Skip to content
Snippets Groups Projects
python-data-4-plotting.ipynb 170 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Notebook 4 - Basic Plotting"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Producing informative visuals for your data is an important part of data analysis. Here, we introduce matplotlib which is the de facto standard plotting library used in Python. We tend to interact with matplotlib through its `pyplot` module, which is normally imported like so:"
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## My first plot\n",
    "\n",
    "Let's see how easy it is to plot with pyplot by drawing a line graph of some randomly-generated data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4m1eZ8P/vkWVLtiVb3mTHux1n3/d0pU1XCm3aAjMtpZRhKUvZBxgKvLzD+zIzzAsDP3amrB0oLYUulNIW2jRt0y2Js29NnNjxvi/yKtuyzu8PSY53S7YfK5buz3X5SiQ9ep6jyLl1dJ/7nKO01gghhIh8pnA3QAghxPyQgC+EEFFCAr4QQkQJCfhCCBElJOALIUSUkIAvhBBRQgK+EEJECUMDvlIqTym1Wyl1Sil1Qin1GSOvJ4QQYnLKyIlXSqlFwCKt9UGllB04ANyqtT5p2EWFEEJMyGzkybXW9UC9/+9dSqlTQA4wYcBPT0/XhYWFRjZJCCEizoEDB1q01hnTHWdowB9JKVUIbAD2TnZMYWEhpaWl89UkIYSICEqpymCOm5dBW6WUDXgM+KzWunPMY/cqpUqVUqXNzc3z0RwhhIhKhgd8pVQsvmD/kNb68bGPa60f0Fpv1lpvzsiY9huJEEKIGTK6SkcBvwROaa2/a+S1hBBCTM3oHv5lwN3ADqXUYf/PTQZfUwghxASMrtJ5FVBGXkMIIURwZKatEEJECQn4QggRJaIq4D93vJ7ajr5wN0MIIcIiagJ+a3c/H/vdQX64qyzcTRFCiLCImoD/ZnkbAHsr2sLcEiGECI+oCfhvlLcAUNHSQ2OnO8ytEUKI+Rc9Af9cK4uSrQC8Wd46q3MNeTV9A0Nz0SwhhJg3URHwmzrdnGvu4e5LCrBbzMPpnZn62cvnuOo7uxnweOeohUIIYbyoCPhv+Hv0l5eks6Uolb2z7OG/fLqZxs5+9p+X8QAhxMIRFQH/zfJW7FYzq7KT2V6cSnlLD00zzOMPeLwcqekA4IVTjXPZTCGEMFRUBPzXz7WyrSiVGJNiW1EaAG/OsFrnZH0n/R4viXExvHCqESN3DBNCiLkUcQG/d8DDh36znzfO+dI2dR19VLb2sr3YF+hXZSdhs5hnnNY5UNkOwIeuKKa6rY+ypu65abgQQhgs4gL+oaoOdr3VxEf+p5Tjta7hwH/JYl/AN8eY2FKYMuNKnYOV7eQ44nnv1nxA0jpCiIUj4gL+0RoXADaLmQ/8ej9PHKrFkRDLiqyk4WO2FadxrrmH5q7+kM6ttaa0so1NBSlkJVtZk5PMrlNNc9p+IYQwSsQF/GO1HeSnJvC7D2/D4/Xy6tkWthelYTJdWKU5kN7ZWxFaL7/O5aaxs59NBSkAXLPCycGqdlq6Q/vgEEKIcIjAgO9iTU4yJU4bv/7AFlISYnnH2kWjjlmdnURCXAyl59tDOncgfx8I+NeuyERr2P2W9PKFEBe/iAr47T0DVLf1sSY3GYAN+SmUfu06bl6XPeo4c4yJvJSEkFfOPFjZTnxsDMuz7IBvAHhRslXSOkKIBSGiAv6xWl/+fm1O8vB9MaaJN9zKTLaGvKbOgcp21uc5MMf4/tmUUuxY7mT36Sa++/fTNLhkjR4hxMXL8ICvlLpRKXVaKXVWKfVlI68VCPirRgT8ySxKsoYUoHsHPJys7xxO5wTcd3UJl5Wk88PdZ7nsP1/kc384LEsuCCEuSoYGfKVUDPBj4O3ASuBOpdRKo653rMZFYVoCyfGx0x6bmWylpbsfz1BwwflItYshrx4X8LMd8fzqA1t4+QtX875t+TxxqJanjtTNqP1CCGEko3v4W4GzWutyrfUA8Aiw06iLHat1sSbXEdSxWUlWvBqag6ywOVjlG7DdkD/x+fPTEvjXW1axLNPOL/aUywxcIcRFx+iAnwNUj7hd479vzrV291Pb0Tcqfz+VrGQLAPVj0jovnW7ilTPN444/XN1BcXoijoS4Sc+plOLDVxTxVkMXe8paQmi9EEIYz+iAP9GI6aiur1LqXqVUqVKqtLl5fKANViB/vzrIgJ+Z5Fsbv3FMwP/Ws2/xzb+eHHf8ybrOoMYGblmfjdNu4ed7yoNqhxBCzBejA34NkDfidi4wKsGttX5Aa71Za705IyNjxhc6VhMI+EnTHOmT5Q/4DSMqdbTWVLX1crapm94Bz/D9Hb0D1Hb0sXLR9Oe2mGO459JC9pS1cKq+M5SXIIQQhjI64O8HliilipRSccAdwFNGXOhorYvijETs1ukHbAFSE+OIizGNCvjN3f30Dgzh1b4efcBJf+BelR3ch8ld2/JJiIvh53vKOVnXyU9fOsdnHzlEe89ACK9ICCHmltnIk2utPUqpTwJ/A2KAX2mtTxhxreO1LrYVpQZ9vFIKZ5JlVEqnqrV3+O9Ha1xsLvSdLxD8VwYZ8B0JcfzD5jx+8/p5Hj9YO3z/jhWZ3DJmEpgQQswXQwM+gNb6GeAZI6/R1OWm3uUOOn8fkJVkHdXDr/QHfLNJcdw/JgBwoq6TzCQL6TZL0Of+xNWL8Xi9rM11cElxGm/79m7ONnaF1D4hhJhLhgf8+VDX4SY1MY61QZZkBmQmW0elbirbelHKt5Ty0REB/2RdJ6uyQ/swcdqtfPPWNcO381MTONssa+cLIcInIpZWWJ/n4MDXrmXzmElR0wnMtg3UzFe19pCdHM+mghTONXfT3e/BPTjE2ebuoPP3kylx2jgrm6UIIcIoIgI++HLypknWzZlMVrKVvsEhOt2+ipzKtl7yUxNYm5uM9g/cnm7oYsirg6rQmcpip42Klp6gZ/YKIcRci5iAPxPDtfj+PH5Vay8FaQnDYwFHazpGVOiEltIZa4nTzuCQprKtd/qDhRDCAFEd8LOSfQG/3uWmu99Da88A+WkJOO1WspKsHKt1caLOhd1iJi81flbXKnHaACStI4QIm+gO+CNm21a29gBQkJoIwJrcZI7VujhZ18mK7CSUCi1dNNbiDN95ZxvwnzvewGtnZdkGIUToojrgO5N8ZZYNne7hGvyCtAQA1uQkU97cw4m6zlkP2ALYrbEsSrbOKuC7B4f44h+P8F9/Pz3r9gghok9ElGXOlMUcQ2piHA2dbuLMvs++/EDA9++a1e/xzjp/HzDbSp2XTjfR1e+hrKkbrfWsv3UIIaJLVPfwwTdw60vp9JKSEEuSf2mGNSMmcc22QidgcYaNc83deL0zWzr5yUO+ZYi63B6aumTjdCFEaKI+4GclWXwpnbYe8tMSh+9Pt1nITrYSF2MaHnCdrRKnjd6BIepcoe2lC+DqG+TF002s8H/4lDXK4K8QIjQS8P1721a29lKQmjDqsctK0tlcmDKc7pmtJbOo1Pnb8QYGPF7++bqlAJQ1yTINQojQRHUOH3wpnZbuAUwKbtswem+W/7h9DXO5b9XI0syrljlDeu6Th2spTEvgmhVOkuNjKZPyTiFEiKK+h7/IX4vv1b71bkYyx5iIjZm7f6I0m4WUhNhpe/gdvQPc99BB/uvvp3EPDtHY6eaN8lZuWZ+DUoolThtnJaUjhAiR9PD9tfgABSNy+EZZ4rRPGfBr2nu551f7qGztxePV/PlwHRvzHWgNO9f7llZekmnj2eMNUqkjhAhJ1PfwA7Nt4UINvpEWO23DZZVjnahzcdtPXqe5q5+HPryN339kG+YYxZOH61iTk8ziDF9KqMRpp6N3kFbZUEUIEYKo7+EHZttaY0047cGvdz9TJU4brr5BWroHyBhxvcEhL3f/ch9Ws4mHPn4pSzPtADz7mSv4w/7qUWv9BwZ/yxq7Q1qjXwgR3aK+h58cH4vFbCI/NWFe0iOTranT2OmmrWeAT12zZDjYg29y2PsvKWRj/oWln5dkBs4hlTpCiOBFfcBXSpGXmjCcLjFacbpvnCCwdk9AvX+rxWzH9Iu0ZSVZsVnMUqkjhAiJYSkdpdS3gZuBAeAc8E9a6w6jrjcbP7lrIzbL/GS3spKtmBTUdoyefFXnv53jsE70tFGUUpQ4bTL5SggREiN7+M8Dq7XWa4EzwP0GXmtWlmbag+pZz4XYGBNZSVZq20cH/MAHwKLk4NqxxD/4K4QQwTIs4Gut/6619vhvvgnkGnWthSYnJZ6aMT38+g43yfGxJAb5TWNJpo2W7n7apVJHCBGk+crhfxB4dp6uddHLccSP6+HXdfSF9C1jidM3sCsbowshgjWrgK+UekEpdXyCn50jjvkq4AEemuQc9yqlSpVSpc3NzbNpzoKRm5JAQ6d71P62dS432cnT5+8DSkaUZgohRDBmNVKptb52qseVUvcA7wSu0RPNNPKd4wHgAYDNmzfP5dI1F62clHiGvJqGTje5Kb7JXnUdfWwuSJnmmSPO4YgnPjZGFlETQgTNsJSOUupG4F+AW7TWsnP3CDn+1E0grdPT78HVN8iiICp0AkwmX6XO6QYJ+EKI4BiZw/8RYAeeV0odVkr9zMBrLSg5Kf6A7x+4rXcFSjJDqxTaXpzK/vNtMnArhAiKkVU6JVrrPK31ev/Px4y61kIztodf1+GbdBVsSWbArRtyGBzSPH2sfm4bKISISFE/0zYcrLExpNvihnv4gUlX2SGkdMC39eKyTDtPHqoddf+Pd5/l3T99fcZbKQohIpME/DDJSUm4EPBdbpQavVRzMJRS3LohhwOV7VS1+oZJ6jr6+MGuMkor2zlY1T7n7RZCLFwS8MMk1xFPTfuFHn6m3TqjzVYCa+Q/4e/lf/f5M2jtW/3zycO1Uz1VCBFlJOCHSU5KPLUdfXi9mnpXX0gVOiNlO+LZXpzKk4dreauhk8cO1nDPpQVctzKLvx6tZ3BErb8QIrpJwA+THEc8Ax4vLT391HW4Z7WWz20bcqho6eETDx3EbjFz39Ul7FyXTXvvIHvKomMymxBiehLwwyRQqVPT3udbViGEWbZjvX3NIuLMJsqbe/jkjhIcCXFcuTQDR0IsTx6qm6smCyEWOAn4YZKb6gv4J2pd9Hu8s+rhJ1ljeceaReSnJvD+SwoBiDObuGnNIp4/2UhPv2fqEwghooIE/DAJ9PD3nfdV0oRagz/Wt961hmc+cwXW2Jjh+25dn0Pf4BDPn2yc1bmFEJFBAn6Y2K2xJFnN7K9oA0KfZTuWxRwzbhOXzQUp5DjipVpHCAFIwA+rHP+qmcCMq3SmYjIpblmfzZ6yFpr81xFCRC8J+GEU6NXHmU2kJcYZco1/2JzHkFfzaGm1IecXQoDWmiPVHTx7rJ7fvVnJz18pp9M9GO5mjTM/G7mKCeX6F1HLTrailDLkGkXpiVy6OI2H91Xz8atKiDEZcx0holWXe5D7Hz/G00dHr2mVYInhrm0FYWrVxKSHH0bDAd/g/XTfuy2f2o4+XpGafCHm1LEaF+/84as8e7yBf75uKc98+grevP8arLEmzjX1hLt540gPP4wCKZ3ZVuhM5/qVWaTb4vj93iquXuY09FpCRIunj9bx+T8cIc0WxyP3bmdLYerwY8XpNs5Ns/1oU5dvH2uLOWbK4+aS9PDDKLAufo4BA7YjxZlNvHtTHi++1USDSwZvhZitJw7V8OmHD7E2N5lnPn3FqGAPUJyRSHnL5AHf69W88wev8k+/3s/QPK5qKwE/jIrSE0mymlmb6zD8Wndu9Q3e/mG/DN4KMRuP7q/m848eYVtRGg9+cCspExRcLM6wUdPeh3twaMJznG3upqmrn9fPtfKDXWVGN3mYBPwwsltjOfK/r+eaFcanWQrSErliSTqP7K8atXm6ECJ4+8+38aXHjnJ5STq/+sAWEi0TZ8WLMxLRGs63TpzH3+eff3N5STo/eLGM1862GNbmkSTgh5lSyrAKnbHu2pZPvcvNi281zcv1hIg0h6s6APjhnRuIj5s89744wwZAefPEAb/0fBsZdgsPvH8TizNsfOaRwzR1GZ9ulYAfRa5dkUlWkpXfvlk56v56Vx+ff/TwRVk3LMTFpN7lJjEuhuT42CmPK85IBOBc08R5/P3n29lSmEJCnJmf3LWRnn4P9z92bM7bO5bhAV8p9QWllFZKpRt9LTE1c4yJ927LZ09ZC+UjKgj+7a+nePxgLaXn28LYOiEufg2dfWQGMW8mIc5MdrKV8pbxPfy6jj5qO/rYXOAb6F2aaef7d6zn/puWG9LmkQwN+EqpPOA6oMrI64jg3bE1D7NJ8dBe31tyoLJ9eMJIYJtEIcTE6l1uFgW5lHlxxsSlmaWVvgUTtxZdqOy5flUWJU773DRyCkb38L8HfAmQ3bQvEk67lRtXZ/HH0mp6Bzz836dP4rRbSIiLobJNAr4QU2l0uclKCm7ezOKMRMqbe9B6dPjbX9FGYlwMy7OMD/BjGRbwlVK3ALVa6yPTHHevUqpUKVXa3CwzQefD+y8ppNPt4b6HDnK4uoMv3rCM/NQEqiXgCzGpIa+msas/pB5+d7+Hpq7+UffvP9/GxoIUzDPYw3q2ZnVFpdQLSqnjE/zsBL4KfH26c2itH9Bab9Zab87IyJhNc0SQthSmsDzLzu7TzazKTuJdG3PJT02gSgK+EJNq6e5nyKvJCjLgByp1RqZ1XH2DnG7sGs7fz7dZBXyt9bVa69Vjf4ByoAg4opQ6D+QCB5VSWbNvspgtpRQfuLQQgK+9YyUmkxoO+GO/fgohfOr9s9SD7+H7K3VGlGYerGpHa9hSlDL3DQyCIWvpaK2PAcOzifxBf7PWen5mF4hp/eOWPC5dnE5+WgIA+WkJuAe9NHf347Qbu9SDEAtRg6sPIOgeflaSlfjYmFEVcaXn2zCbFOvzjJ9dPxGpw49SSqnhYA+Ql+r7u+TxhZjYhR5+cIO2JpOiOCNxVA9/f0U7q3KSSYgLz7qV8xLwtdaF0ru/uOX7A77k8YWYWIPLTZzZRErC1JOuRirOsA338I/XujhU3c62ovDk70F6+MIvxxGPUlDV2hfupghxUQrU4IeyFMrijERqO/o439LDhx7cj9Nu5cNXFBnYyqnJevgCAGtsDFlJVunhCzGJBpebrKTQxreKM2xoDXc88CY9/UP86eNbwzpGJj18MSxPavGFmFR9Z1/QFToBi/2VOk1dbn743g0sz0oyomlBkx6+GJafmsCrZTLUIsRYXq+m0dVPVoi70y3OsLE8y87dlxRcFLvNScAXwwpSE/hTpxv34BDW2Pnbdk2Ii11b7wADQ96Qe/jW2Bie++yVBrUqdJLSEcMCZZo17TJwK6LPt//2Fnc+8OaEjwW2Bg22Bv9iJT18MWxkLX6J0xbm1ggxfw5UtvOTl84RoxRer8ZkGl2JE6jBD3XQ9mIjPXwxTGrxRTQa8Hj58mNH0Ro8Xk1778C4YwKzbENN6VxsJOCLYWmJcb5lkmVdfBFFfvrSOcqaunn3plyAcatbgq+HbzYp0myW+W7enJKAL4YppWTVTBFVyhq7+NHuMm5Zl80/bskDoHmCgN/gcpOZZCXGND/7TxtFcvhilLzUBNn5SkSN7+8qIyHOzNdvXklPvweYuIff0Ole8AO2ID18MYYskyyiSen5dq5alkG6zUKG3ZeuaepyjzuuwSUBX0Sg/NQE+gaHaOkeP3AlRCSp6+ijodPNBv9SxQlxZmwW87iUjtbat47OAq/QAQn4YowLlTo90xwpxMJ2qKoDgA35FzYjcdot41I6nX0e+gaHpIcvIk9gW7bTDd3THCnEwnaoqh2L2cSKRRfWt0m3W8b18Os7AyWZoS2rcDGSgC9GyUuNJzUxjkNV7eFuihCGOlTdwZqcZOLMF8Kgc6KAHyGzbEECvhhDKcWGPAeHqjvC3RQhDDPg8XKs1sWG/NFbDWZMEPAbQtzL9mImAV+Msz7Pwdmmblx9g+FuihCGOFXfyYDHOyp/D+C0W+nu99A74Bm+r6qtl9gYhdO+sCddgcEBXyn1KaXUaaXUCaXU/zPyWmLuBP4THK2RXr6ITAf9KcuJevgwevJVRXMP+akJmGMWfv/YsFeglLoa2Ams1VqvAr5j1LXE3Fqbl4xSF6oYhIg0h6o6yEqyjhuIdQ7X4o8I+C09FKUnzmv7jGLkR9bHgW9prfsBtNZNBl5LzKEkaywlGTYOSx5fRKhD1e1sLHCMu39sD9/r1ZxvlYAfjKXAFUqpvUqpl5VSWwy8lphjG/IdHKpqlxm3IuI0d/VT3dbHhryUcY8N9/A7fQO19Z1u+j1eitIjY7nwWQV8pdQLSqnjE/zsxLdOTwqwHfgi8KiaYLt3pdS9SqlSpVRpc3PzbJoj5tCG/BTaewdl5UwRcQLfXMfm7wFSEuIwmxTN3b4efkWzbwJiYXrC/DXQQLNaPE1rfe1kjymlPg48rn1dxH1KKS+QDoyK6lrrB4AHADZv3izdyYvEev9080PV7RRGyNdZIcA34cpsUqzOSR73mMmkSLdZaOr0B/wW3wTEYunhT+tJYAeAUmopEAfIDtkLxNJMOwlxMRyWgVsRYQ5UtrMyO2nSfZudSZYLPfyWXuJjY8hMWvglmWBswP8VUKyUOg48AtyjJSG8YMSYFOtyZQKWiCzuwSEOVXewpTB10mMyxvTwi9ITmSAbvSAZFvC11gNa6/dprVdrrTdqrV806lrCGOvzHZys68Q9OBTupggxJ45UdzDg8bKtaPKAP7qHHzkVOiAzbcUUNuQ58Hg1x2td4W6KEHNib0UbSsHWKQJ+hs1Ca3c/7sEhqtv7JOCL6BAY1Drd2BXmlggxN/ZWtLIs044jIW7SYzKSrHi179vAkFdLwBfRwWm3oBTD+UwhFrIBj5cDle1sL06b8rgM/0bleyvaACKqSk0CvpiUOcZEWqJlwi3fhFhojtW6cA9Onb8HXw4ffN8GAIol4Ito4bRbaJQevogAgQA+Vf4eLvTwD1Z24EiIJSVx8vTPQiMBX0wpM0l6+CIy7C1vY4nTRppt6pr6wHo6fYNDEZW/Bwn4YhpOu1V6+GLB8wx5KT3fxrbiqXv3ANbYGJKsvkUIitIk4IsokpnkK1HzDHnD3RQhZuxEXSc9A0NsK5p6wDbAmeTb3Up6+CKqOP0laq09A+FuihAzFsjfTzdgGxBYNbMoQwK+iCKBX/zGTsnji4Vrb3kbRemJwz336QTy+IWS0hHRJNP/H0Rq8cVCdqapizUTrI45mcwITenManlkEfkCNcmNUqkTtTrdgyTGmYkxLcwFxIa8mgaXm9y18dMf7HfXtnyWZdpJtERWiJQevphSuk1m20azwSEvV337JX79WkW4mzJjLd39DA5psh3BB/yCtETetSnXwFaFhwR8MaVYmW274Ln6Bvndm5Uz2q6yuq2Xtp4B3ixvNaBl86O2ow+AnBACfqSSgC+mJbNtF7anj9bxtSePc7K+M+TnVrT4tvg7toBXTK3zB/xQeviRSgK+mJbMtl3YGly+9+7MDFY9DQT8xs7+Bfs7cCHgB1ehE8kk4ItpyWzbhS1QUnumsTvk557zb+INLNh9EWrb+7BbzditseFuSthJwBfTktm2C1vgw/pMw0x6+N0sz7KjFByvDT0ldDGo7XBL/t7PsICvlFqvlHpTKXVYKVWqlNpq1LWEsTJktu2CNtzDb5pZSmdVdjLF6YlT5vGfPVbPI/uqGPJefNtW13X0Sf7ez8ge/v8DvqG1Xg983X9bLECZMtt2QWvsdKMUVLf10dPvCfp5Pf0eGjv7Kc5IZHVO8qQpneaufj736GG+/Pgxbv/Jaxdd6qfO1Sf5ez8jA74Gkvx/TwbqDLyWMJDMtl24+j1DtPcOsirb91/xbFPwefzAgG1xeiJrcpKpd7lp6R7/O/DzPeUMeLx85abl1Hb0ccuPXuWBV87NzQuYpZ5+Dx29g9LD9zMy4H8W+LZSqhr4DnC/gdcSBpLZtgtX4EP6iiUZQGj7E5f7A36Rv4cP48szW7r7+e0blexcn8O9Vy5m1+ev4vIlGXzv+bKQvk0Ypd4lNfgjzSrgK6VeUEodn+BnJ/Bx4HNa6zzgc8AvJznHvf4cf2lzc/NsmiMMIrNtF65AGm5LYQoWs4myEAJ+RXMPSvkWEAt8QzheMzrg/2JPBW7PEPddXQJAckIs9121mL7BIV441ThHr2Lmajt8r196+D6zCvha62u11qsn+PkzcA/wuP/QPwITDtpqrR/QWm/WWm/OyMiYTXOEQXyzbeMWbB12NAtU6GQ74ilx2jgdQmlmRUs32cnxWGNjsFtjKU5P5HjdhYDf1jPA/7xxnpvXZlPitA3fv6UwlexkK08eqh11vvLmbp49Vj+7FxQimXQ1mpEpnTrgbf6/7wDKDLyWMJjTbpUe/kXuueP1fPS3paOWUAj08DPtVpZm2kPq4Ze39FA8Yj1438DthdLMn+8pp29wiE9fUzLqeSaT4ub12bxS1kKrP+fv9Wo+9fAhPvH7gyGNI8xWXUcfJnWh8CDaGRnwPwL8l1LqCPDvwL0GXksYLDPJIjn8eTbg8YY09+HB1yv524nGUeWzjZ1u4mJMOBJiWZppp97lxtU3OO25tNZUNPeMWh54dU4StR19tPUM8JvXKvjZy+e4ZV02JU77uOfvXJfDkFfzjL9H/8ShWk7UdaI18zqgW9vRR1aSFXOMTDkCAwO+1vpVrfUmrfU6rfU2rfUBo64ljHexzLbtHfDwrWffoss9fdBayIa8mtt+8hr/8tixoI539Q2y/3wbMLoSp7HTjTPJglKKpZm+tEswvfyW7gG6+j1jAr5v4PZTDx/kX/9ykutWZPKt29dO+PwVi+wszbTx58N19A0M8Z2/n2ZtbjJ3by/giUO1w4OpRpMa/NHkY08E5WKZbfvy6WZ+9vI5nj8Z/gFBIz19tI4TdZ08d7yeAc/0/+Z7yprx+Cc9jQ74/cNltUszfT3xYJZYCJRkThTwXzvbyt3bC/jp+zYRHxcz4fOVUuxcn0NpZTv/5+kT1LvcfPWmFdx7ZTFe7RvsnQ91HW4J+CNIwBdBuVhm2wZWfDxac3FN7plLQ17ND3aVER8bQ8/A0PB+rFN58VQTKQmxJMTFjA74XW6y/AE/xxFPQlxMUIuolTf7zrE448JgbJI1lg9fXsT/vnkl/2fnqmk3RLllXTYAD++r5vqVmWwrTiMvNYGd67J5eF8V7Qb/Lnm9mnqX9PBHkoAvghIY9Ar3wO3XoIRjAAAaRElEQVSJOl/AX8jL9U7nL0fqONfcwzdvXY3FbGLXqaYpjx/yanafbuLqZU4WZ9g41zwi4Lvcw/MoTCbFEqctqIBf0dJDXIxpXLD82jtX8k+XFaHU9Ltf5aUmsKkgBbNJ8eW3Lx++/6NvW0zvwBAPvnF+2nPMRmDjkxyZZTtMAr4ISmDz53Avr3DCXxZ4os4V9vSSETxDXn6wq4zlWXZu25DD5SXp7HqrccrNSw5Xt9PeO8iOFU5KnDbO+Xv43f0eegaGhlM64EvrBNXDb+mhIC1h1tsafvPW1fz33ZsoHvFNYVmWnWtXOPnZy+f49MOHePxgDW0G9PZrpSRzHAn4IiiZ/l7i93eV8bk/HObrfz4eUonfXGjp7qexs5/VOUm4B72cbZ6/8r758tSROspbevjstUswmRQ7VjipbuubspRx16kmzCbFFUsyKHHaqHO5/evg+Esyky6UJC7NtNPSPcADr5zjob2V/O1EA94JFjyraOmZkw28VyxK4poVmePu/8bO1dy0ZhGvn2vh848e4apv757zeR51MulqHAn4IiiZdivvXLuIwSEv+8+38fu9Vfx499l5bcNJfzrnji35QOTl8Qc8Xr6/q4wVi5K4fmUWADuWOwHY9dbkaZ1dp5rYUphKcnwsi/118+eau2l0BQL+hR7+lqJUzCbFvz/zFl994jgf/e0Bfvnq6AFUz5CXytaeUb3yuZbjiOe7/7CefV+5lt9+aCudbg9PHxk9Kcvr1bxa1jKjrRlBJl1NRAK+CIrJpPjRezfy3Gev5NV/2cHN63wTaybqHc6F3gEPu8ZMzQ/k79+xZhF2i5ljCyzgu3oHpwxeD75+nsrWXr504zJM/lTKouR4VmUnjfu3CKhu6+V0YxfXrPB9MARmvJ5r7h6eNzEy4K/Pc3D8Gzdw+OvXse8r13Dl0gx++GIZHb0XUir/80Ylg0OazQUps3vBQTD5v5msXJTEU0dGr6/4p4M1vO+XeymtbJ/RuWs7+rBZzCRZzXPR1IggAV/MyFXLMmjrGeCoQYOnjx2o4UMPlnJgxH/2k/Wd5DjiSUmMY3VOMkdrOgy5thHOt/Sw5d9f4DOPHGZwgrGHlu5+frCrjKuWZXD1Mueox65Z7uRAZfuEVS27T/t6/oFvAgVpiZhNirNN3cPzJkYGfABrbAyOhDicSVa+etMKuvs9/OhF37e16rZevv2301y9LGP4Q2Q+3LI+m8PVHVS19gK+iV+/fu08cKGnHqq6jj5yHPFBDTBHCwn4YkauWJKBUvDS6akrSGbqlH93pqePXuj1nahzDS/itTY3mVP1XUHVqBvhbFM3X3vy2ITBeyJPHKplwOPlqSN1fPS3B+gbGBr1+HefP0Pf4BBfe8fKcc/dsSITr4aXzoz/t95T1kJ+asJw+iU2xkRBWoI/4LtJjIvBZpm8h7ssy857NuXx4BvnqWrt5StPHMOk4Ju3rZnXQHmzv4TzL/73e29FG6f8Jbgt3TMb0JV18MeTgC9mJDUxjrW5Dl46bcwKp2f9k4P+erSeIa+mp99DRUsPK/0Bf01uMgND3hltzD0X/naigd+9WcXh6um/ZWiteepIHZcUp/Fvt61m9+km7vnVPs40duH1ak7Vd/LIviruvqRg1CJkAWtzkkm3WXhhTHmm16vZf76N7cWpo+5fnGEbDviZydMHvM9fvxSzycT7frmXPWUtfOnG5fO+nHCOI57NBSn8+bBvwbVfv1aBIyEWs0kNr8cTquo2qcEfSwK+mLGrlmZwpKZjzifQaK0509SF026hqauffRVtvNXQhdawKts323NtjgMI38Btg39A9I1z00+KOlrjoqKlh1s3ZHPXtgK+f8cGDla1c/33XmHdN/7O+3+1j6T4WD5zzZIJn28yKa5elsGrZS2jSlHPNHXR0TvI1qK0UceXOG1UtvZS295Hpn36gJ+ZZOUjVxRR1dbLxnwHd28vmPY5RrhlfTZnGrvZdaqR5082cufWfFIT4ybcdGU67T0DuPoG56TSKJJIwBczdtWyDLSGV8rmtpff3N1PR+8g91xaSEJcDH85WsdJf/19oIeflxpPcnwsx2rDk8dv6Aw+4D95uJa4GBM3rl4E+Gag7v7CVXznPeu4ZX022Y54vnHLKhwJcZOe423LMnD1DXJkxLjF3nLf2jnbikb38EucNjxezYm6zlElmVP56NsW8+HLi/jeP64fHjCebzetWUSMSfG5PxxGKcXd2wtIt1lmlNI53+pbGqIwTQL+SDJ8LWZsba6DlIRYXj7dzM71OXN23jJ/OmddroNrVmTy3PEGBjxeHAmxZPtTFEop1uYmh62HH6hxP1DVjntwCGvsxGvKeIa8/OVIPTuWO0mOjx2+Py81gbzUBN69KTeo611eko5J+dYS2lTgC/D7KtrITraSmzI6bRFIC3m8etyA7WQSLWa+9s7x4wfzKd1m4bKSdF4508w71i4i2xFPut0yox7+cMBPT5jrZi5o0sMXMxZjUly5NIOXzzTPaXlmIC+/NNPGzWsX0dYzwF+O1LEqO2nUQOKanGRON3ThHhya7FSGqXe5cdotDHi8HKy6UEnU1OXmC388Mlwy+kZ5Ky3d/excnz2r6zkS4tiQn8LLZ3zfprTW7K1oY1tx2rjB1ZH188EG/IvFuzb6Og4fvKwIgHRbHK0z6OFXtPRiUr4PVnGBBHwxK1cty6C1Z2C4Rn4unGnsJjk+lgy7hbcty8BuNdPv8bJyUdKo49bmJuPxat5qmN+B28EhLy3d/bxj7SJMCt4ckdb5xZ4K/nSghtt/+hr//fI5njhYi91q5urlsy9xfNvSDI7Wumjt7qe8pYeW7n62jknnANgsZhb5vwkttIB/y7ps9nzpajb55wCk2yw0d/eHPPnqfEsP2Y54LOaJv3lFKwn4YlYCm2PvnqA8c8DjDbpscaSzTV0szbShlMJijhmedRoYsA3YkO8LCsHk0edSU1c/WsMSp501Ocm8Ue67fk+/h4f3VXHNcifXLM/kP559i8cP1fL21VmTpnxC8balvjGTPWUt7KuYOH8fEEjrBJvDv1gopUb1ytNtcQx4vHSFuCF6ZWuP5O8nIAFfzEq6zcLmghSeOlI3rhf2oQf388nfHwzpfFprzjR2syTzwi5Kd27NI8lqZnPh6JmfmUlWVuck8fzJhpm/gBkIVOgsSrayfXEah6s76BsY4vGDNXS5PXzi6hJ++r6N/Mfta8hxxPO+Oap6WZOTTGpiHC+faWZveSvpNsukVSiBZY0XWg9/rHSb7wMrlLSO1pqKlh7J309AAr6YtXdtyuVsU/eoAdTTDV3sKWvh9bOtIeX3m7v6cfUNsnREPfrmwlSO/usN5KaM/w983YosDlV30Nw1f8s2X1iUzMolxWkMDmn2nW/j16+fZ11uMhvzHSiluHNrPq99eQdrcx1zcl2TSXHlEt+g5t6KNrYVpU46OeqaFU62FqaSFUQd/sUsEPBDGbht7x2k0+2RHv4EZhXwlVLvUUqdUEp5lVKbxzx2v1LqrFLqtFLqhtk1U1zM3rF2ERaziT8dqBm+7/d7KwHo6vdQ7t89KRiB3ZhG9vCnct3KTLRm0rVmjFDv7+FnJVvZUuhbjOy//n6a8uYePnh5cGvFz9Tb/GMm9S4324onTueAL9X26McuIXaB7+WaZvOVqraE8IEuJZmTm+1vw3HgduCVkXcqpVYCdwCrgBuBnyilZPQkQiVZY7lxdRZPHamj3zNE74CHxw/Vssa/Jd6RIGajBgQqdJZkBrdS44pFdnIc8fO65WFjp5s4s4mUhFgSLWbW5Tk4WuPCabfwdn+tvVGu9C9pAUw4YBtpMmbQwz/fEijJlIA/1qwCvtb6lNb69AQP7QQe0Vr3a60rgLPA1tlcS1zc3rUxF1ffILtONfH0kXq63B6+ctMKbBbzqMlC0ylr6sKREDv8H306SimuW5nJq2db6B0IbWBvpupdvm0DAz35S4p9M13v3l5AnNnYHnWazcKanGQcCbEsdQb3LWghS02MQ6nQ1tM539LjL8mUZRXGMmriVQ7w5ojbNf77RIS6rCSdrCQrfzpQQ2vPACVOG9uLU1mTkxxSD7+ssZulTntIaZHrV2bym9fP88qZFm5cnTWT5oek0eUelRvfuT6bIzUd3DVPSxJ8/Z0raesZCNuM2PlkjjGRkhDa8goVrb1SkjmJabsjSqkXlFLHJ/jZOdXTJrhvwpE7pdS9SqlSpVRpc7MxC3EJ48WYFLdvzGH36SaOVHdw17Z8lFKsz3dwsr4zqMlRvgqdrqDTOQFbilJJsprnLa3T0HlhY3DwjTf89kPbSE2cfGmEubS5MJXrVxn/wXaxSAtxPZ3K1rnZrSsSTRvwtdbXaq1XT/Dz5ymeVgPkjbidC9RNdKDW+gGt9Wat9eaMjIzQWi8uKu/alIvWYI01cfsG35IB63IdDA7p4aVup9LU1U+n28PSIAdsA2JjTOxY7uTFtxoN3+dWa+0L+Au8+mUhCWU9neGSTBmwnZBRCcengDuUUhalVBGwBNhn0LXERWJxho0bV2VxzyWFJCf41o1Zn+crSQwmrRPqgO1I167MpL13kP3nZ7Y7UrDaewcZ8HhH9fCFsdLtlqCXSG7rGaDL7aEgTWrwJzLbsszblFI1wCXAX5VSfwPQWp8AHgVOAs8B92mt53/BEzHvfnb3Ju6/acXw7axkK5lJFo6MqNE/29TNs8fqR03UGvJqHvOXdS6ZwWDkVcucpCbG8ZUnjo3arm+u1bt8uy9JD3/++FI6wb2n5/07ZklKZ2KzrdJ5Qmudq7W2aK0ztdY3jHjs37TWi7XWy7TWz86+qWKhWpfrGO7huweH+PCD+/n4Qwf5+O8O4uobpN8zxKcePsiTh+v41I4SMuyhLwdgs5j577s3Udvex8d+d8CwnbACk64k4M+fDLuF7n5PUONAUpI5tYU9K0MsCOvyHJS39ODqHeTHu89yvrWXO7fm88KpRm76/h7e/8t9PHOsga/etIJ/vn7ZjK+zpTCV/3z3Gt4sb+NrTx4LecGtYDS4fKkFSenMn/TA5Ksg0jrnW/0lmRPMyhYS8MU8COTxHztYw89ePsftG3P4j9vX8MePXYJSUFrZzrffvZaPXFk862vdtiGXT+8o4dHSGp70b5c3lxpcfZgUM/oWImbmwvIK06d1Klp6yEmJN3w+xEIl/yrCcGtyfTNu/+2ZUyRazHzVn+PfkJ/Cc5+9kr9/7kreszlvqlOE5HPXLSXJauZQ1dzvhtXQ6SbdZlnwSxYsJGmBgB/E8gqVrb1SoTMF+a0VhkuyxrI4I5Ehr+Yrb18x/B8YfLn3xRmhV+VMRSlFTkoCte19c3pe8M+ylfz9vAo2pdPT7+Fcc7cM2E5BtjgU82Ln+hxO1XcGvaXfbOU44qlp753z8zZ2uqUHOc+Gl0jumTql8/M95fQODHHrBpnUPxkJ+GJefPqaJfN6vdyUePaWz/3GKA0uN9v9a+eI+WGNjcFuMU+5BHZzVz8/f6Wct6/OYmN+yqTHRTtJ6YiIlOOIp6vfg6tvcM7O2TvgodPtkZROGKTZLiyvoLXmpdNNoyZj/fDFMtweL1+8YeZVXtFAevgiIuWk+FZKrG3vIzk+dk7OGdjpSkoy559veQVfgH/9XCsf+PV+0hLj+L+3rmbFoiR+v7eKO7fmjdrAXYwnAV9EpByHP+B39LEyO2mao4PT0CkBP1zSbRbONfs2x/nZy+dIt1nIdlj5xEMHSbfFEWc28Zlrloa5lRc/SemIiHShhz93A7cNLpllGy7pdl9K53itiz1lLXzw8kIe//ilfPGGZXT2ebjv6pnN0I420sMXESktMQ5rrInajrkrzayXgB82aYkW2nsH+clLZ7FZzNy1rQBzjIn7ri7hny4rJD5W1r4PhvTwRURSSpHtiJ/TgH+izkVeajwJcdJPmm/p/t77M8caeO+2/FHjMglxZkP3EY4kEvBFxMpxxM/p5KvDVR2sy3XM2flE8DL8k69iYxQfvKwozK1ZuCTgi4iVmzJ3PfymTjd1LvfwukBifgUmX926PkdSarMgAV9ErBxHPC3dA0Etqzudw/7lnTfkS8APh1XZybx7U+68T+CLNBLwRcQartSZg17+4eoOzCbFquzkWZ9LhC4+LobvvGcdeamy7PFsSMAXESvH4QsOc5HHP1LTwfJFdqxSDSIWMAn4ImLNVQ/f69UcrXbJgK1Y8CTgi4iVabcQY1Kz7uGXt3TT1e+RAVux4M12E/P3KKVOKKW8SqnNI+6/Til1QCl1zP/njtk3VYjQmGNMZCVZZ93DD2ykIgO2YqGb7QyS48DtwH+Pub8FuFlrXaeUWg38DZBFqsW8y0mZfS3+kZoO7BYzxemyMJdY2GYV8LXWp4Bxs9y01odG3DwBWJVSFq319HuUCTGHch3x7K1om9U5Dld3sDYvGZNJZnOKhW0+cvjvAg5NFuyVUvcqpUqVUqXNzc3z0BwRTXJS4mnodOMZ8s7o+e7BId6q75IBWxERpg34SqkXlFLHJ/jZGcRzVwH/CXx0smO01g9orTdrrTdnZGSE1nohppHjiGfIq4eXNg7ViToXHq+WAVsREaZN6Witr53JiZVSucATwPu11udmcg4hZmvkRii5KaMn7ZSeb8MaG8PqnIknUzV2uvljaQ2ABHwREQxZ9k8p5QD+CtyvtX7NiGsIEYyRG6GM1O8Z4t7fHiA3JZ6nPnn5qMcOVLbxzb+eGq7O2bHciVM2PRERYFYBXyl1G/BDIAP4q1LqsNb6BuCTQAnwv5RS/8t/+PVa66ZZtVaIEGU7LvTwR3r+ZCNtPQN09A7Q5R7Ebr2w3O63nn2L6rY+vnD9Um5YlUWJU6pzRGSY1aCt1voJrXWu1tqitc70B3u01t/UWidqrdeP+JFgL+adNTaGEqeNZ4434PXq4fsf2VeN2aTwajhQ2T58f++Ah0NVHbx7Uy6f3LGEJZl2WWtdRAyZaSsi3qd2lHCqvpO/HK0DoKq1l1fPtvDhK4oxmxT7RpRt7qtow+PVXFaSFq7mCmEYCfgi4t28NpvlWXa++/wZBoe8/KG0CpOCey4tYHVO8qiA//q5VuJiTGwuSA1ji4UwhgR8EfFMJsUXb1hGZWsvD++r4tHSGq5e5mRRcjzbilI5UtMxvGb+a2db2JDvID5OVsUUkUcCvogKO5Y72Zjv4JtPn6K5q587tuYDsK04lcEhzaGqDtp7BjhZ38llJelhbq0QxpCAL6KCUoov3bicgSEvmUkWrl7mm+S3qSAVpWBvRStvlreiNZK/FxHLkDp8IS5G24vTuPfKYpZl2jHH+Po6yfGxrMhKYl9FGy3d/STGxbBWllEQEUoCvogqX7lpxbj7thal8sj+Kmra+9halEpsjHzxFZFJfrNF1NtWlIp70EtVW6/k70VEk4Avot6WogslmJculoAvIpcEfBH10m0WSpw2UhPjWJ5lD3dzhDCM5PCFAL50wzJ6BjyyyYmIaBLwhQCuX5UV7iYIYThJ6QghRJSQgC+EEFFCAr4QQkQJCfhCCBElJOALIUSUkIAvhBBRQgK+EEJECQn4QggRJZTWevqj5olSqhmonMUp0oGWOWrOQhGNrxmi83XLa44eob7uAq11xnQHXVQBf7aUUqVa683hbsd8isbXDNH5uuU1Rw+jXrekdIQQIkpIwBdCiCgRaQH/gXA3IAyi8TVDdL5uec3Rw5DXHVE5fCGEEJOLtB6+EEKISUREwFdK3aiUOq2UOquU+nK422MEpVSeUmq3UuqUUuqEUuoz/vtTlVLPK6XK/H+mhLutRlBKxSilDimlnvbfLlJK7fW/7j8opeLC3ca5pJRyKKX+pJR6y/+eXxIN77VS6nP+3+/jSqmHlVLWSHyvlVK/Uko1KaWOj7hvwvdX+fzAH9+OKqU2zvS6Cz7gK6VigB8DbwdWAncqpVaGt1WG8AD/rLVeAWwH7vO/zi8Du7TWS4Bd/tuR6DPAqRG3/xP4nv91twMfCkurjPN94Dmt9XJgHb7XHtHvtVIqB/g0sFlrvRqIAe4gMt/r3wA3jrlvsvf37cAS/8+9wE9netEFH/CBrcBZrXW51noAeATYGeY2zTmtdb3W+qD/7134AkAOvtf6oP+wB4Fbw9NC4yilcoF3AL/w31bADuBP/kMi6nUrpZKAK4FfAmitB7TWHUTBe41vF754pZQZSADqicD3Wmv9CtA25u7J3t+dwP9onzcBh1Jq0UyuGwkBPweoHnG7xn9fxFJKFQIbgL1Apta6HnwfCoAzfC0zzP8HfAnw+m+nAR1aa4//dqS958VAM/BrfxrrF0qpRCL8vdZa1wLfAarwBXoXcIDIfq9Hmuz9nbMYFwkBf6JdpyO29EgpZQMeAz6rte4Md3uMppR6J9CktT4w8u4JDo2k99wMbAR+qrXeAPQQYembifhz1juBIiAbSMSXzhgrkt7rYMzZ73skBPwaIG/E7VygLkxtMZRSKhZfsH9Ia/24/+7GwNc7/59N4WqfQS4DblFKnceXrtuBr8fv8H/th8h7z2uAGq31Xv/tP+H7AIj09/paoEJr3ay1HgQeBy4lst/rkSZ7f+csxkVCwN8PLPGP5MfhG+R5KsxtmnP+vPUvgVNa6++OeOgp4B7/3+8B/jzfbTOS1vp+rXWu1roQ33v7otb6LmA38G7/YRH1urXWDUC1UmqZ/65rgJNE+HuNL5WzXSmV4P99D7zuiH2vx5js/X0KeL+/Wmc74AqkfkKmtV7wP8BNwBngHPDVcLfHoNd4Ob6vcUeBw/6fm/Dls3cBZf4/U8PdVgP/Da4Cnvb/vRjYB5wF/ghYwt2+OX6t64FS//v9JJASDe818A3gLeA48FvAEonvNfAwvnGKQXw9+A9N9v7iS+n82B/fjuGrYprRdWWmrRBCRIlISOkIIYQIggR8IYSIEhLwhRAiSkjAF0KIKCEBXwghooQEfCGEiBIS8IUQIkpIwBdCiCjx/wO2qGKttGygdgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "import numpy as np\n",
    "data = np.random.randn(100).cumsum() #Create some random data\n",
    "plt.plot(data) #Plot the data\n",
    "plt.show() #Show the plot"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "That's not so hard! The `plt.plot` function in general can take sequences of numerical values of the same length and plot them against each other. If we give just one array, `plt.plot` will plot the elements of the array against their index.\n",
    "\n",
    "We can also give `plt.plot` what's called a format string, which controls the style of the line we plot. In the example below, the string `g.:` specifies we want our plot to be green (`g`), with data marked by a small dot (`.`), and joined to one another by a dotted line (`:`). For a full list of colours, point markers, and line styles, see the documentation for `plt.plot` (remember you can run `plt.plot?` or sude `Shift + TAB` to access this)."
