data/no` are different recordings of the words yes and no: these recordings are our training data. The paths of these files are tored in the csv `data/scipy_training_files.csv`.\n",
    "\n",
    "Use numpy to obtain two lists, `yes_paths` and `no_paths`, from the file `scipy_training_files.csv`. The lists should contain the file paths of the training data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "paths = np.genfromtxt(\"data/scipy_training_files.csv\", dtype=np.str, delimiter=\",\")\n",
    "yes_paths = paths[0]\n",
    "no_paths = paths[1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we need to choose a threshold value, below which the feature indicates a \"yes\" and above which it indicates a \"no\". We will decide a threshold value by eye in this exercise.\n",
    "\n",
    "You should write code to:\n",
    "- Read in all of the files with filepaths given in `yes_paths`\n",
    "- Compute the feature value for each recording\n",
    "- Repeat the above for the `no_paths` folder"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_feats = []\n",
    "for s in yes_paths:\n",
    "    sound = to_mono(wavfile.read(s))\n",
    "    psd = signal.periodogram(sound[1], fs=sound[0])\n",
    "    feat = get_feature(psd)\n",
    "    y_feats.append(feat)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "n_feats = []\n",
    "for s in no_paths:\n",
    "    sound = to_mono(wavfile.read(s))\n",
    "    psd = signal.periodogram(sound[1], fs=sound[0])\n",
    "    feat = get_feature(psd)\n",
    "    n_feats.append(feat)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now use `plt` to produce an overlaid plot of two histograms - one counting the feature values for \"yes\" recordings, the other counting the feature values for \"no\" recordings. To make things easier to interpret, you should use the same bins for each histogram - at first, set the bins to be of size 0.01 on the range from 0 to 3. Passing a list of the endpoints of the bins to `plt.hist` will control the size of the bins used.\n",
    "\n",
