Newer
Older
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[3]"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[\"c\"]"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"b 1\n",
"d 3\n",
"dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[[1,3]]"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a 0\n",
"b 1\n",
"dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[s<2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A subtle difference when indexing in pandas is that unlike in normal Python, slicing here is inclusive at the end-point."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"b 1\n",
"c 2\n",
"dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[\"b\":\"c\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All of the above also apply to DataFrames:"
]
},
{
"cell_type": "code",
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5\n",
"c 6 7 8"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = np.reshape(np.arange(9), (3,3))\n",
"df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
" columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
"\n",
"df"
]
},
{
"cell_type": "code",
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[:2]"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a 1\n",
"b 4\n",
"c 7\n",
"Name: Glasgow, dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"Glasgow\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For DataFrame label-indexing on the rows, you can use `loc` for labels and `iloc` for integer-indexing."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Edinburgh 3\n",
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[\"b\"]"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[\"b\", [\"Glasgow\", \"Aberdeen\"]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's try `iloc`"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Edinburgh 3\n",
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[1]"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[1, [1,2]]"
]
},
{
"cell_type": "code",
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:2]"
]
},
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Summary of indexing:\n",
"\n",
"| Type | Notes |\n",
"| -- | -- |\n",
"| df\\[val\\] | Select single column or sequency of columns from a DataFrame |\n",
"| df.loc\\[val\\] | Select single row or subset of rows from a DataFrame by label |\n",
"| df.loc\\[:, val\\] | Select single column or subset of columns by label |\n",
"| df.loc\\[val1, val2\\] | Select both rows and columns by label |\n",
"| df.iloc\\[idx\\] | Select single row or subset of rows from DataFrame by integer position |\n",
"| df.iloc\\[:, idx\\] | Select single column or subset of columns by integer position |\n",
"| df.iloc\\[idx1, idx2\\] | Select both rows and columns by integer position |\n",
"| reindex method | Select either rows or columns by labels |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 1\n",
"A dataset of random numbers is created below. Index the 47th column and the 22nd row. You should get the number **4621**.\n",
"\n",
"*Note: Remember that Python uses 0-based indexing*"
]
},
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(np.reshape(np.arange(10000), (100,100)))\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 2\n",
"Using the same DataFrame from the previous exercise, obtain all rows starting from row 85 to 97."
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are performing arithmetic operations between two objects, if any index pairs are not the same, the respective index in the result will be the union of the index pair. Let's have a look"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a NaN\n",
"b 1.0\n",
"c 3.0\n",
"d 5.0\n",
"e NaN\n",
"k NaN\n",
"dtype: float64"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s1 = pd.Series(np.arange(5), index=[\"a\", \"b\", \"c\", \"d\", \"e\"])\n",
"s2 = pd.Series(np.arange(4), index=[\"b\", \"c\", \"d\", \"k\"])\n",
"s1 + s2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The internal data alignment introduces missing values in the label locations that don't overlap. It is similar for DataFrames:"
]
},
{
"cell_type": "code",
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>10</td>\n",
" <td>11</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b c d\n",
"0 0 1 2 3\n",
"1 4 5 6 7\n",
"2 8 9 10 11"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1 = pd.DataFrame(np.arange(12).reshape((3,4)),\n",
" columns=list(\"abcd\"))\n",
"df1"
]
},
{
"cell_type": "code",
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" <th>e</th>\n",
" <th>f</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>10</td>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>12</td>\n",
" <td>13</td>\n",
" <td>14</td>\n",
" <td>15</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" c d e f\n",
"0 0 1 2 3\n",
"1 4 5 6 7\n",
"2 8 9 10 11\n",
"3 12 13 14 15"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2 = pd.DataFrame(np.arange(16).reshape((4,4)),\n",
" columns=list(\"cdef\"))\n",
"df2"
]
},
{
"cell_type": "code",
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" <th>e</th>\n",
" <th>f</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>10.0</td>\n",
" <td>12.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>18.0</td>\n",
" <td>20.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b c d e f\n",
"0 NaN NaN 2.0 4.0 NaN NaN\n",
"1 NaN NaN 10.0 12.0 NaN NaN\n",
"2 NaN NaN 18.0 20.0 NaN NaN\n",
"3 NaN NaN NaN NaN NaN NaN"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# adding the two\n",
"df1+df2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice how where we don't have matching values from `df1` and `df2` the output of the addition operation is `NaN` since there are no two numbers to add.\n",
"\n",
"Well, we can \"fix\" that by filling in the `NaN` values. This effectively tells pandas where there are no two values to add, assume that the missing value is just zero."
]
},
{
"cell_type": "code",
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" <th>e</th>\n",
" <th>f</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>2.0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>10.0</td>\n",
" <td>12.0</td>\n",
" <td>6.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8.0</td>\n",
" <td>9.0</td>\n",
" <td>18.0</td>\n",
" <td>20.0</td>\n",
" <td>10.0</td>\n",
" <td>11.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>12.0</td>\n",
" <td>13.0</td>\n",
" <td>14.0</td>\n",
" <td>15.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b c d e f\n",
"0 0.0 1.0 2.0 4.0 2.0 3.0\n",
"1 4.0 5.0 10.0 12.0 6.0 7.0\n",
"2 8.0 9.0 18.0 20.0 10.0 11.0\n",
"3 NaN NaN 12.0 13.0 14.0 15.0"
]
},
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.add(df2, fill_value=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another important point here is although the normal arithmetic operations work here, there also exist dedicated methods like `DataFrame.add()` which achieve the same functionality + a bit extra.\n",
"\n",
"Here's a list of all arithmetic operations within pandas:\n",
"\n",
"| Operator | Method | Description |\n",
"| -- | -- | -- |\n",
"| + | add, radd | Addition |\n",
"| - | sub, rsub | Subtraction |\n",
"| / | div, rdiv | Division |\n",
"| // | floordiv, rfloordiv | Floor division |\n",
"| * | mul, rmul | Multiplication |\n",
"| ** | pow, rpow | Exponentiation |\n",
"\n",
"Notice how some of the methods have `r` in front of them? That stands for reversed and effectively reverses the operands. For example\n",
"\n",
"```python\n",
"df1.div(df2)\n",
"```\n",
"would be the same as\n",
"```python\n",
"df2/df1\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 3\n",
"Create a (3,3) DataFrame and square all elements in it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Broadcasting\n",
"Similar to numpy, in pandas you can also broadcast data structures. Let's consider a simple example:"
]
},
{
"cell_type": "code",
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>10</td>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",