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4VNXWwOHfzqTTQq8JoUuVZgkIBILIFRBRUC6fgliwKzYQuXYFKxdFroqigoJgQbEhShnqAIZepSYk1BBKIH1m9vdHkjEhk2RSTiaZWe998pg5c+acfe6QNXvW3mdtpbVGCCGE5/NxdwOEEEKUDwn4QgjhJSTgCyGEl5CAL4QQXkICvhBCeAkJ+EII4SUk4AshhJcwNOArpUKVUiuVUnuVUruVUo8beT4hhBAFU0beeKWUagg01FpvUUpVAzYDN2ut9xh2UiGEEE75GnlwrfUJ4ET27xeVUnuBxoDTgF+nTh0dHh5uZJOEEMLjbN68+YzWum5R+xka8HNTSoUDXYCNBe0THh5OdHR0eTVJCCE8glIq1pX9ymXQVilVFfgeGK+1TrrsuXFKqWilVHRCQkJ5NEcIIbyS4QFfKeVHVrCfp7VedPnzWutZWuvuWuvudesW+Y1ECCFECRk9S0cBs4G9WutpRp5LCCFE4Yzu4fcE7gT6KaW2Zf/caPA5hRBCOGH0LJ21gDLyHEIIIVwjd9oKIYSX8KqAb4mzMHXNVCxxFnc3RQghyl25zcN3N0uchcg5kdjsNvxN/iwfvZyI0Ah3N0sIIcqN1/Twlx5aSoYtA5u2kWHLwBxjdneThBCiXHlNwL+hxQ0E+QZhUib8Tf5Ehke6u0lCCFGuvCalExEawfLRyzHHmIkMj5R0jhDC63hND/++n+5j1+ldbD+1nTMpZ0p1rLVH1/Lyqpdl8FcIUal4RcBPyUzBEm/hbOpZdpzawenk0yU+liXOQtTcKF4yv0TU3CgJ+kKISsMrUjrBfsHsemgXWmsmXjexVMcyx5ix2qwAjsFfSQ8JISoDr+jh58gq7VM6vZv2JsA3QAZ/hRCVjkcG/MtvsOo/tz8zNs4A4FjSMbp+3JVvdn9TomP7mfxQKO7ucrfM5RdCVCoel9LJybFn2DLwN/mz5P+WUD2gOkF+QQDUr1qfBlUbUMWvSomOX82/GmM6j+G29rfx1vq3eL3f67Sr264sL0EIIQzhcQHfHGMmzZqGRpNhy2B93HoW3f5PGX5fH19++7/fSnz8tnXb8r9B/+NY0jG2nNhCfFK8BHwhRKXgcSmdqxpfRYBvAAqFv8mfkKAQp/VzrHYrGbaMYh//xMUTADSu3piYx2MY0GJAmbRbCCGM5nE9/I83f0xo9VDGdh5L7eDaPPDLAwAE+gY6cu77E/fT5aMuDL1iKI9e/ajLefi4C3GETQ/jkyGfcG/Xex2DwHZtx0d53GenEMLDeFyUuq3dbTzd42km9ZrEmZQz6Oz/5a6fcyr5FBm2DBbuXlisufRBfkFMv2G6Y2bOyUsnaTezHXO3zzXoaoQQoux4XA9/RPsRjt/7hvclyDfIMYCbE6jXxq5Fo7Fre7Hm0tcJrsPj1z7ueFy/Sn0aVWvEyiMraVO7jczYEUJUaB4V8M+knMGu7dSrUg8ouH5OZHgk/ib/fB8ERdl0bBPt6rajqn9VADbEb2B93HoybBl8s+cbXu7zMjZtk1o9QogKyfCUjlJqoFLqb6XUQaXUs0ae65PNn1D/nfpcSLvg2BYRGsGkXpPyBOCI0AgGNB9AsF+wy3PpkzOS6TG7B1PWTHFsM8eYHSWX06xpTFw+kedXPi8lF4QQFZKhPXyllAmYCVwPxAN/KaV+0lrvMeJ8Q9oMoU5wHWoE1ihy34eufoio5lEu98Sjj0dzR6c76Fi/o2Nb7m8KSilsdlueevvSyxdCVCRKa23cwZWKAF7SWt+Q/XgSgNZ6qrP9u3fvrqOjow1rjysscZZ8KaDLb+bK/a0gZ//awbUZ//t4MmwZmHxMrBy9kh5hPdx5KUIIL6GU2qy17l7Ufkbn8BsDcbkexwPXGHGii+kX2XFqB10bdnXcVVsYrTWJqYkE+wUT7BcMFBzYzTFm0q3p2Mk/yBsRGuH4vWO9jvx3w3/5ds+3WLXViMsUQogSMzqH76xaWZ6vFEqpcUqpaKVUdEJCQolPtPboWq77/Do2Htvo0v7bT22n7tt1WXJgiWNbzl26ly+DGBkeiUY7buYqaJA3IjSCL4d9yZ93/kmvsF4lvhYhhDCC0T38eCA01+MmwPHcO2itZwGzICulU9ITXdvkWn4a+RPdGxX5rQaA5jWb897A9+hUv5NjW04gvzywR4RGsHD4QizxFka0G1Fobj7AN4D+zfvn2+4sVSSEEOXJ6By+L7AfiAKOAX8Bo7TWu53tXxFy+PN2zGPS8km82OdF7ul6T4mP88TvT7D5xGbe7P8mW05s4fHfs+bvXz4GIIQQpVUhcvhaa6tS6hFgKWACPiso2JfWy+aXSc5MZtgVw1wOpokpiSRnJhNWI8yxrW+zvoTWCKVlrZaObWuPruVY0jFua3+bSzX1LXEWPvjrA6x2K1Fzo+gZ2hObtgGyaIoQwn0Mv/FKa/0bUPLylC74Zf8vvLTqJRSKDzZ94HIPeuiCofiZ/Fg5ZiUAyw8vZ9HeRfw26rc8Uzs/2fIJyw4v4/YOt7vUHnOMmZxvThm2DFrWasm6uHXFvtFLCCHKkkfcabvj1A58lE+xSyVM7jUZk4/J8fjA2QMs2L2A/w78b579PhnyCfFJ8S635/I7eUdfOZrRV45mZcxK+ob3ld69EMItDM3hF1dJc/iFzZMviXk75vHMn8+w/9H9jjIKJWlT7kHax5c8zvr49fx1318lbpcQQjhTIXL45aWgmjlFuZRxiQOJB2hXtx0BvgGO7aE1QhnQYgAX0y9y4uIJFuxawL1d76VhtYbFalPudnRp2MUx318IIdzBI3r4JbVw10JGfj+SXQ/uon299oz6fhQ3tbmJkR1GOvb5eufXjFo0ikOPHaJ5zebl1jYhhHCVqz18j6uHXxzXhV3H97d9T+PqjcmwZbD3zF5OJ592PJ9uTeffHf9N0rNJNAtpVurzaa1LtMpWbpcv0C6EEK7y6h5+YR745QFWxa5i78N7y+R4qZmpNHi3Ac/2fJZJvSaV6BhlPVYhhPAM0sN30dYTWzmQeCDf9v7N+3Nnpzu5Z/E9rIpZVerzBPkF8fBVD3NV46tKfIxlh5c5Lf0ghBCu8IhB29IY8NUAbm17K9c2uZZFexfx3W3f4W/yZ3i74RxLOsZVn1xFr6a96EOfUp9rStSUoncqRP2q9dFofJSPzOcXQhSb1/fwF9y6gCeufYLUzFTOpZ3D3+TveO7g2YPc3eVuWtVqVWbnS0hOwK7tJXrtuG7jmNxrMsF+wSy4dYGkc4QQxeL1Pfyo5lEAtKnThgevetCx3RJnoe+cvmg00yzTyiRf/tnWz7jnp3uIeTyGpiFNS3SMm6+4maMXjnJlgytL1RYhhPfx+h5+zPmYPCWSc+TOj5dVvvy6sOuYNmAaVfyrFPu1X+34ipsX3EyrWq2YO2xuiT8whBDey+sD/tztc7lx/o20/1975u+c79geGR5JoG8gJmUqs3x569qteSLiCeoE1yly38unX6ZkpnAu7RzVA6oDlDgtJITwXl6f0hlz5Riubnw17298nyp+//S8S3r3blGS0pM4m3qW8JDwAvdZenApg+YPQmtNgG8Ay0cvZ1y3cYzrNg6Akd+N5OSlk5jvMpdJm4QQ3sHrA37TkKY0DWnKwJYD8z13eXmEsjB4/mDs2s7au9cWuM/SQ0vzlFP+aPNHeT54oppFcTHjYpm2Swjh+bw+4KdmpvLn4T9pV7ddnhr4Rnmu13Mopys/wq/7f2XHqR1cUecKgnyDHAuiz90+F4Ag3yCWj17Ofd3uM7ydQgjPIwHfmsrQBUMB0C8af9fxwJYDHfn53KmiNbFrGPz1YBSKQN9Apg+cTmJKIrEXYpm1eRYanaf0c6YtE6vd6tKC7UIIATJoS83AmgxtPZSO9TqWS32aNbFr6DunL8+vfJ6ouVGOc644sgKFcgT2xJREJvWaxJgrx+QbPD516RRVplTh822fG95eIYTn8PqAvyF+A38c/oM9CXvyBGCj/Lz/Z9Jt6fnKIwxoMcDprKCcweNX+77quBegXpV6TOw5kW4NuxnaViGEZzEspaOUehsYAmQAh4CxWuvzRp2vpMwxZjJsGXkCsJF3sA5pM4T3Nr6HzW7LE9i7N+rOsjuXsSp2Vb5ZQZcPHiuleLXfq4a1UQjhmYzM4f8JTMpeyPxNYBIw0cDzlcjlyxEaXZ+mV1gvzGPM+aZ7TrNM4+VVL3NmwhmXFkqxaztHLxwtdHqnEELkZlhKR2v9h9bamv1wA9DEqHOVhrOUidHqBNehV9Neec51TZNreOLaJ1xeFWv6huk0e68ZiSmJRjVTCOFhymuWzt3AwnI6V7EZMd++MK+sfoU1sWuIGR/j2BYZHlmsbxcDWw6kekB1/Ex+Zd9AIYRHKtUCKEqpZUADJ09N1lovzt5nMtAduEU7OZlSahwwDiAsLKxbbGxsidtTWew+vZs0axrdGv0z6Ho+7Tw1AmqglPM5+kIIURBXF0AxdMUrpdQY4AEgSmudUtT+FWnFq/JW+63ajOowihk3znD5NT/9/ROrYlYxvN1wKZUshBdzNeAbOUtnIFmDtH1cCfbe5GL6RVbGrKRbw240rt4YrTUv9nmRDvU6uHwMS5yFmxfcjEbzYfSHstyhEKJIRs7D/wCoBvyplNqmlPrIwHNVKicunWDogqGsOLICyJpm+dg1j9GvWT+Xj2GOMTtKNMhyh0IIVxjWw9daG1+YppJqFtKMjfdu5Io6VwBZPf40axp1guu4nMOPDI8kwDfA6XRSS5ylzKt8CiEqP6+vpeMOfiY/rm58tePxwt0Lue/n+zjy+BGX59XnTCf9Zvc3aLQjsFviLPT5og+Z9kxHsTUJ+kIIkNIKbrP26FoW71sMQI/QHky/YTqNqzUu1jEiQiNoULUBH0Z/yOnk00BWqsdqz7r9QVI9QojcpIfvJu9vfJ9tJ7cx9IqhtKvbjnZ125XoOPd3v597u95L7eDawD8rdZXXncNCiMpDAr6bvDvgXfxN/gAcPHuQWkG1qBVUq9jHCQkMcfy+89RO5myfw6LbFrH15FaahjSle6MiZ2oJIbyEBHw3Ca0R6vh90PxBXFn/Sr4Z8U2JjhVzPoYxP44hNTOVg2cPMiVqCv6+/kTNjaJGQA0GtR5UVs0WQlRiEvDd5NSlU3y35zsGtx7MO9e/k6enXlwHEg+wJnYNCkWAbwB/n/mb68KuY8a/ZuQZHBZCeDcJ+G5yOvk0jyx5hDrBdbi9w+2lOlb08Wh8lE++Es+PXP1IGbVWCOEJJOC7yRV1ruD4k8cJ8A1g64mttK3blkDfwBIdq6ASzza7jWmWaRw8d5C7rrxLpmcK4eUMraVTXN5YS+fHfT8ybOEw/rrvr1INsDq72Wrd0XX0+rwXGi1z8oXwYG6vpSOK9t2e7zh49iDf3/Y9bWq3KdWxnJV4Xh27GqUUWutyWc1LCJGlot7tLgHfjb7a8RWxF2LZev9WQ44fGR5JgMl5+QUhRNnKCfIXMy7yzvp3sGs7/ib/CvXNWgK+G3057Ev2ndnHnoQ9Jb7xqjA55Rc+jP6QQ2cPyYwdIQyQlJ7EXT/exZKDS8i0ZaLR2LUdoMJ9s5aA70bVAqoxful4AkwBrBizwpBzRIRGEJ8Uzxvr3uDkpZM0rl688g1CCOdyevShNUL59cCvWG1W7NjxwQdfH1+01hXum7UEfDc6fO4wdrudBjUaYImzGNYLGN5uOCPajzDk2EJ4I0uchX5z+5Fpy8Tf5M8b/d5g8srJjvTp9IHTSUxJLDSH7448vwR8N1oVs4oNxzaw6dgmftz3o2G5vpySyxm2DDJsGVT1r1rm5xDCm3yy5RPSrGlA1t9Vmi2N5aOXOwL40kNL+e3Ab0zqNcnp6y1xFqLmRpFmTSPQN7Dc8vxSLdONTlw6gUmZsGM3vLJlUnoSDd5pwM0LbsYSZzHsPEJ4MkuchalrptK1YVd8fXwxKZMjbRMRGsGkXpOICI2gWUgzujToQkHT3s0xZtKt6Wg06bb0cqtqKz18N+ob3tfpDVNG2H16NxczLrLyyEqi4qIq1MwBISqDnF55zt/rzBtnFpi2GdN5DGM6jynwWDUCauDr44tVWwkwBZRbnl8CvhvlzKIpjzyeOcaM1jrPt4nci6ZUxDnDQlQk5hgzadY0NFn3tSSmJBaYssmhtXa6it2Wk1uoGlCVpyKeom94X05cOsFzy59jSOshhv4NSsB3M2c3TBkhd/kFk4/J0aPIGXxKs6bJ3bhCFKKgEibOZNgyaP5ecx7s/iCTe0/O9/ysIbN4KfIlmlRvgjnGzIhvsyZVTN8w3dC/QcNz+Eqpp5VSWilVx+hziYLlfJvo26wvGbYMmlRvAmT1WjKsGQDlmksUorKJCI1g5ZiVvN7v9SKDsr/Jn+HthtOpfienz/soH8ffoCXOgkJh18aP5Rnaw1dKhQLXA0eNPI9wTURoBF/f+jWnLp1y1OMvbDF0IUReXRp2cbn3PX3gdKfbVxxZwbLDy5h03SSqBVQr1jeH0jK6h/9fYAJQcSq0ebk6wXVoX689kJVfXH5kOQuHL+TVvq9KOkeIIrSa0Yr7f77f5f1TM1PzzdSJPh7NR9EfEeQXBPzz7bs8/gYNq5aplLoJiNJaP66UigG6a63PONlvHDAOICwsrFtsbKwh7RH/SM1MZfQPozmdfJp1cev49KZPOZ92ntTM1CIHoYTwZtMs02hduzWDWw8uct/Pt37OPT/dw7Enj9GwWsM8z+X05stKuVTLVEotAxo4eWoy8BwwoKhjaK1nAbMgqzxyadojXLP1xFa+3/s9AAG+AbSs1ZKZf80kOSPZzS0TomJ7MuJJl/ft3qg7L0W+hK9P/jBblsG+OEoV8LXW/Z1tV0p1BJoB27OnJDUBtiilrtZanyzNOUXprYpd5VghK9OWyZrYNXx969fubpYQFVqaNQ2r3eryneod63ekY/2OebaZY8zM2DSD9we+75a6Vobk8LXWO7XW9bTW4VrrcCAe6CrBvmLIGSTKfZegEKJwvx34jWpTq7Ht5DaXX5NhyyAhOcHxOCE5gZ2ndpZqDevSkNIKXsjZINHfZ/5mxLcj2H5yu7ubJ0SF1L5ue97s/ybNQpq5/Joes3sw+sfRjsdNqjdhbOex7Di1w4gmFqlcbrzK7uWLCuTyG758lA87Tu3gTEq+cXUhBNCmThsm1JlQrNc80+MZx1rVC3ctZOzisY4BW3fMipM7bQUArWq34u9H/nZ3M4SosE5cPEFV/6pUC6jm8mtu73A7ACmZKYz7ZRyp1lTAfQujSEpHCCFccPt3tzP466KnY+Zms9v4dve3vLn2TUZ1GEWgKdCtY2fSwxcOr6x6hWNJx/h4yMfubooQFc4zPZ4p9mu+2vEVdy2+Cx98CPAN4L1/vVfkwihGkoAvHNKsaSRnylx8IZwZ0mZIsV9z9EJWVZmcKrWuVNg0kqR0hMOUqCl8dctX7m6GEG6Rs7iJswWC0qxp7E3YS2pmarGO2b95f4J8gyrMFGjp4QshvN7li5tcPoNmT8Ieus3qxqLbFjGs7TCXj1uea164Qnr4wuHg2YNc++m1LD+83N1NEaJc5SxuYtM2pyWKm9Zoyvxb5nNNk2uKfezcSx+6m/TwhUONgBpU9a/qdIUeITxVhi2DFTErMPmYsNltTlMvtYNr8++O/3ZPA8uQBHzhULdKXZaNXubuZghRrg6ePcju07uZGjWVTFum09TLwbMHsdqtXFHnCje1smxIwBdCeK2c9Zzn3TKPvs36Frjfq6tfxRxjJnZ85S7fLjl8kcezy56l35x+7m6GEIbLWc/5+ZXPM2j+IH7c+yP136nPl9u/zLfvUxFP8cmQT9zQyrIlPXyRR9MaTaUuvvAKOQO1kJXH3356Oze3uZnwkPB8+3aq36nA9WkrEwn4Io8Hr3rQMR+5IkwjE8IovZv2xt/kj9Vuxd/kz4DmA5z+e9das+zwMjrU65Bv5arKRgK+yKOo+chCeIqeYT0xjzHnmyNv13Z81D/Z7vNp5xnw1QDeHfBusVa8qogk4Is8ft7/s9sr+glRHrae2ErDag3zlDq46eubuJhxkZVjVjq2VfGvwpqxawirEeaOZpYpGbQVeQxuNRiTMuGjfCrEreBCGOWRJY9wx6I78my7qc1NDG87PM+2zcc3syZ2DceSjpVn8wyhtK4464Z3795dR0dHu7sZXi9nqprk8IUn23FqB5cyLtEjtEeB++TM5MmwZhDgG1BhU5xKqc1a6+5F7ScpHZFPRGgEHep1IMA3wN1NEcIwBc26ybBl4Ovji4/ywRxjJt2ajkZ7RIrT0JSOUupRpdTfSqndSqm3jDyXKDvr49YT8mYIq2JWubspQhhiY/xGlh5cyuUZjvk75xPwWgBHzh0BIDI8kgDfAI9JcRrWw1dK9QWGAp201ulKqXpGnUuUrQ71OvBC7xeczkcWwhO8t/E9VseuJv7J+DzbOzfozCuRr1DVvyqQ9W13xegVHpPiNCyHr5T6BpiltXa5OIvk8IUQ5eFi+kVizsfQsX7HQvezazuzt8wmMjySVrVblVPris/VHL6RKZ3WQC+l1Eal1Cql1FUGnkuUMavdyraT2/J95RXCE1QLqFZgsE+zpnEp4xIA8UnxjPtlHCtjVjrdt7IpVcBXSi1TSu1y8jOUrHRRTeBa4BngG+Wk7q5SapxSKlopFZ2QkFCa5ogy9PnWz+nycRcOnTvk7qYIUaaij0fz/sb3HUE9N7u2U21qNaaumQpAk+pNiHk8huHthufbtzIqVQ5fa92/oOeUUg8Ci3RWF3GTUsoO1AHyRHWt9SxgFmSldErTHlF2BrYcyPxb5lM3uK67myJEmZq1eRazt86mU71ORDaLzPOcj/Lh7evfpmvDro7HTUOauqGVxjAyh/8A0Ehr/YJSqjWwHAjThZxQcvhCCCMVt3TIr/t/5UL6BUZ1HFWOrSy+ipDD/wxorpTaBSwAxhQW7EXFc/zicZYeXOruZghRZswxZjJsGQUuZQiQmpnquKv2o80f8dY6z5lRbljA11pnaK3v0Fp30Fp31VqvMOpcwhgfbPqAQfMH8cqqV7DEWdzdHCFKrUHVBigUJmUqcF79Y0seo/snWZ3lH27/gaV3eE6nR2rpiAJ1bdgVXx9fXln1ClFzoyToi0rP3+SPv68/z/V6rsB0zp1X3smb/d8EwNfHl/pV65d3Mw0jpRVEgQ4kHsBqt+b5+lvZbzwR3u3/Ov0fIzuMxORjKnCf3k1707tpb+KT4vk4+mPu6nwXLWq1KMdWGkd6+KJAkeGRmHxMhX79FaKyKSzYQ1YtnUNnD7H5+GamrJ1CQornTBeXgC8KFBEaQRW/KnRt2LXCVgkUwlV/HfuL/nP7s+/MvkL323x8My1ntMTP5Efq5FS6Nypy8kulISkdUah1d6+jbpW61Amu4+6mCFEq59POcyblDLWDahe63xV1ruCLoV/QqX4n/E3+5dS68iH18IUQwokpa6bQsGpDxnYZ6+6mFKkizMMXHmDLiS18tvUzdzdDiFLRWherLtThc4d5b+N7mGPNxjXKDSTgi0L9uO9H7v3pXqx2q7ubIkSJRR+PJmx6GBviN7i0/+D5g+kV1ovPh35ucMvKl+TwRaEev+ZxHrrqIUyq8JkNQlRkuxN2UzOwJgnJrs24mT5wOjUDa+KjPKtP7FlXI8pc7eDaWXcn5i90KkSlYImz8NCvD7EnYQ+3f3e7SzcQHkg8wAO/PsBvB34rhxaWHwn4olDn087zwaYP2Juw191NEaJEXKmfk5slzsITS59gy4ktDP9muEfdYS4BXxQqOSOZR5c8yqpYWd/WW1niLExdM7XSBr5eTXth0zYUyqUbCM0xZmzaBuDSB0RlIjl8UaiG1Rpy6ulTMg+/ErPEWUq8JmtxywlXRN0bdWds57H4KB/u6XJPke2PDI8kwBTguGZPusNcAr4olI/yoV4VWX++ssoJ2GnWNAJ9A4sdsM0xZlKtqQCVtp5SoG8gnw11fWpxRGgEy0cv95iFy3OTgC+KtHDXQtKsaYzpPMbdTRHFZI4xk2ZNQ6NLFLBb1mqJSZnQ6Erb203NTMXP5Ievj+vhLiI0wqMCfQ7J4Ysizd0xl5l/zXR3M0QJRIZHEuAbgI/yKVHAjkuKw6ZthZYTrug+2PQBAa8FcDH9orub4nZSWkEUKTkjmSC/II+bk+wtcnL4fZr2oUdYj2K9Nik9iT0Je6jmX40agTVoUr2JQa00zvq49Sw7vIwX+rzg7qYYRkoriDJTxb+KBPtK7FLGJWb+NZN3N7xb7NdWD6hO+7rt6fhhRz7fWvBdpxV5Jk+P0B4eHeyLw7AcvlKqM/AREAhYgYe01puMOp8wzs5TO5m3cx7P9HiG2sGFVxoUFc9TfzzFsYvH6Bnas9ivnbV5Ftc2uZbvb/ueLg27ON2nos/kOXnpJHWC6xQrh++pjOy2vQW8rLXuDLyQ/VhUQofPHWaaZRrxSfHubooogcUjF3Pg0QM8GfFksV53KeMS9/9yP7/u/5VhbYcRHhLudL8/Dv/huLEpzZrGu5Z3K1Rvv8P/OvDYksfc3YwKwciPPA1Uz/69BnDcwHMJAw1uPZi0/6RJWqeSalazGQB2bcdqt7pc472KXxVOPX0KkzJxLvUcq2JXERkeSUhgSJ799p/Zj13bMSkTNm3jx30/8uO+HytEb19rzdSoqbSp08ZtbahIjPwLHg+8rZSKA94BJhl4LmEgk49Jgn0ldTb1LHO2zWFD/AaqTqnKvB3zXH6tUop6VepRO7g2O07tYNjCYU577SPaj2Bs57G82vdV7rryLgCXyxgYTSnFfd3uo3fT3m5tR0VRqr9ipdQypdQuJz9DgQeBJ7TWocATwOwCjjFOKRWtlIpOSPCctSM9idaaZ5c9y6K9i9zdFFFMexP2ctfiuzibepYHuz9Iu7rtXH7t0oNL+fDGI0sDAAAeRElEQVSvD9Fac1Xjq7DcY6Fvs7759rv5ipuZPXQ2k3pNYly3cfib/PFRPvj6+OaZBuqOgd3zaeeJuxCHXdvL7ZwVWs7CAGX9A1zgn2mfCkgq6jXdunXTomIK+2+YnvjnRHc3QxRi/dH1esrqKXr90fWObenWdH0w8aC+mH6x2Mcb88MYHfbfsAKf/23/b/rmr2/W5iPmPNvXxq7VNabW0FFzovK0Lei1IG162aSDXgvK00YjzYqepXkJHXs+tlzO5y5AtHYhLhuZwz8O9AHMQD/ggIHnEgaLeTxGSiRXYAXNlPE3+dOiVgsgq3N38tJJGlZr6NIxPx/6OWdTzzoe7zy1k9Wxq3n46oexxFkYumAomfZMfj/0OytGr3Dk6nuG9WTjvRtpXrO547UrY1aW6o7fkuoT3oePB39Mo2qNDD9XZWBkYvY+4F2l1HZgCjDOwHMJg1WkYF+R53yXpdWxq3l99esuXWdBJYBXHFnBVzu+AmCaZRqNpjXifNp5l86vlMozDXfpoaU8suQRElMSMceYHWmSTFtmvlx9mzpt8DP5OR6HVg9Fo/GhZHf8llTr2q0Z122cTMnMZtj/C1rrtUA3o44vytd3e75j5ZGVzBzk3hILFX3Od1lZe3QtkV9EotEErQkq8jq7NermKOmbO3f+2dbPWBe3jjs63cGAFgP4wPcDlwbgE1MSeWPtG9zV+S7a12sPwD1d7qF93fbc/t3tRDaNxN/kX2hFya93fs2q2FV8NPgj7rzyTkICQ5i7fS4/7/+Z0Bqhxf8/pQR2nd5F3eC61K9av1zOV9HJx55wyb4z+/jj8B/Ytd2tM3ac9WQ9MeCbY8xossqeuHKdTao3oXG1xjSv2ZznrnvOse8nQz7hXNo5ADrW70jH+h1dOv+R80eYsWkG/Zv3dwT8fWf2ccs3t5BmTWNV7Cpm3jiTxJTEAitKHjl/hOjj0cScjyE8JJwhbYbQsX5HQmuEujw1tLSGLhjKNY2vYf6t88vlfBWdBHzhkv/0/g//6f0fdzcDO/ZiLWZRWUU1i2LKmiku12RvV7cd8U/mvzEuyC+IIL8gx+PElEQupF/Ik193pnuj7iQ/l+z40IGsD6FMWyaQNR6QmJLIpF4Fz7ae2HMiV9a/kjYftGFc13HMuHEG4SHhTLthWqHnLksfDfqI6gHVi97RS8jkalGp/H3mbwCGtR3msemcJQeWcCr5FMvuXMaojqOY2HNioddp13Zs9qx0zoHEA6yK+Wd1sjfWvsGG+A2OxzfOv5H7fr7PpXaYfEx5ct+R4VlpHJMyufQhtOnYJkZ8O4JMWyafbv00z1jEnG1zuGPRHYaPw1zf4nquaXKNoeeoTCTgC5fEJ8Uz4MsBPPDLA1jiLG4bOJ07bC7JzyXz/W3fe2SwB/jgrw940fwi14Zey7m0cyz+e3Gh+2+I30DDdxuyMX4jr6x+hTt/uBPIKo0wafkkVseuduw7sv1IWtRs4XjfCnof31r3FjM2zsizLWdhkFf7vurSh21O+k2j8wzsWuIs3P3T3czbOY+ouVHM2jyLF80vlvm/pTMpZ1gft56UzJQyPW5lJikd4ZItJ7aw7PAyFIrPt32OzW5DowkwBZR7TzvYLxir3YrNbiPAN6DczlseLHEWejTpQbu67fBRPnw65NMiC9YF+wVzfYvraVOnDZOum8TTEU8DUNW/KqmTUx2zaSxxFiavmEyGLYMvtn3BhJ4TmGaZ5nQA/Md9P3Ip4xLdG3XP894WZ2GQnG8El6elzDFmFFmzvtKt6Tz828NY7VbeWvdWnumdpVmaEWDlkZXc9t1t7Hhgh8tjF55OAr5wye7Tu/FRPti0jUxbZrEGFEvC2R/7xviNfLb1M+7peg+RX0Qy88aZjO0ytkzP605rYtdww1c3FHsGUucGnZl3S1bJhMvr3AT6Bjp+zz3gbdM2vt39rdMBcEuchW0nt5FhyyBqblSJP9ALWiow9weBUsqRjsr5FpDThtLOxooMj+S3Ub/RslbLYrfdU0lKR7gkd/7Wz+RHgCnA5VxuceX8sf9nxX+Imhvl+Kp/+Nxhvt3zLS1qtuDhqx52zB6pLJYeXMqUNVMKTF1MXTuVVGtqvrn0c7fP5eFfH3b6mj8P/cnkFZMdx8ywZbB432J2nd7FxviNvLrqVZLSk4C872GQbxCPXvMofia/fAPgSw4ucTqnvyQiQiOY1GtSvm8JOamhmTfOJNA3MN+/JXOMmXRreqnaULdKXf7V6l95Bq29nfTwhUsu760Bhi3yXNA6rP/u+G9GdhiJUoq3B7xdpucsruKmG5YeXMrAeQMBCPJ1Pq/+hhY38OehP/OtH3vo7CGiT0STacvMczOTJc7CoPmDyLRnMs0yjRWjV9C9UXeGfzucCT0mUK9KPV4wv8D4a8cDznvcIQEhjFk8hud6ZU3ljDkfwzTLNEzKBGDYTKjcqaGO9TpmvcdNIhwf4pHhkfj4+GC320vcho+iP2J3wm5GdRjlseM9xSVLHIoSsdltDFs4jF5hvXim5zNlemxXvs5rrYlLiqNRtUblfhdlSdINU9dMZfKKyWg0JmXivq73EVYjLN8HhrMPEru2szF+Y77tU9dM5T8r/+MoTfxq31eZ1GsS209up3nN5lQLqEa6Nb3IcY4TF084yi2cSz3HpOWTuKHFDew7s8+QD3Rnzqedp+n0pkzsOZHnej0HwLqj65i9dTYDWwzktg63Fet4ljgLPT/rmXXjWgEfsJ7E1SUOpYcvSsTkYyLYLzhPj7OsOOuJJmckc9OCm5jQYwI3tLyB7/d+z4hvR7B53Ga6Nuxa5m0oTElu/ooMjyTQN5AMWwYmHxOzt87Gpm0EmAJ4usfTbDmxhYk9J9Kraa98x9oYv9HpB0xkeCQBpoB8g6JXNrjS8VpXBrVzgv2v+39lx6kdjLlyTLkHx5DAEJ7t+ayjGueljEtZ1zgnkgZVGxQ74JtjzCil0Lp8a/dUdBLwRYktGL7AkONqrTHHmGlduzUvrXqJyb0mE1o9lIvpFx3lA3qG9mTmjTPdUhQrMjzSsdiHUqrIdEP08WjGLx3PJ0M+4eiFo+xP3M8X278AsmapvL7mdezazoojK5z2RAtKcTWr2YzpA6dzOvk0Uc2iHK/7+8zf/HrgV1IzUwmrEcadV95Z5DW9s/4dnvnzGXyUj1tmXgGOm7hizsfQ/n/tmXPzHJaPXk6zkGbFPlZBH4beTgK+KLU0a1qe2SCldSblDJNXTGZK1BROXDzBudRz9G7am033/bMkcsNqDXnoqofK7JzFEREaQY/QHphjzcweMrvIwJiUnoTWmkGtBxESGIIlzsKC3QvItGWilHJMmyyoJxoZHomfyc+Rw88JXt/t+Y5HlzzKkceP5Fl+cNOxTTz1x1NU9a/KsCuGuRTwL2VcQpHVFnf2iBftXcTCXQu5ocUNXNP4mhLX3GlSvQmTrptEpj2Tf7X8l/Tus0kOX5RKxOwIWtduzZyb55TpcVMyU7BrO1X9qxa4z7nUc+w7s88tf8xaay5mXMx3276rg7k5+9UOrs3438cXOR7g7LiJKYmsj1vP4NaD81QzvZRxiTRrGnWC66C1dqnSaUUoSmeJs3Dd59dh13ZH3j3YL5hTyacY0GJAsY711Y6vuPOHO9nz0B7a1m1rUIsrDsnhi3Jxa9tbqVelXpkfN9gv2PG71prrv7yeHqE9eKXvK47tb69/m7fWvcWLfV6kf/P+5RqglFJU8avCpmObqFelHuEh4U6DZps6bageUD3fwLKzWSqFfUjk7H8h7YJjW+3g2gxpMyTfvlX9qzo+KF0ta13QnPnylHvqZc63jH2J+zDHmIkdH1usY93a9lY61e8kc/AvI/PwRak83eNpWtVqVaZlFr7Y9gUzN2WVYdZa03ZmW5YfWZ6vjnvH+h3x9fHl5VUv55mvb7RMWyYT/pzA8iPLiZgdwWdbPwPyDuamWlN5b+N73LHoDhq+25B1R9cVeDxnc9Wd+XTLp9R+qzYJyQnEJ8Xz+dbPOZd6zum+r656lcDXAtmTsMfl63K1HUbJybvnnpP/Qu8X+P3/fi/2sYL8guhUv5MhkwoqMwn4olQcN0mt/E++oLs6djWvrX6t2IH4p79/YuHuhUBWnZjD5w7jgw+fbslbgCvmXExWiYVyXjA7ISWB9za+R+z5WH4b9RuPXP0IAFc3vhof5YNJmTApE53qd2L5keUkpiRy/ZfXl/oDKaJJBM/3fh6APw79wd0/3c3p5NNO9319zeuk29JZe3Rtqc5ZnpzV6mlRq0WJUjJfbPuiUl17eZGUjigVc4yZVGsqQL7b83MW8JiyZkqxcsKLbl9Ehi3DcXy