    "Your plot should have a legend, and will be easier to read if you set the parameter `alpha=0.5` in each call to `plt.hist` (this makes the plots appear slightly transparent)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEJ9JREFUeJzt3X+Q1PV9x/HXCzg4f9aKO9Z6tIdM64wFo/SGMf6aJBAVW/WP+gMxUKOZm6kaMdrpJHUmSP3DYdSYUp0y14C1LRWpQsc6waqjTsaREE9QxCCOsZFctHW5jD9AiSLv/rELwWP39nPHfm/vQ56PmR12bz+39/rwhdd973Pf734dEQIA5GNMqwMAAIaG4gaAzFDcAJAZihsAMkNxA0BmKG4AyAzFDQCZobgBIDMUNwBkZlwRL3rcccdFZ2dnES8NAIekF198cXtElFLGFlLcnZ2d6u3tLeKlAeCQZPut1LEslQBAZihuAMgMxQ0AmSlkjRsAmuXTTz9VX1+fdu3a1eooTdHe3q6Ojg61tbUN+zUobgCjWl9fn4466ih1dnbKdqvjHJSIUH9/v/r6+jR58uRhv07SUontb9l+1fZm2w/abh/2VwSAIdi1a5cmTpyYfWlLkm1NnDjxoH96aFjctk+UdKOkroiYKmmspDkH9VUBYAgOhdLeqxlzSf3l5DhJh9keJ+lwSW8f9FcGAAxLwzXuiPil7bskbZP0saQnIuKJwpMBQA33PPl6U1/vW1/940Gfjwidc845uvXWWzV79mxJ0qpVq7R8+XI9/vjjTc2SKmWp5HclXSJpsqTfl3SE7a/VGNdtu9d2b7lcHn6iZ+4Y/ucCQJPZ1tKlS3XzzTdr165d2rlzp2699Vbdd999LcuUslQyS9L/REQ5Ij6VtFrSmQMHRURPRHRFRFeplHS6PQBkYerUqbrooou0ePFiLVq0SPPnz9eUKVP0wAMPaMaMGTrttNN03XXXac+ePdq9e7fmzZunadOmaerUqVqyZEnT86QcDrhN0hm2D1dlqWSmJN6IBMBvlYULF2r69OkaP368ent7tXnzZq1Zs0bPP/+8xo0bp+7ubq1cuVJTpkzR9u3b9corr0iS3nvvvaZnSVnjXm/7YUkbJO2WtFFST9OTAMAodsQRR+iKK67QkUceqQkTJuipp57SCy+8oK6uLknSxx9/rEmTJun888/X1q1btWDBAl144YU677zzmp4l6QSciFgoaWHTvzoAZGTMmDEaM6aywhwRuuaaa3T77bcfMG7Tpk1au3atlixZokceeUQ9Pc3d1+W9SgBgGGbNmqVVq1Zp+/btkqT+/n5t27ZN5XJZEaHLLrtMixYt0oYNG5r+tTnlHUBWGh2+N1KmTZumhQsXatasWdqzZ4/a2tq0dOlSjR07Vtdee60iQra1ePHipn9tihsAEt12222fezx37lzNnTv3gHEbN24sNAdLJQCQGYobADJDcQNAZihuAMgMxQ0AmaG4ASAzHA4IIC/NfgfRL3+n4RDbuvnmm3X33XdLku666y7t2LHjgMMDRwp73ADQwIQJE7R69ep9Z0m2GsUNAA3sffe/e+6554Dn3nrrLc2cOVOnnnqqZs6cqW3bthWeh+IGgATXX3+9VqxYoffff/9zH7/hhhs0f/58bdq0SVdddZVuvPHGwrNQ3ACQ4Oijj9b8+fMPuDDCunXr9p32Pm/ePD333HOFZ6G4ASDRTTfdpGXLlmnnzp11x4zEFekpbgBIdOyxx+ryyy/XsmXL9n3szDPP1MqVKyVJK1as0Nlnn114Dg4HBJCXhMP3inTLLbfo3nvv3fd4yZIluuaaa3TnnXeqVCrp/vvvLzxDw+K2fbKkh/b70EmSvhsR3y8sFQCMIjt27Nh3//jjj9dHH32073FnZ6eefvrpEc2Tcs3JrZJOkyTbYyX9UtKagnMBAOoY6hr3TEk/i4i3iggDAGhsqMU9R9KDRQQBgHoiotURmqYZc0kubtvjJV0s6T/qPN9tu9d2b7lcPuhgACBJ7e3t6u/vPyTKOyLU39+v9vb2g3qdoRxVMlvShoj4vzqBeiT1SFJXV1f+f8MARoWOjg719fXpUNkhbG9vV0dHx0G9xlCK+0qxTAJghLW1tWny5MmtjjGqJC2V2D5c0lclrS42DgCgkaQ97oj4SNLEgrMAABJwyjsAZIbiBoDMUNwAkBmKGwAyQ3EDQGYobgDIDMUNAJmhuAEgMxQ3AGSG4gaAzFDcAJAZihsAMkNxA0BmKG4AyAzFDQCZobgBIDMUNwBkJvXSZcfYftj2a7a32P5i0cEAALWlXiz47yU9HhGX2h4v6fACMwEABtGwuG0fLelcSVdLUkR8IumTYmMBAOpJWSo5SVJZ0v22N9r+ge0jBg6y3W2713ZvuVxuelAAQEVKcY+TNF3SP0bE6ZJ2Svr2wEER0RMRXRHRVSqVmhwTALBXSnH3SeqLiPXVxw+rUuQAgBZoWNwR8b+SfmH75OqHZkr6aaGpAAB1pR5V8k1JK6pHlLwp6evFRQIADCapuCPiJUldBWcBACTgzEkAyAzFDQCZobgBIDMUNwBkhuIGgMxQ3ACQGYobADJDcQNAZihuAMgMxQ0AmaG4ASAzFDcAZIbiBoDMUNwAkBmKGwAyQ3EDQGYobgDITNIVcGz/XNKHkj6TtDsiuBoOALRI6jUnJenLEbG9sCQAgCQslQBAZlKLOyQ9YftF2921Btjutt1ru7dcLjcvIQDgc1KL+6yImC5ptqTrbZ87cEBE9EREV0R0lUqlpoYEAPxGUnFHxNvVP9+VtEbSjCJDAQDqa1jcto+wfdTe+5LOk7S56GAAgNpSjio5XtIa23vH/3tEPF5oKgBAXQ2LOyLelPSFEcgCAEjA4YAAkBmKGwAyQ3EDQGYobgDIDMUNAJmhuAEgMxQ3AGSG4gaAzFDcAJAZihsAMkNxA0BmKG4AyAzFDQCZobgBIDMUNwBkhuIGgMxQ3ACQmeTitj3W9kbbjxUZCAAwuKHscS+QtKWoIACANEnFbbtD0p9J+kGxcQAAjaTucX9f0t9I2lNvgO1u2722e8vlclPCAQAO1LC4bf+5pHcj4sXBxkVET0R0RURXqVRqWkAAwOel7HGfJeli2z+XtFLSV2z/W6GpAAB1NSzuiPhORHRERKekOZKejoivFZ4MAFATx3EDQGbGDWVwRDwr6dlCkgAAkrDHDQCZobgBIDMUNwBkhuIGgMxQ3ACQGYobADJDcQNAZihuAMgMxQ0AmaG4ASAzFDcAZIbiBoDMUNwAkBmKGwAyQ3EDQGYobgDITMrFgttt/8T2y7Zftb1oJIIBAGpLuQLOryV9JSJ22G6T9JzttRHx44KzAQBqaFjcERGSdlQftlVvUWQoAEB9SWvctsfafknSu5KejIj1xcYCANSTVNwR8VlEnCapQ9IM21MHjrHdbbvXdm+5XG52TgBA1ZCOKomI91S5yvsFNZ7riYiuiOgqlUpNigcAGCjlqJKS7WOq9w+TNEvSa0UHAwDUlnJUyQmSHrA9VpWiXxURjxUbCwBQT8pRJZsknT4CWQAACThzEgAyQ3EDQGYobgDIDMUNAJmhuAEgMxQ3AGSG4gaAzFDcAJAZihsAMkNxA0BmKG4AyAzFDQCZobgBIDMUNwBkhuIGgMxQ3ACQGYobADKTcs3JSbafsb3F9qu2F4xEMABAbSnXnNwt6ZaI2GD7KEkv2n4yIn5acDYAQA0N97gj4p2I2FC9/6GkLZJOLDoYAKC2Ia1x2+5U5cLB64sIAwBoLLm4bR8p6RFJN0XEBzWe77bda7u3XC4PO9C6N/uH/bkA8Nsgqbhtt6lS2isiYnWtMRHRExFdEdFVKpWamREAsJ+Uo0osaZmkLRHxveIjAQAGk7LHfZakeZK+Yvul6u3CgnMBAOpoeDhgRDwnySOQBQCQgDMnASAzFDcAZIbiBoDMUNwAkBmKGwAyQ3EDQGYobgDIDMUNAJmhuAEgMxQ3AGSG4gaAzFDcAJAZihsAMkNxA0BmKG4AyAzFDQCZobgBIDMp15xcbvtd25tHIhAAYHApe9z/LOmCgnMAABI1LO6I+JGkX41AFgBAAta4ASAzTStu2922e233lsvlg3uxZ+6QnrlD65b9tSTpnidf33erZ7Dnao1LHd8Kozkb0Er836hoWnFHRE9EdEVEV6lUatbLAgAGYKkEADKTcjjgg5LWSTrZdp/ta4uPBQCoZ1yjARFx5UgEAQCkYakEADJDcQNAZihuAMgMxQ0AmaG4ASAzFDcAZIbiBoDMUNwAkBmKGwAyQ3EDQGYobgDIDMUNAJmhuAEgMxQ3AGSG4gaAzFDcAJAZihsAMpNU3LYvsL3V9hu2v110KABAfSnXnBwr6T5JsyWdIulK26cUHQwAUFvKHvcMSW9ExJsR8YmklZIuKTYWAKCelOI+UdIv9nvcV/0YAKAFHBGDD7Avk3R+RHyj+niepBkR8c0B47oldVcfnixp6zAzHSdp+zA/d7RhLqPPoTIPibmMVsOdyx9GRCll4LiEMX2SJu33uEPS2wMHRUSPpJ6keIOw3RsRXQf7OqMBcxl9DpV5SMxltBqJuaQslbwg6Y9sT7Y9XtIcSY8WGQoAUF/DPe6I2G37Bkn/LWmspOUR8WrhyQAANaUslSgifijphwVn2eugl1tGEeYy+hwq85CYy2hV+Fwa/nISADC6cMo7AGSmZcXd6DR62xNsP1R9fr3tzpFP2VjCPK62Xbb9UvX2jVbkTGF7ue13bW+u87xtL6nOdZPt6SOdMVXCXL5k+/39tst3RzpjCtuTbD9je4vtV20vqDEmi+2SOJdctku77Z/Yfrk6l0U1xhTXYREx4jdVfsn5M0knSRov6WVJpwwYc52kpdX7cyQ91IqsTZjH1ZLubXXWxPmcK2m6pM11nr9Q0lpJlnSGpPWtznwQc/mSpMdanTNhHidIml69f5Sk12v8G8tiuyTOJZftYklHVu+3SVov6YwBYwrrsFbtcaecRn+JpAeq9x+WNNO2RzBjikPq7QAi4keSfjXIkEsk/UtU/FjSMbZPGJl0Q5MwlyxExDsRsaF6/0NJW3TgmctZbJfEuWSh+ne9o/qwrXob+AvDwjqsVcWdchr9vjERsVvS+5Imjki6dKlvB/AX1R9hH7Y9qcbzuTjU3v7gi9Ufddfa/pNWh2mk+qP26ars3e0vu+0yyFykTLaL7bG2X5L0rqQnI6Ludml2h7WquGt91xn43SplTKulZPwvSZ0Rcaqkp/Sb78A5ymGbpNqgyinGX5D0D5L+s8V5BmX7SEmPSLopIj4Y+HSNTxm126XBXLLZLhHxWUScpsrZ5DNsTx0wpLDt0qriTjmNft8Y2+Mk/Y5G34++DecREf0R8evqw3+S9KcjlK0ISW9/kIOI+GDvj7pROU+hzfZxLY5Vk+02VYpuRUSsrjEkm+3SaC45bZe9IuI9Sc9KumDAU4V1WKuKO+U0+kcl/WX1/qWSno7qKv8o0nAeA9YaL1ZlXS9Xj0qaXz2K4QxJ70fEO60ONRy2f2/veqPtGar8X+hvbaoDVTMuk7QlIr5XZ1gW2yVlLhltl5LtY6r3D5M0S9JrA4YV1mFJZ042W9Q5jd7230nqjYhHVdnA/2r7DVW+S81pRdbBJM7jRtsXS9qtyjyublngBmw/qMpv9Y+z3SdpoSq/dFFELFXl7NkLJb0h6SNJX29N0sYS5nKppL+yvVvSx5LmjMIdA0k6S9I8Sa9U11Ml6W8l/YGU3XZJmUsu2+UESQ+4cqGZMZJWRcRjI9VhnDkJAJnhzEkAyAzFDQCZobgBIDMUNwBkhuIGgMxQ3ACQGYobADJDcQNAZv4fsRx8DJs4LQ8AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "bins = np.arange(0, 3, 0.01)\n",
    "plt.hist(y_feats, bins, alpha=0.5, label=\"Yes\")\n",
    "plt.hist(n_feats, bins, alpha = 0.5, label=\"No\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As we can see, there are some \"Yes\" outliers at the upper end of the scale, making it difficult to see what's happening at the low end. We can copy the above code and change the range of our binning to restrict the plot to the low end of the scale."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEERJREFUeJzt3X+QXWV9x/H3Nz9XINQa7jCOm7gho3RsoEi3GcUfMzERBCt2pkQRTWrB2WkBAWGm1UmnMeUPh4LFZnCabg2Ujqkx8mOGOkKFAuMwIrIEDCBilUJcbWWzDmiAKCHf/rGXGMJu7tnNPffm2bxfMzvcHw/nfp7cnU9OnnvOPZGZSJLKMaPbASRJk2NxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgozq46NHnPMMdnX11fHpiVpWnrggQd2ZGajythairuvr4+hoaE6Ni1J01JEPFV1rEslklQYi1uSCmNxS1JhalnjlqR2efHFFxkeHmbXrl3djtIWPT099Pb2Mnv27Clvw+KWdEgbHh5m3rx59PX1ERHdjnNQMpPR0VGGh4dZtGjRlLdTaakkIj4VEY9GxCMR8ZWI6JnyK0rSJOzatYv58+cXX9oAEcH8+fMP+l8PLYs7It4AXAT0Z+YSYCZw9kG9qiRNwnQo7Ze1Yy5VP5ycBbwmImYBRwA/O+hXliRNScs17sz8aURcBWwHXgC+mZnfrD2ZJI3j6tt/2Nbtfeq9bz7g85nJu971LtasWcPpp58OwJYtW7j22mu57bbb2pqlqpbFHRG/C3wQWAQ8A3wtIj6WmV/eb9wAMACwcOHCqSe663PjP77sM1PfpiRNUUSwYcMGVq5cybJly3jppZdYs2ZN10obqi2VrAD+JzNHMvNF4CbglP0HZeZgZvZnZn+jUel0e0kqwpIlS/jABz7AFVdcwbp161i9ejWLFy/m+uuvZ+nSpZx00kmcf/757Nmzh927d7Nq1SpOOOEElixZwvr169uep8rhgNuBt0XEEYwtlSwH/CISSYeVtWvXcvLJJzNnzhyGhoZ45JFHuPnmm/n2t7/NrFmzGBgYYPPmzSxevJgdO3bw8MMPA/DMM8+0PUuVNe77IuIGYCuwG3gQGGx7Ekk6hB155JF8+MMf5qijjmLu3Lnccccd3H///fT39wPwwgsvsGDBAk477TQef/xxLr74Ys444wxOPfXUtmepdAJOZq4F1rb91SWpIDNmzGDGjLEV5szk3HPP5fLLL3/VuG3btnHrrbeyfv16brzxRgYH27uv63eVSNIUrFixgi1btrBjxw4ARkdH2b59OyMjI2QmK1euZN26dWzdurXtr+0p75KK0urwvU454YQTWLt2LStWrGDPnj3Mnj2bDRs2MHPmTM477zwyk4jgiiuuaPtrW9ySVNFnP/vZV9w/55xzOOecc1417sEHH6w1h0slklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAeDiipLBN9g+hUVfjm0Yjg0ksv5fOf/zwAV111FTt37nzV4YGd4h63JLUwd+5cbrrppr1nSXabxS1JLbz87X9XX331q5576qmnWL58OSeeeCLLly9n+/btteexuCWpggsuuIBNmzbx7LPPvuLxCy+8kNWrV7Nt2zY++tGPctFFF9WexeKWpAqOPvpoVq9e/aoLI9x77717T3tftWoV99xzT+1ZLG5JquiSSy5h48aNPPfccxOO6cQV6S1uSaroda97HR/60IfYuHHj3sdOOeUUNm/eDMCmTZt45zvfWXsODweUVJYuXzj8sssu45prrtl7f/369Zx77rlceeWVNBoNrrvuutozVLnK+/HAV/d56DjgbzPzC7WlkqRDyM6dO/fePvbYY3n++ef33u/r6+POO+/saJ4q15x8HDgJICJmAj8Fbq45lyRpApNd414O/Dgzn6ojjCSptckW99nAV+oIIkkTycxuR2ibdsylcnFHxBzgTOBrEzw/EBFDETE0MjJy0MEkCaCnp4fR0dFpUd6ZyejoKD09PQe1nckcVXI6sDUzfz5BoEFgEKC/v7/8P2FJh4Te3l6Gh4eZLjuEPT099Pb2HtQ2JlPcH8FlEkkdNnv2bBYtWtTtGIeUSkslEXEE8F7gpnrjSJJaqbTHnZnPA/NrziJJqsBT3iWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwVS9d9tqIuCEifhARj0XE2+sOJkkaX9WLBf8jcFtmnhURc4AjaswkSTqAlsUdEUcD7wY+DpCZvwF+U28sSdJEqiyVHAeMANdFxIMR8aWIOHL/QRExEBFDETE0MjLS9qCSpDFVinsWcDLwT5n5VuA54NP7D8rMwczsz8z+RqPR5piSpJdVKe5hYDgz72vev4GxIpckdUHL4s7M/wN+EhHHNx9aDny/1lSSpAlVParkk8Cm5hElTwB/Xl8kSdKBVCruzHwI6K85iySpAs+clKTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJUugJORDwJ/Ap4CdidmV4NR5K6pOo1JwGWZeaO2pJIkipxqUSSClO1uBP4ZkQ8EBED4w2IiIGIGIqIoZGRkfYllCS9QtXifkdmngycDlwQEe/ef0BmDmZmf2b2NxqNtoaUJP1WpeLOzJ81//s0cDOwtM5QkqSJtSzuiDgyIua9fBs4FXik7mCSpPFVOarkWODmiHh5/L9n5m21ppIkTahlcWfmE8AfdCCLJKkCDweUpMJY3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwlQu7oiYGREPRsTX6wwkSTqwyexxXww8VlcQSVI1lYo7InqB9wNfqjeOJKmVqnvcXwD+Ctgz0YCIGIiIoYgYGhkZaUs4SdKrtSzuiPhj4OnMfOBA4zJzMDP7M7O/0Wi0LaAk6ZWq7HG/AzgzIp4ENgPviYgv15pKkjShlsWdmZ/JzN7M7APOBu7MzI/VnkySNC6P45akwsyazODMvBu4u5YkkqRK3OOWpMJY3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBWmysWCeyLiuxHxvYh4NCLWdSKYJGl8Va6A82vgPZm5MyJmA/dExK2Z+Z2as0mSxtGyuDMzgZ3Nu7ObP1lnKEnSxCqtcUfEzIh4CHgauD0z76s3liRpIpWKOzNfysyTgF5gaUQs2X9MRAxExFBEDI2MjLQ7pySpaVJHlWTmM4xd5f194zw3mJn9mdnfaDTaFE+StL8qR5U0IuK1zduvAVYAP6g7mCRpfFWOKnk9cH1EzGSs6Ldk5tfrjSVJmkiVo0q2AW/tQBZJUgWeOSlJhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFqXLNyQURcVdEPBYRj0bExZ0IJkkaX5VrTu4GLsvMrRExD3ggIm7PzO/XnE2SNI6We9yZ+b+ZubV5+1fAY8Ab6g4mSRrfpNa4I6KPsQsH31dHGElSa1WWSgCIiKOAG4FLMvOX4zw/AAwALFy4cMqB7n1idNzH375sypuUpGml0h53RMxmrLQ3ZeZN443JzMHM7M/M/kaj0c6MkqR9VDmqJICNwGOZ+Q/1R5IkHUiVPe53AKuA90TEQ82fM2rOJUmaQMs17sy8B4gOZJEkVeCZk5JUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklSYKtecvDYino6IRzoRSJJ0YFX2uP8VeF/NOSRJFbUs7sz8FvCLDmSRJFXgGrckFablVd6riogBYABg4cKF7drsb931uUkNv/eJ0Qmfe/t5V437+NW3/3BSrzGRT733zW3ZTrtNNL9DNW+7THbeB/o9mO5/VipD2/a4M3MwM/szs7/RaLRrs5Kk/bhUIkmFqXI44FeAe4HjI2I4Is6rP5YkaSIt17gz8yOdCCJJqsalEkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgpjcUtSYSxuSSpMpeKOiPdFxOMR8aOI+HTdoSRJE6tyzcmZwBeB04G3AB+JiLfUHUySNL4qe9xLgR9l5hOZ+RtgM/DBemNJkiZSpbjfAPxkn/vDzcckSV0QmXngARErgdMy8xPN+6uApZn5yf3GDQADzbvHA49PMdMxwI4p/r8lc96HF+d9eKky7zdmZqPKxmZVGDMMLNjnfi/ws/0HZeYgMFjlRQ8kIoYys/9gt1Ma5314cd6Hl3bPu8pSyf3AmyJiUUTMAc4GbmlXAEnS5LTc487M3RFxIfCfwEzg2sx8tPZkkqRxVVkqITO/AXyj5iwvO+jllkI578OL8z68tHXeLT+clCQdWjzlXZIK07XibnUafUTMjYivNp+/LyL6Op+y/SrM+90RsTUidkfEWd3IWIcK8740Ir4fEdsi4r8i4o3dyNluFeb9FxHxcEQ8FBH3TJezkqt+TUZEnBURGRHT4kiTCu/3xyNipPl+PxQRn5jSC2Vmx38Y+5Dzx8BxwBzge8Bb9htzPrChefts4KvdyNqFefcBJwL/BpzV7cwdnPcy4Ijm7b88jN7vo/e5fSZwW7dzd2LezXHzgG8B3wH6u527Q+/3x4FrDva1urXHXeU0+g8C1zdv3wAsj4joYMY6tJx3Zj6ZmduAPd0IWJMq874rM59v3v0OY+cLlK7KvH+5z90jgenwoVPVr8m4HPh7YFcnw9WoY18P0q3irnIa/d4xmbkbeBaY35F09Tlcvz5gsvM+D7i11kSdUWneEXFBRPyYsRK7qEPZ6tRy3hHxVmBBZn69k8FqVvX3/E+bS4I3RMSCcZ5vqVvFPd6e8/57GlXGlGY6zqmKyvOOiI8B/cCVtSbqjErzzswvZuZi4K+Bv6k9Vf0OOO+ImAFcDVzWsUSdUeX9/g+gLzNPBO7gt6sKk9Kt4q5yGv3eMRExC/gd4BcdSVefSl8fMA1VmndErADWAGdm5q87lK1Ok32/NwN/Umuizmg173nAEuDuiHgSeBtwyzT4gLLl+52Zo/v8bv8L8IdTeaFuFXeV0+hvAf6sefss4M5sru4X7HD9+oCW827+0/mfGSvtp7uQsQ5V5v2mfe6+H/jvDuarywHnnZnPZuYxmdmXmX2MfaZxZmYOdSdu21R5v1+/z90zgcem9Epd/AT2DOCHjH0Ku6b52N8x9gYC9ABfA34EfBc4rtufGndo3n/E2N/czwGjwKPdztyhed8B/Bx4qPlzS7czd2je/wg82pzzXcDvdztzJ+a939i7mQZHlVR8vz/XfL+/13y/f28qr+OZk5JUGM+clKTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXm/wG2UYAeAqCMSgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "bins = np.arange(0, 0.5, 0.01)\n",
    "plt.hist(y_feats, bins, alpha=0.5, label=\"Yes\")\n",
    "plt.hist(n_feats, bins, alpha = 0.5, label=\"No\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Having inspected the above data, determine what you believe to be a good threshold value for this calculation. To choose an exact value, you may wish to inspect the values given in `y_feats` and `n_feats`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Testing Your Classification\n",
    "Write a function `classify_yesno` which takes in a sound (a bitrate/data tuple), and classifies whether this is the word \"yes\" or the word \"no\". You should return the string `\"Y\"` for yes, and `\"N\"` for no."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "def classify_yesno(sound):\n",
    "    thresh = 0.023\n",
    "    psd = signal.periodogram(sound[1], fs=sound[0])\n",
    "    feat = get_feature(psd)\n",
    "    if feat > thresh:\n",
    "        return \"Y\"\n",
    "    else:\n",
    "        return \"N\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now run the code cell below. It will test your classifier against test data, and count True Positives (how many \"yes\" recordings were correctly classified as such), True Negatives (how many \"no\" recordings were properly classified), Fale Positives ( where \"no\" was classified as \"yes\"), and False Negatives (where \"yes\" was classified as \"no\")."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "TP = 0\n",
    "FP = 0\n",
    "TN = 0\n",
    "FN = 0\n",
    "\n",
    "paths = np.genfromtxt(\"data/scipy_test_files.csv\", dtype=np.str, delimiter=\",\")\n",
    "yes_tests = paths[0]\n",
    "no_tests = paths[1]\n",
    "\n",
    "for s in yes_tests:\n",
    "    sound = to_mono(wavfile.read(s))\n",
    "    if classify_yesno(sound) == \"Y\":\n",
    "        TP += 1\n",
    "    else:\n",
    "        FN += 1\n",
    "        \n",