7tmMn/2BizmCmtupynYnRqFoj0ianYdO2PKmaMylnyLRn8kC3Bxh95WjMMWZHzaGyGAhtX6+948akuzrfxTWNr6F17db59rPEWRwfPON/H0/Heh0rzaDl5bV6Tlw8wcqYlQxsOZBaQbVcPs6TS59kZIeRXBd2nRHNrLSkhy9KJedruI/Ku3TdssPL8tXbKY6cBTIKK8kbERrBHR3vQKNZdNuics/h+/r4kpKZwpfbv2TnqZ3c3uF2tt6/lf8N+p9jnnxxygm7wma3sTF+I5D1AeAsR1/QcoeV0c7TO/m/Rf9XrNQUQOz42DzjPSKbKyudF/QDjAB2A3ag+2XPTQIOAn8DN7hyvG7dupXxWu6iPKw/ul5PWT1Frz+6Ps+2oNeCtOllkw56LSjPc4X569hf+t7F9+q4C3GFHj/HqUun8uxbHpYcWKKfXvq0Trem64vpF7XvK776+RXPO923sLaXxLwd8zQvofvP7a+PnDtS4DlL8v99RXQx/aLem7BXp2amurspFRoQrV2J2a7sVOCLoS3QBjDnDvhAO2A7EAA0Aw4BpqKOJwG/8jqedFxPXTNVp2Wm6ZSMFJ2Ykqj/OPiH7vpRV/3W2rdcPs43u77Rtd+srU9ePGlga0vn9dWv65A3QrTdbtdaa71g5wLd6cNO+tHfHjX83GeSz+iBXw7UvIT+ctuXBe5X1h80lcmGuA367XVv60vpl9zdlHLjasAvVUpHa71Xa/23k6eGAgu01ula6yPZPf2rS3MuUbHtPL2TScsnsS5uHV/v+prG0xoTWiOUpIwkqgVUc/k4I9qP4MyEM8Wa6rnj1A7u++k+kjOSS9L0Ynuu13OcnXAWpRSWOAtjF49lx6kdfBT9keEzhfYn7mdV7CpMysS4X8YVeD53z7gpS/N2zGN93HqX9192eBkTl02UGTpOGJXDbwzE5Xocn71NeKioZlEcfuww/Zr1I6JJBBN6TKBN7TYcePQAD3R/oNjHc3X+OGQNln6751v2ntlb7POUVE77cvLlkFXkzOh8uSfl5101ful4vtrxlcv7T+49mbMTzpbbQumVSZGzdJRSy4AGTp6arLUuaO01Z3+tTm/pVUqNA8YBhIWFFdUcUUGZfEw0q9nMcUfowJYDixW0ISu9OHTBUO7odAe3tXe9WFafpn1IeCah3Hp0438fz9WNr2ZUx1EFrupklPI+X0Xw131/UTuo8FW/LlcjsIZBrancigz4Wuv+JThuPJC7CEYT4HgBx58FzIKs0golOJeoINbErqH3F71RKAJ9A1k+ejlV/aty/y/38/6/3qd7o8Lv/L6UcYnTyae5mH6xWOc1+ZgwYSr1kniuWnZ4GdX8s9JU5X2HakW4I7a85a4TVBStNU/98RRDWg9xVN4U/zBqHv5PwHyl1DSgEdAK2FT4S0Rll3OjS+5556OvHI2vjy9p1jTHfgUF5l2ndzG0zVDa1W1X7HMv3LWQUYtGgc4qCWxkLZhdD+3K87g467yWhfI+n7utjl3NvjP7GNdtXJH7JqUn8dnWzwirESYB34lSBXyl1DBgBlAX+FUptU1rfYPWerdS6htgD2AFHtY6u66t8FiR4ZEE+QblSTc0rt6Y1WNXO/YpqEjX2qNr6T+3P1a7tUTFu/ae2Vtk1UlROS3au4jPtn7mUsCvEViDcxPPOf4tiLxKO0vnB611E611gNa6vtb6hlzPva61bqG1bqO1XlL6poqKztmt8Tl0dlXWPw//SZo1zTHouOzwMiCr9ku6reRrmN7Q4gaCfIMMW2c3hyXOwr+//zdHLxw15Pgiv5cjX+bYk8dc3l8phcnHZGCLKi8prSDKlLN0w4JdC3hsyWP8/cjfBPoGotFZt/77mJi+cToX0i8wqPWgrFIE2laigJ07t52Ymsgba9/gmibX0De8b5n29M+knCH6eDQ+Sm5SLy/FGYD9asdXbD2xlXcGvFPsSQPeQAK+MFyzkGYMaT2ElMwUJvScQLOQZhw8e5CL6Rd5a/1bTN8wHX+TPzNunEFiSmKJByNzPmzuXnw3vxz4hV8P/Frmtd2HtBnitCSxME7chTjm7ZzHyA4jixzA3XV6F8uOLJNgXwAJ+MJw1zS5BqvdyvQN07ml7S2MaD8CyFqEG3CkcRJTEh3L3JVGy1otUahirTkrKq4Tl04wafkkOtTrUGTAH9pmKDUCamCJs8h77oQEfGG4nIHadFs6MzbNYOWYlXmKi5X1nPK+4X0Nm6v+9B9PE+gbyGv9XiuzY4rCdW3YleTnkvMsiuPM2qNrGfDlALeu2lXRSSJSGC733ahWu9UxIFvYIG9pRIRG0KdpH+pWqVvmf/RnU8/mW4hFGMvXx7fIYA/wkvklUq2pXnUXcnFJD18YLjI8kkDfQKc9bqPmlI/pPIb+SWW/7OFnQz8r0+MJ1/zX8l/CaoRxa7tbAef3cnRr2M0R5L3lLuTikkXMRbkor7tghWdqNaMVPUN78sXNXxS64Lq3/jtzdRFzCfjCY6VZ0xwLs5SFI+eOcOcPdzIlagq9m/Yuk2MK12TaMh21kqaumcrkFZPRaEzKxG3tb8Pf5M+4ruPoEdbDzS11D1cDvuTwhUfaemIrQa8HseRA2d3zl2ZNw8/kJ1UY3SB3YbzI8EgCfANQZN1g9c3ub5izfQ5RX5bfQvaVlQR84ZGa1WzGK5GvOF3ztaTOp51nQPMBVKRvxd5iyYElTPhzAttPbufn/T+zeORiXu/3Ond3vtuxT6YtUwZqiyCDtsIjhQSG8Hyf58vseIXljYXxNh3bxOyts2lQtQH/++t/TOg5gQEtBmCJszBn+xyvKhddGhLwhcdKt6ZzPu089avWL/WxzDFm0qxpeSqBSsAvPy/0eYEXI18E4O4udxMSGAJ4Z7no0pCALzzW0AVDOZt6lk33lb4yd2R4JCYfEzZ7yWr9iNJRSrHyyEo2xG/IF9i9rVx0aUjAFx7rkasfITUztUyOFREaweq7VktP0k2+3/M9w78dnmdxHXkPik8CvvBYg1sPLrNjWe1W6Um60a6ErEVnJKVWOjJLR3isTFsmh84eIjkjudTHemHlC7R4vwVWu7UMWiaKa0DzAeWy3oGnkx6+8Fgb4jfQ+4veLL1jKQNaDCjVsbo36o7WGl8f+ZNxBxmcLRtyp63wWGdTz7J432IGtBhA4+qN3d0cIQzj6p220l0RHqtWUC3Gdhlb6uMkZySj0VT1r1oGrRLCfUqVw1dKjVBK7VZK2ZVS3XNtv14ptVkptTP7v/1K31Qhiu/ohaPsTdhbqmN8u+dbarxRg0NnD5VRq4Rwj9L28HcBtwAfX7b9DDBEa31cKdUBWArId2pR7u784U7s2s6asWtKfIxuDbvxYp8XaVazWRm2TIjyV6qAr7XeC+RbP1JrvTXXw91AoFIqQGudXprzCVFcr/Z9tdQDrR3rd6Rj/Y5l1CIh3Kc8cvi3AlsLCvZKqXHAOICwsLByaI7wJqUtY5xuTWffmX20r9deZuiISq/IHL5SaplSapeTn6EuvLY98CZwf0H7aK1naa27a627161bt3itF6IIF9IuYI4xk5SelO85S5yFqWumFlpSd872OXT+uDPvrn/XyGYKUS6K7LJorfuX5MBKqSbAD8BorbWMdgm32HRsEwO+GsCqu1bl6e27smpSraBajF86Hh98eGnVS/Ru2lvmf4tKzZDvqEqpEOBXYJLWep0R5xDCFVc1vor3B77P8sPL8fPxcwTslTErybBl5FnwOiI0wvFBkGpNxQcfUGDH7qi1LgFfVGalnZY5TCkVD0QAvyqllmY/9QjQEnheKbUt+6deKdsqRLHtTdjLxGUTeX3N60TN/WdFJK01Nm1DofLcqm+OMZNhy8jaJ3sJPbmdX3iK0s7S+YGstM3l218DXivNsYUoCzkB/PKefJeGXQgwBZBuS+f1fq87eu6R4ZH4m/wdqZ7pA6eTmJIot/MLjyDTDoRHc9Sxt9nw9fF19NJvbHUj5yae48j5I7St09axv13bGdRqEG3qtGFQq0ES5IVHkYAvPFpEaAQrRq/gx30/ckvbW4gIjWDX6V20rt2aIL8g2tVtl2f/PQl7WH5kOXOGzSHYL9hNrRbCGFI8TXiVpPQkrvjgCiLDI5l/63z2JuxlzvY5vNjnRYL8ggCw2W2YfExubqkQrnO1eJrUwxde4+11b9Py/Zb0a9aPfuFZ5Z0OnzvMNMs09iTscewnwV54Kgn4wmtU8a/CubRzLNi1gMd+fwxLnIXrW1zP+WfP061RN37++2cGfDmAExdPuLupQhhCAr7wGhfSLjimY+bM2PE3+Tty9WnWNC6kX6BOcB03t1QIY0jAF14jZ8rl5fPqzTFmRnw7gqFXDGXjvRvxM/m5t6FCGERm6QivUdAyeYkpiUQfjyY+KZ7mNZu7uZVCGEcCvvAqEaER+ebW39L2Frad3EbXj7sy9+a53HTFTW5qnRDGkpSO8Hob4jfw9vq3uZB+gZHfjyy0eqYQlZkEfOH1zDFmrHYrgGMwVwhPJAFfeL2CBnOF8DSSwxder6DBXCE8jQR8IXA+mCuEp5GUjhBCeAkJ+EII4SUk4AshhJeQgC+EEF5CAr4QQngJCfhCCOElKtSKV0qpBCC2FIeoA5wpo+ZUFt54zeCd1y3X7D2Ke91NtdZ1i9qpQgX80lJKRbuyzJcn8cZrBu+8brlm72HUdUtKRwghvIQEfCGE8BKeFvBnubsBbuCN1wzeed1yzd7DkOv2qBy+EEKIgnlaD18IIUQBPCLgK6UGKqX+VkodVEo96+72GEEpFaqUWqmU2quU2q2Uejx7ey2l1J9KqQPZ/63p7rYaQSllUkptVUr9kv24mVJqY/Z1L1RK+bu7jWVJKRWilPpOKbUv+z2P8Ib3Win1RPa/711Kqa+VUoGe+F4rpT5TSp1WSu3Ktc3p+6uyvJ8d33YopbqW9LyVPuArpUzATOBfQDvg30qpdu5tlSGswFNa67bAtcDD2df5LLBca90KWJ792BM9DuzN9fhN4L/Z130OuMctrTLOe8DvWusrgCvJunaPfq+VUo2Bx4DuWusOgAkYiWe+118AAy/bVtD7+y+gVfbPOODDkp600gd84GrgoNb6sNY6A1gADHVzm8qc1vqE1npL9u8XyQoAjcm61jnZu80BbnZPC42jlGoCDAI+zX6sgH7Ad9m7eNR1K6WqA72B2QBa6wyt9Xm84L0ma42OIKWULxAMnMAD32ut9Wrg7GWbC3p/hwJzdZYNQIhSqmFJzusJAb8xEJfrcXz2No+llAoHugAbgfpa6xOQ9aEA1HNfywwzHZgA2LMf1wbOa62t2Y897T1vDiQAn2ensT5VSlXBw99rrfUx4B3gKFmB/gKwGc9+r3Mr6P0tsxjnCQFfOdnmsVOPlFJVge+B8VrrJHe3x2hKqcHAaa315tybnezqSe+5L9AV+FBr3QVIxsPSN85k56yHAs2ARkAVstIZl/Ok99oVZfbv3RMCfjwQmutxE+C4m9piKKWUH1nBfp7WelH25lM5X++y/3vaXe0zSE/gJqVUDFnpun5k9fhDsr/2g+e95/FAvNZ6Y/bj78j6APD097o/cERrnaC1zgQWAT3w7Pc6t4Le3zKLcZ4Q8P8CWmWP5PuTNcjzk5vbVOay89azgb1a62m5nvoJGJP9+xhgcXm3zUha60la6yZa63Cy3tsVWuv/A1YCw7N386jr1lqfBOKUUm2yN0UBe/Dw95qsVM61Sqng7H/vOdftse/1ZQp6f38CRmfP1rkWuJCT+ik2rXWl/wFuBPYDh4DJ7m6PQdd4HVlf43YA27J/biQrn70cOJD931rubquB/x9EAr9k/94c2AQcBL4FAtzdvjK+1s5AdPb7/SNQ0xvea+BlYB+wC/gSCPDE9xr4mqxxikyyevD3FPT+kpXSmZkd33aSNYupROeVO22FEMJLeEJKRwghhAsk4AshhJeQgC+EEF5CAr4QQngJCfhCCOElJOALIYSXkIAvhBBeQgK+EEJ4if8HeqDno3HRoCEAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "plt.plot(data, 'g.:')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `plt.plot` method is called an artist method, because it draws something, and it does so in a articular way (it draws line plots). There are many other artist methods available to us in the `pyplot` module. Here are some of the most useful artist methods:\n",
    "\n",
    "|Artist|Style|\n",
    "|---|---|\n",
    "|plot|line plots|\n",
    "|bar|bar charts (vertica)|\n",
    "|barh|horizontal bar charts|\n",
    "|boxplot|boxplots|\n",
    "|hist|histograms|\n",
    "|loglog|log-log scaled plots|\n",
    "|matshow|heat map of a matrix|\n",
    "|pie|pie charts|\n",
    "|quiver|2-D vector fields|\n",
    "|scatter|scatter diagrams|\n",
    "|violin|violin plots|\n",
    "\n",
    "Each artist method can be accessed by prefixing it with `plt`. You can find out more about each method using the `pyplot` documentation available within Jupyter notebooks or in more detail at [the matplotlib documentation site](https://matplotlib.org/index.html). By exploring this documentation you may find even more useful artist methods for you to use!\n",
    "\n",
    "### Exercise 1\n",
    "\n",
    "Use Numpy to generate 2 different sequences of random numbers of the same length. Then plot these against one another as a scatter diagram."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Annotation and Customisation\n",
    "\n",
    "Annotating and customising plots is just as easy as creating them. In the example below, we import some categorical data from a file, plot it, and add axis labels and a title."