    "for s in no_tests:\n",
    "    sound = to_mono(wavfile.read(s))\n",
    "    if classify_yesno(sound) == \"N\":\n",
    "        TN += 1\n",
    "    else:\n",
    "        FP += 1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This data can be summarised in a confusion matrix. In this matrix, the (0, 0) entry of the confusion matrix shows True Positives, and the (1, 1) entry shows True Negatives. Since we tested our classifier on 8 samples of each type, then the closer our matrix looks to $$\\begin{bmatrix}8 & 0\\\\ 0 & 8 \\end{bmatrix}$$ the better our classifier is performing."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[5, 0],\n",
       "       [3, 8]])"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "confusion_matrix = np.reshape(np.array([TP, FP, FN, TN]), (2, 2))\n",
    "\n",
    "confusion_matrix"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We could also compute a summary statistic of the classifier's performance. One such statistic is the accuracy: that is the proportion of the recordings correctly classified. it is calculated as $$\\frac{TP + TN}{TP + TN + FP + FN}$$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.8125"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "acc = (TP + TN)/(TP + FP + TN + FN)\n",
    "\n",
    "acc"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In reality, we'd likely train and test on much more data. We would also train the classifier using some form of predictive model, rather than by eyeballing the data. Packages such as [scikit-learn](https://scikit-learn.org/stable/index.html) have easy-to-use inbuilt functions for building and testing classifiers (in fact, sklearn has its own project notebook as part of this course)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## References\n",
    "This notebook was based on a project from \"Enhance your DSP Course with these Interesting Projects\" by D. Hoffbeck, in proceedings AC 2012-3836, the American Society for Engineering Education, 2012. \n",
    "\n",
    "Training files were obtained from freesound. Licensing info and accreditation is given in scipy_training_licensing.txt.\n",
    "\n",
    "Testing files were recorded by the author."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}