   "execution_count": 4,
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEmCAYAAAB1S3f/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xu8VGXZ//HPV1QQJcFEUyAwxQwtURH10cxTglqipamZh7TooKalFWrlKcuOmo9mP1ISzWNaSR4jD49ZnkABRTNRMRETEjwrBl2/P+57YrHde/Ys3LNn9ub7fr3mNTP3Osy1Zu9Z17oPay1FBGZmZrVaqdEBmJlZ1+LEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHFYlybp/ZIelPSKpK9IWk3SHyS9JOk3TRDf4ZLuanQcZh3JicOQFJI2alF2qqRfl1j+NUmvFh7faGPegZKulfSvvHN/SNLhedqQvK6VS4T/DeCOiOgTEecC+wHrAu+OiP1b+fxWt6u176C7aG/bcnJbUvjbPSXpV5I2rkMse0m6S9KLkv4p6ZeS+hSm95Q0QdLLefrXCtNWlXSNpNl5m3Zqse6ekn4h6XlJC/IBxICO3gZz4rCOs3lErFF4/LCN+S4FngEGA+8GDgWefwefOxiY2eL93yNi8TtY54ro7ohYA1gT2A14A5gqabMO/pw1ge8C6wMfAAYCPypMPxUYSvo77gx8Q9LowvS7gM8A/2xl3ccC2wEfyut/Efjfjg3fwInDaiTp85Jm5SO5SZLWX85VbQ1cHBGvRcTiiHgwIm7K0+7Mzy/mI9/tJG0o6TZJL+RaymWS+uaYbiPtXM7L818BfAc4IL8/cjm3dSVJ4yQ9kT/3aklrFab/Jh8NvyTpTkmbFqa9O38/L0u6D9iwxbo3lTQ5f4/PSzopl/eUdI6kuflxjqSeedrbmruKtQhJF0s6X9INucnuXkkb5mmV73R6/k4OqLbtEbEkIp6IiC8D/0fakVc+c1tJf821henFI35Ja+VaylxJCyX9vo31Xx4RN0fE6xGxEPglsH1hlkOBMyJiYUQ8mqcfnpd9KyLOiYi7gCWtrH4D4JaIeD4i3gSuBDZtZT57h5w4rF2SdgG+D3wKWA94mvSjXB73AOdLOlDSe1tM2zE/9821lrsB5c+uHKEOIu/MImIX4M/A0Xn+g4DvAVfl9xctZ4xfAfYBPpI/dyFwfmH6TaSj4nWAB4DLCtPOB94kfU9H5AcAuUnmT8DNeb0bAbfmyScD2wLDgc2BkcC3SsR8EHAa0A+YBZwJEBGV77RSI7yqxDp/C3w4xz4AuIFUW1gLOAG4VlL/PO+lQG/Sjnod4OwaP2NHco1RUj/S9zK9MH06te/8LwK2l7S+pN7AwaS/lXW0iPBjBX8AAWzUouxU4Nf59UXADwvT1gD+DQwpLP8yqWmg8hjVxmf1A84i7SyWANOArfO0IXldK1eJdR/gwcL7O4DPtRZ3G8ufCrzVItYXi98B8Ciwa2GZ9fL2vi0uoG9edk2gR55vk8L07wF35dcHFWNvsZ4ngD0L70cBs/PrwyvraO1vBlwMXFiYtifwt2p/3xbretv6c/lo4N/59TeBS1tMvwU4LH8//wH6lfy/+ygpKW+c3w/KsfZqMc/sVpadA+zUouxdwBV5HYuBB4G1Gv376o4P1zgM0g58lRZlq5B2gpCOAp+uTIiIV4EXgGLH45YR0bfwuKW1D4rUBDEuIjYldWJPA34vSa3NL2kdSVdKelbSy8CvgbWXYxuLrm4Ra98W0wcDv8tNMi+SEskSYF1JPSSdlZuxXgZm52XWBvoDK5P6cCqeLrweREoQrVm/xbxP57JaFdv8Xycl93dqALAgvx4M7F/5TvL3sgMpaQwCFkRqeqqJpG2By4H9IuLvufjV/PyuwqzvAl6pcbUXAL1IfWerk2pMrnHUgROHAfyDdLRftAFLd2RzSTsOACStTvpxPvtOPjQi/gX8mLSDXIt0pNjS93P5hyLiXaSO0VaTTAd6BtijRXLpFRHPAp8GxpA6kNdk6fcmYD7pSHdQYV3F5rhnaNHnUbDMd5yXm5tfv0ZqBkofJL1neTZqOexLagqEFPulLb6T1SPirDxtrUrfU3skbQFMAo6IiEpTHTnxPEdqqqvYnGUHP1SzOan/bEFELCJ1jI+U9E4PNKwFJw4DuAr4ltJQ2ZUk7QZ8HLgmT78c+Kyk4bnD9nvAvRExu+wHSfqBpM0krZzb/L8EzIqIF0g73v8A7yss0od0JPpibmf/+nJuYxm/AM6UNDjH3F/SmEI8i0g1rt6k7wJIHcuko9xTJfWWNIzUlFNxPfAeScflzvA+krbJ064g/Q365x3dd0i1K8jt/Pn770Whw7pGz7Psd9qmXKPaQNL/AjuR+k3IsXxc0qg8Ty9JO0kaGBHPkY7sfy6pn6RVJO3Yxvo3I/XxHBMRf2hllktI30M/SZsAnyc1xVWW75m/A4BVcxyVA4n7gUMlrSlpFeDLwNx8gGIdyInDAE4H/koa6rgQ+CFwcEQ8DJCPCr8NXEs6ItwQOLDFOiqjdiqPc9r4rN7A70j9Ck+SjrL3zp/zOqlT9y+5OWRb0o5rS+AlUufsbztmk6v6GemI+I+SXiF16Fd28JeQamLPAo/kaUVHk5qJ/kna4f2qMiEiXiG12X88T3+cNCoMUqfzFGAG8BCp0/27ebm/k/5Gf8rLlD2h8FRgYv5OP9XGPNtJepXUV3UHqYlo64h4KMfwDKmmdRIpwT9DSuKVfcghpKbNvwHzgOPa+JzjSU16FxX+V4o1ilNIzXlPk0Z1/Sgibi5Mf4w0VHgAqY/lDZbW1E4gDUx4PMe4J6nWZB1MEb6Rk5mZ1c41DjMzK8WJw8zMSql74sgdaQ9Kuj6/3yCf2fq4pKskrZrLe+b3s/L0IYV1nJjLH5M0qt4xm5lZ2zqjxnEsaRx8xQ+AsyNiKKkjtnJZiCOBhRGxEems0x8A5JEpB5LOHh1NGrnRoxPiNjOzVtQ1cUgaCOwFXJjfC9iFpcM8J5LOBIY0YmNifn0NsGuefwxwZUQsioinSJdTGFnPuM3MrG1lLl+9PM4hXfa6ctnkdwMvxtIrl85h6dnHA8hn3EbEYkkv5fkHsOyQx+IyrVp77bVjyJAhHRG/mdkKY+rUqf+KiP7tzVe3xCHpY8C8iJhauIpma2f8RjvTqi1T/LyxwFiA9773vUyZMqV0zGZmKzJJT7c/V32bqrYH9pY0m3Ql1V1INZC+WnqjnoEsvazCHPKlGvL0NUnXyflveSvL/FdEjI+IERExon//dhOmmZktp7oljog4MSIGRsQQUuf2bRFxMHA76S5tkC7HcF1+PYmll2fYL88fufzAPOpqA9LlrO+rV9xmZlZdvfs4WvNN4EpJ3yVd9rhyz4SLgEslzSLVNA4EiIiZkq4mXd5hMXBUviaQmZk1QLe85MiIESPCfRxmZuVImhoRI9qbz2eOm5lZKU4cZmZWihOHmZmV4sRhZmalNGJUVdMbMu6GRodQk9ln7dXoEMxsBeQah5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpThxmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooTh5mZlVK3xCGpl6T7JE2XNFPSabn8YklPSZqWH8NzuSSdK2mWpBmStiys6zBJj+fHYfWK2czM2lfPy6ovAnaJiFclrQLcJemmPO3rEXFNi/n3AIbmxzbABcA2ktYCTgFGAAFMlTQpIhbWMXYzM2tD3RJHRATwan67Sn5ElUXGAJfk5e6R1FfSesBOwOSIWAAgaTIwGriiXrFb8/M9U8wap659HJJ6SJoGzCPt/O/Nk87MzVFnS+qZywYAzxQWn5PL2io3M7MGqGviiIglETEcGAiMlLQZcCKwCbA1sBbwzTy7WltFlfJlSBoraYqkKfPnz++Q+M3M7O06ZVRVRLwI3AGMjojnIlkE/AoYmWebAwwqLDYQmFulvOVnjI+IERExon///nXYCjMzg/qOquovqW9+vRqwG/C33G+BJAH7AA/nRSYBh+bRVdsCL0XEc8AtwO6S+knqB+yey8zMrAHqOapqPWCipB6kBHV1RFwv6TZJ/UlNUNOAL+b5bwT2BGYBrwOfBYiIBZLOAO7P851e6Sg3M7POV89RVTOALVop36WN+QM4qo1pE4AJHRqgmZktF585bmZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpThxmZlaKE4eZmZVSzzPHrUn4EuRm1pFc4zAzs1KcOMzMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMysFCcOMzMrxYnDzMxKceIwM7NS6pY4JPWSdJ+k6ZJmSjotl28g6V5Jj0u6StKqubxnfj8rTx9SWNeJufwxSaPqFbOZmbWvnjWORcAuEbE5MBwYLWlb4AfA2RExFFgIHJnnPxJYGBEbAWfn+ZA0DDgQ2BQYDfxcUo86xm1mZlXULXFE8mp+u0p+BLALcE0unwjsk1+Pye/J03eVpFx+ZUQsioingFnAyHrFbWZm1dW1j0NSD0nTgHnAZOAJ4MWIWJxnmQMMyK8HAM8A5OkvAe8ulreyjJmZdbK6Jo6IWBIRw4GBpFrCB1qbLT+rjWltlS9D0lhJUyRNmT9//vKGbGZm7eiUUVUR8SJwB7At0FdS5XLuA4G5+fUcYBBAnr4msKBY3soyxc8YHxEjImJE//7967EZZmZGfUdV9ZfUN79eDdgNeBS4Hdgvz3YYcF1+PSm/J0+/LSIilx+YR11tAAwF7qtX3GZmVl09b+S0HjAxj4BaCbg6Iq6X9AhwpaTvAg8CF+X5LwIulTSLVNM4ECAiZkq6GngEWAwcFRFL6hi3mZlVUbfEEREzgC1aKX+SVkZFRcSbwP5trOtM4MyOjtHMzMrzmeNmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooTh5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpThxmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooTh5mZlVK3xCFpkKTbJT0qaaakY3P5qZKelTQtP/YsLHOipFmSHpM0qlA+OpfNkjSuXjGbmVn76nbPcWAxcHxEPCCpDzBV0uQ87eyI+HFxZknDgAOBTYH1gT9J2jhPPh/4KDAHuF/SpIh4pI6xm5lZG9pNHJJ6RsSi9spaiojngOfy61ckPQoMqLLIGODKvN6nJM0CRuZpsyLiyfzZV+Z5nTjMzBqglqaqu2ssa5OkIcAWwL256GhJMyRNkNQvlw0AniksNieXtVVuZmYN0GbikPQeSVsBq0naQtKW+bET0LvWD5C0BnAtcFxEvAxcAGwIDCfVSH5SmbWVxaNKecvPGStpiqQp8+fPrzU8MzMrqVpT1SjgcGAg8NNC+SvASbWsXNIqpKRxWUT8FiAini9M/yVwfX47BxhUWHwgMDe/bqv8vyJiPDAeYMSIEW9LLGZm1jHaTBwRMRGYKOmTEXFt2RVLEnAR8GhE/LRQvl7u/wDYF3g4v54EXC7pp6TO8aHAfaQax1BJGwDPkjrQP102HjMz6xi1jKq6XtKngSHF+SPi9HaW2x44BHhI0rRcdhJwkKThpOam2cAX8vpmSrqa1Om9GDgqIpYASDoauAXoAUyIiJk1bZ2ZmXW4WhLHdcBLwFSg6kiqooi4i9b7J26sssyZwJmtlN9YbTkzM+s8tSSOgRExuu6RmJlZl1DLcNy/Svpg3SMxM7MuoZYaxw7A4ZKeIjVVCYiI+FBdIzNbgQwZd0OjQ6jJ7LP2anQI1gRqSRx71D0KMzPrMmpJHD4nwszM/quWxHEDS8/g7gVsADxGuhihmZmtYNpNHBGxTMe4pC3J516YmdmKp/T9OCLiAWDrOsRiZmZdQC2XVf9a4e1KwJaAryJoZraCqqWPo0/h9WJSn0fpa1eZmVn3UEsfx2kA+S5+ERGv1j0qMzNrWu32cUjaTNKDpKvYzpQ0VdJm9Q/NzMyaUS2d4+OBr0XE4IgYDByfy8zMbAVUS+JYPSJur7yJiDuA1esWkZmZNbVaOseflPRt4NL8/jPAU/ULyczMmlktNY4jgP7Ab/NjbeCz9QzKzMyaV5s1Dkm9gD4RMR/4SqF8XeCNTojNzMyaULUax7nAh1sp3w04uz7hmJlZs6uWOHaIiN+2LIyIy4Ad21uxpEGSbpf0qKSZko7N5WtJmizp8fzcL5dL0rmSZkmaka+JVVnXYXn+xyUdVn4zzcyso1RLHK3dL7yW5SoWA8dHxAeAbYGjJA0DxgG3RsRQ4Nb8HtJ9P4bmx1jgAkiJBjgF2AYYCZxSSTZmZtb5qiWAeZJGtiyUtDU1XKsqIp7LF0QkIl4BHgUGAGOAiXm2icA++fUY4JJI7gH6SloPGAVMjogFEbEQmAz4HuhmZg1SbTju14GrJV0MTM1lI4BDgQPLfIikIcAWwL3AuhHxHKTkImmdPNsA4JnCYnNyWVvlZmbWAG3WOCLiPlLTkIDD80PANhFxb60fIGkN0kURj4uIl6vN2loYVcpbfs5YSVMkTZk/3xfvNTOrl6onAEbEPFL/wnKRtAopaVxW6Gh/XtJ6ubaxHjAvl88BBhUWHwjMzeU7tSi/o5VYx5MvhTJixAjf7tbMrE5K38ipVpIEXAQ8GhE/LUyaBFRGRh0GXFcoPzSPrtoWeCk3ad0C7C6pX+4U3z2XmZlZA9RyyZHltT1wCPCQpGm57CTgLFLfyZHAP4D987QbgT2BWcDr5LPTI2KBpDOA+/N8p0fEgjrGbWZmVVQ7c/zSiDhE0rER8bOyK46Iu2h7SO+urcwfwFFtrGsCMKFsDGZm1vGqNVVtJWkwcERuJlqr+OisAM3MrLlUa6r6BXAz8D7ScNxi7SFyuZmZrWCq1Tj+kM/6nhAR74uIDQoPJw0zsxVUtcRxTX7euDMCMTOzrqFaU9VKkk4BNpb0tZYTWwyxNTOzFUS1GseBwJuk5NKnlYeZma2A2qxxRMRjwA8kzYiImzoxJjMza2LtngAYETdJ2gvYFOhVKD+9noGZmVlzaveSI5J+ARwAHEMakrs/MLjOcZmZWZOq5VpV/xMRhwILI+I0YDuWvRihmZmtQGpJHG/k59clrQ/8G9igfiGZmVkzq+Uih9dL6gv8CHiAdNb4hXWNyszMmlYtieOHEbEIuFbS9aQO8jfrG5aZmTWrWpqq7q68iIhFEfFSsczMzFYs1S6r/h7Svb1Xk7QFSy9y+C6gdyfEZmZmTahaU9Uo0n3GBwI/YWnieIV0QyYzM1sBVTtzfCIwUdInI+LaTozJzMyaWJt9HJI+LmlwJWlI+o6k6ZImSfJwXDOzFVS1zvEzgfkAkj4GfAY4AphEuslTVZImSJon6eFC2amSnpU0LT/2LEw7UdIsSY9JGlUoH53LZkkaV34TzcysI1VLHBERr+fXnwAuioipEXEh0L+GdV8MjG6l/OyIGJ4fNwJIGka6Gu+meZmfS+ohqQdwPrAHMAw4KM9rZmYNUi1xSNIaklYCdgVuLUzr1cYy/xURdwILaoxjDHBlHu77FDALGJkfsyLiyYh4C7gyz2tmZg1SLXGcA0wDpgCPRsQUgDw097l38JlHS5qRm7L65bIBwDOFeebksrbKzcysQdpMHBExAfgIcCSwZ2HSP4HPLufnXQBsCAwnJZ+f5HK1Mm9UKX8bSWMlTZE0Zf78+csZnpmZtafqmeMR8WxEPBgR/ymUPRcR/1ieD4uI5yNiSV7fL0lNUZBqEsUr7g4E5lYpb23d4yNiRESM6N+/li4YMzNbHrVccqTDSFqv8HZfoDLiahJwoKSeeajvUOA+4H5gqKQNJK1K6kCf1Jkxm5nZsmq5yOFykXQFsBOwtqQ5wCnATpKGk5qbZgNfAIiImZKuBh4BFgNHRcSSvJ6jgVuAHsCEiJhZr5jNzKx9dUscEXFQK8UXVZn/TNK5Iy3LbwRu7MDQzMzsHejUpiozM+v6nDjMzKwUJw4zMyvFicPMzEpx4jAzs1KcOMzMrBQnDjMzK8WJw8zMSnHiMDOzUpw4zMysFCcOMzMrpW7XqjIz606GjLuh0SHUZPZZe9X9M1zjMDOzUpw4zMysFCcOMzMrxYnDzMxKceIwM7NSnDjMzKyUuiUOSRMkzZP0cKFsLUmTJT2en/vlckk6V9IsSTMkbVlY5rA8/+OSDqtXvGZmVpt61jguBka3KBsH3BoRQ4Fb83uAPYCh+TEWuABSogFOAbYBRgKnVJKNmZk1Rt0SR0TcCSxoUTwGmJhfTwT2KZRfEsk9QF9J6wGjgMkRsSAiFgKTeXsyMjOzTtTZfRzrRsRzAPl5nVw+AHimMN+cXNZWuZmZNUizdI6rlbKoUv72FUhjJU2RNGX+/PkdGpyZmS3V2Ynj+dwERX6el8vnAIMK8w0E5lYpf5uIGB8RIyJiRP/+/Ts8cDMzSzo7cUwCKiOjDgOuK5QfmkdXbQu8lJuybgF2l9Qvd4rvnsvMzKxB6nZ1XElXADsBa0uaQxoddRZwtaQjgX8A++fZbwT2BGYBrwOfBYiIBZLOAO7P850eES073M3MrBPVLXFExEFtTNq1lXkDOKqN9UwAJnRgaGZm9g40S+e4mZl1EU4cZmZWihOHmZmV4sRhZmalOHGYmVkpThxmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooTh5mZlVK3a1WZ2YptyLgbGh1CTWaftVejQ+hyXOMwM7NSnDjMzKwUJw4zMyvFicPMzEpx4jAzs1KcOMzMrBQnDjMzK6UhiUPSbEkPSZomaUouW0vSZEmP5+d+uVySzpU0S9IMSVs2ImYzM0saWePYOSKGR8SI/H4ccGtEDAVuze8B9gCG5sdY4IJOj9TMzP6rmZqqxgAT8+uJwD6F8ksiuQfoK2m9RgRoZmaNSxwB/FHSVEljc9m6EfEcQH5eJ5cPAJ4pLDsnly1D0lhJUyRNmT9/fh1DNzNbsTXqWlXbR8RcSesAkyX9rcq8aqUs3lYQMR4YDzBixIi3TTczs47RkBpHRMzNz/OA3wEjgecrTVD5eV6efQ4wqLD4QGBu50VrZmZFnZ44JK0uqU/lNbA78DAwCTgsz3YYcF1+PQk4NI+u2hZ4qdKkZWZmna8RTVXrAr+TVPn8yyPiZkn3A1dLOhL4B7B/nv9GYE9gFvA68NnOD9nMzCo6PXFExJPA5q2UvwDs2kp5AEd1QmhmZlaDZhqOa2ZmXYATh5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmalOHGYmVkpThxmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooTh5mZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV0mUSh6TRkh6TNEvSuEbHY2a2ouoSiUNSD+B8YA9gGHCQpGGNjcrMbMXUJRIHMBKYFRFPRsRbwJXAmAbHZGa2QlJENDqGdknaDxgdEZ/L7w8BtomIowvzjAXG5rfvBx7r9ECrWxv4V6OD6EDdbXug+21Td9se6H7b1GzbMzgi+rc308qdEUkHUCtly2S8iBgPjO+ccMqTNCUiRjQ6jo7S3bYHut82dbftge63TV11e7pKU9UcYFDh/UBgboNiMTNboXWVxHE/MFTSBpJWBQ4EJjU4JjOzFVKXaKqKiMWSjgZuAXoAEyJiZoPDKqtpm9GWU3fbHuh+29Tdtge63zZ1ye3pEp3jZmbWPLpKU5WZmTUJJw4zMyvFiaOJSNpH0haNjqOjSHpffm5tOHVTk3SQpCGNjqMj5SswdBuSVsnPXe7/qy2Sekvq1eg42uPE0QQkbS/pVuBLwLqNjuedUvIlYJakzaILdaRJ+pikvwCjgFcaHU9HkfQ14HRJWzY6lndK0gcknQccDtCV/r+qkXQ8abTowZLe2+h4qnHiaDBJ7wG+D0yMiFERcXMu77J/m/xD7p3ffqGRsdQiJ7rVJf0BOAH4bkQcHhEvSOpZmaexUS6ffHHQKcAI4C5ggwaHtNwkrZoTxq+BWcBrkrrs9lRIGi7pAWAr4HjS6QfNdDb523SJ4bjdkaSPAFOBocDfI+KSXD6MdHLjv4HXGhdhOZIOAt4dEefloj8AmwN7S7o5Im6QpGY7OszNAqtFxEJJ6wCXRMRNkt4FnAg8AVzYbHHXQlIfUuI+NSKub2V60/092rEfsE5EbNXaxC64PRW7A/8vIv5fsVBS74h4vUExVdVlj2q7qtx2Ph3YH+hLOnLaQdLZku4ETgX+Alwuqd1rxjSapMF5h3sScIqkkyUNzJP/CpxFaiLp0Ww/aklfBqYD++ai44CvSDoR+BOwBnBZg8JbLpJ6SVorvx0BLImI6wv9Ab0lnSVpw4iIZq9JSRoiaaVcA98B+H2L6aMkfacx0S2f/DcYI2m1XPRh4NXC9NUl/Qg4s1lrVE4cnUjS/sCXgWPyBRrnRcRzwJHAS6Qq+ETgE6SLn+2Xl2vKH3c+i3860A/4HnArMAA4k/RDOBT4JfAcqQreFNsiqY+ki0lHegdHxARJK0fE3cDNwBeBT0XEMRHxRiNjLaOQCD+WixaRbkNARPw712YvI/1fXZrLmyqZV+SrRFwJTAAGRcR/SP1/6+bpq0g6CvgW8C1JH8+JsKn3abnvbwopWbxHUm9gIemyShVfBz6YX+9LM4oIP+r4ILX1b5Zfnwccnl/3AdYBVmpjuROA0xodf5XtWiU/nw8cAqwJXAx8kpT8DgWeBP4HGA48DgxocMxDgK8CW5KOXFer/I0K8/TPcX+gUDYYOKDR33mV7eqTv/vfAyNy2UqkGu1VwKG5bJ3K34CUzEc1OvYW21E5IfmjwAOkGmCfym8EOAD4DbB2fr9lft6d1Nzb8G2osm29SAn7tsL+YOX8/DPSGeS9KvPm5/1IB2R9Gh1/y0dTZ+du4ljgmNzefDdwsqRvAxeRjsZvl3QcQG7yQdIJwBGkf7KmIWkLSUfCf49gVybVLFaLiJdIna/bkWpOTwBvkn4E00hHwg25h0pu6vghcCNp57lhju2LebTRGZJ+q3RnyReBs0k/WCSdAfwOeFcjYq8mN+N8ldRP1hc4KCIVW0K0AAAL6UlEQVSm5Lbx/5BqHLcAB0paKyLmRcSzkvqR/lZvNi76Vg3IzxsCt0bEORHxCktbRh4C5pFrrxHxQC5fi/Q7WqMzg62FpB6SDiPtB8YAZ0bEw5LWJtU4ViI1824OfFLSehHxZt4XfAJ4C2i6fg5fcqQOJPWPiPn59QakTtY7IuLyPORuJPBH0g97IXAt6eq/2wLfBP4JfDMinmhE/C1Jej+wMbCYlBQOBf4aqUP5eGDviPhIbkf/X9K9UH5GOlJ/JSL+lZuCFjco/kOAvUlH3m8onc+wC3AKaQDCH4H1gNWABRHxbUmzSEeJvwdOiYgXGhF7a/LO5ixSk9R1pKPzTwL3km5BMAB4H3A7qb9sX2An0g3QBgM7A5dFxNmdHXtbJK0PPBIRfSUdAWwP/B/wIVLiGEw60Pon6X/wT6REcjDp4OXEaNLr10n6PCmxf5TUAjENWB/oSbp30PGk/cCnSf1S9wC7kjrMz2lEzO1x4uhgkvYEvkLamb6Vy04lNY98tbVkIOkq4DTS0dT6ETGj8yKuLieDF0id+LuROijHAG9GxFFK481/BoyLiMck7UKqLf068tDiRspJ4nLSjnKSpNUi91tIWiMiXq2U5R/4ByLia5K2AxYVjmqbRo2JcH1gVeDliDg5968NJTXFnRkRTTfcU9KFwH2k/pevkm7Mdh3wNLARabDCT0hH4SNJtdu/Rh6R2Cwk7U4aYXhFfv9u4BhSbXYNUq33L6SaRA/S9q4dEYsk/Q/pIO36ZvwbVXg4bsebRWo/3hu4RtIPSCeTvQ6MlnRFRCxQOj/gLeAc0o95bkS8SJOM325RQ7iC1IfxVeA7wAzSqK/vkJrfnidXpyPiNkl70CQDLyJiiaTFQOWEqjcL017Nz29IWp30d5qey+7u7FhrkZPEx4BLc9yVRDhZ0t0tEuFY0k6IiPhNI+Ou0bHAP0jb9j1JZ+UmNwAkXU1q+pwOPErqS2tGawLfkXRtRLwV6Xyge0m1iLsj4rvFmSXdDWwKPBARfyWNRmxqTfHj7sokfUHSZwpFT5OOkr4taSZp4MpwUkffVsCwPJJiHPA30p0M985Jo+EkbaJ05vQXIPVlAKuTOrd7AJ+IiNmkkWCDSB14h5COZitOjogbOzPutuRRXHeS7ufSPyJC+ZIOkvpJ2k7S90nNPI9ExBmNjLc9EbGE1GRYSyLcnTRar0uIiNeAk4EL8vti0tibVItqit9JO64hncR3SqFsMqlFYTNJ60laOf//XUw6Z+vvnR/m8nPieAdyB9dY4ARJ4yT1jYhFpKPw+0hHF+MAIuI+YD6wB6md8yZgn4g4rvKDb6Tc0foVUjv/MFLi+0Te8f4G2ITU4b2TpLUj4lHgdNI//Gqkzj0AKk10zSBSW+wdpP/1g3NZZWd7KKmJ5zlgj4ho+vMBulsibMV4YDdJwyT1lLS3pNtJtd0TI+KxBsfXrvw/92PSya8b5bLFpJrEtnm2H5P6Mp6MiL2aYR9QhhNHSXkH+w1JQ3Mb5JPAn0kdXRdJUkQ8T6pG95e0dWHxa0hJo0dE3Jd3vg3VYsTRe4E3SP0tr5NqFD8ideLfSGoeCPLY8oh4JiJ+AuzbTB2tLeWdzQ2k0UVnKJ18dTOwJzApIs6NiGcaG2VtulsibCnXMvYHxueDsCWkM/d3jog/Nza62uV+yknk0Xm57C7SfuJVUgf/zhFxemMifGfcOV6jFiNZfk862e0O4DPARyLiCEnjSR3JV0TEDEknARtGxJENCrtdLTtac1lf0hDUi0j/6GcAD0XEKEkHk76D0yLibw0Ke7lI2pbUub8lcGdE/KLBIS03SaNJVxmYTDqh7EukEVUnRMRDDQytQ+R2/88160ipWiidGT6NdP7WQ8DXSH2YX2ymWvnycOd47Q4mXSBuqyicTSzpTdLwU0j/FJ8HdpE0hjS65SRJW0XE1M4OuD2tdLT2jIhFEfGipF8BR0bEznm+9yudizKF1OfRFdqalxER9wD35Fphlz5iioibJb1ISoQHAL/vyomwFTvk/pwuK/+mPkcaCn0y6YByQmOj6hiucdSglSGdPYG3cvvyNqQayNOkJp3DgaNJY+kvBu5plo7v1ki6jNQXc15xh5rb0v8A3BARF+T+m6bdjhVZd0iE3Z2klYqd/V2daxw1aGVI51uVH2pE3CvpYeD+iDgJQNIppOvrNLwPo5pCR+uw3NE6X1Kv3Ga+Gqmf5tw8rHBeQ4O1NjlpNL/ulDTAneM1aWckyxDSiVa35verRMSrzZ40oN2O1i+TOlmPBd7K34GZmRNHLdrZwe5IutLlkFz+786PcPm1MeLoJtKIowURcXVEvOijWjOrcB9HCa2MZDmaNLTuzIiY0sDQ3rHuNOLIzOrLiaOk7r6DdUermbXHiWM5eQdrZisqJw4zMyvFneNmZlaKE4eZmZXixGFmZqU4cZiZWSlOHGZmVooThzUdSe+RdKWkJyQ9IulGSRtXmX9Ivl4YknaSdH2d4jpI0smS1pV0vaTplfjq8Xk1xjRE0qerTB+aY31C0lRJt0vasTNjtO7HicOaSr4m1u+AOyJiw4gYBpwErNvYyAAYDdxMuvPh5IjYPMc3rhHBSFqZdKmbVhNHvp7aDaSbIm0YEVsBxwDva2NdZjVx4rBmszPw7+IZ+RExLSL+rORHkh6W9JCkA6qtSNLqkiZIul/Sg/keKUjqLelqSTMkXSXpXkkj8rTdJd0t6QFJv5G0Ri4XMBx4AFgPmFOIb0aeZ5najqTzJB2eX8+W9ANJ9+XHRrn8Ykm/kPRnSX+X9LFc3kvSr/J2Pihp51x+eI7rD6T7vZwFfFjSNElfbfEVHEy6ZP6kQqwPR8TFeV2nShov6Y/AJe185nmF7bpe0k759auSfpK/r1sl9a/2N7HuwUcZ1mw2A9q66dUnSDvvzYG1gfsl3VllXScDt+W7M/YF7pP0J9Ld8hZGxIckbUa6S1vlHvLfAnaLiNckfZN017bTgS2A6fnKyOcDV0k6GvgT8KuImFvDtr0cESMlHQqcQ7qJFqRaw0eADYHbc1I5CiAiPihpE+CPhea67YAPRcSCvAM/ISI+xtttSkp01WxFumnSG5KOr/KZbVkdeCAijpf0HeAU0jXcrBtzjcO6kh1Id1Fbku/r/n/A1lXm3x0YJ2ka6erGvUj3VNkBuBLSETgwI8+/LTAM+Ete5jBgcJ42GrgpL3MLqbnnl8AmwIM1HmlfUXjerlB+dUT8JyIeJ93DfpMc46X58/5GulFYZSc+OSIW1PB5y5D0u1xb+22heFLhjpbVPrMt/wGuyq9/nddh3ZxrHNZsZgL7tTGt7D1BBHwyXzp+aaHavLeISDvlg1qZtjvwycqbvOO+HLg8N0/tCDzPsgdjvVqsI2p4XXlfbVtfqzKtaGaOqxLzvrlJ7sdtrKutz1xM9e0q8jWMVgCucVizuQ3oKenzlQJJW0v6COlmWgdI6pGP8HcE7quyrluAYyqJQtIWufwu4FO5bBjwwVx+D7B9of+ht6SNJa0JrBwRL+TyXST1zq/7kJqY/kE6Qh8mqWdeZtcW8RxQeL67UL6/pJUkbUiqyTyWt/Xg/Bkbk2pKyyTA7BWgTxvbf3nenr0LZb3bmJcqnzkbGJ5jHASMLCyzEksT/adJ3611c65xWFPJfQj7AudIGge8SdpxHUfasW0HTCcd2X4jIv6pdBfG1pxB6kuYkZPHbFK/ws+BiZJmAA+SmqpeyrfOPRy4Qum+8pD6PD5E6suo2Ao4T+l2wisBF0bE/QCSrs7rezyvu6inpHvzMsVazWOkZrd1gS9GxJuSfg78QtJDpCP+wyNiUSuVpRnAYknTgYsj4uzCd/lG7mz/qaRzSDWiV4DvtvF9tfWZfwGeAh4CHmbZfpPXgE0lTQVeYmlytG7MV8e1FY6kHsAqeQe9Iem2vxtHxFttzH8hKTnc8w4+czYwIiL+1aL8YuD6iLhmedfdSJJejYg1Gh2HdS7XOGxF1Js0emkVUrv+l9pKGgAR8blOi8ysC3CNw8zMSnHnuJmZleLEYWZmpThxmJlZKU4cZmZWihOHmZmV4sRhZmal/H9JtCclFkwBlwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "#Read the data from a csv file\n",
    "rawdata = np.genfromtxt(\"./data/headcount.csv\", dtype=np.str, delimiter=\",\") # read data into an np array\n",
    "header = rawdata[0] # Separate out column headers\n",
    "groups = rawdata[1:, 0] # Separate first column\n",
    "counts = np.asarray(rawdata[1:, 1], dtype=np.int) # Separate second column\n",
    "#Plot a bar chart of staff numbers\n",
    "plt.bar(np.arange(len(counts)), counts) # Create bar chart\n",
    "plt.xlabel(header[0]) # Set x axis label\n",
    "plt.ylabel(header[1]) # Set y axis label\n",
    "plt.xticks(np.arange(len(counts)), groups, rotation=30) # Set labels for x axis ticks\n",
    "plt.title(\"UoE Staff Headcount Dec 2018\") # Set title\n",
    "plt.show() # Show the figure"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's break that sequence of plotting commands down some more.\n",
    "- The method `plt.bar` takes an array of positions for which to centre the bars, and an array of the same length giving the heights of the bars. In general, if we have n bars, the numbers 1, 2, ..., n are a good way of centering the bars. We specified that here by passing the array `np.arange(len(counts))`.\n",
    "- The methods `plt.xlabel` and `plt.ylabel` set labels for the x and y axes respectively. We had stored these in the array `header`, which contained the header row in our csv file.\n",
    "- The method `plt.xticks` sets where the ticks should be placed on the x axis. We have told it to put them at the centre of each bar, and have given it an array of strings to be used as labels (the default is to use numerical values), as well as an optional rotation parameter.\n",
    "- The method `plt.title` gives our figure a title.\n",
    "- Finally, `plt.show` displays the figure for us!\n",
    "\n",
    "We can also add a legend to our figures if, for instance, they contain multiple plots. Here's an example, using randomly generated data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd0FNXfx/H3TSMBQgu9g/QiQUInSFVUQISINKmKIEVFegAJmBBqAEEU6YgKqBR/Ioj0DpHeO9IJhJIAIe0+f9yNT0BSSDY7s8l9nbMnye7Mzocy+82duUVIKdE0TdO0OA5GB9A0TdPMRRcGTdM07Sm6MGiapmlP0YVB0zRNe4ouDJqmadpTdGHQNE3TnqILg6ZpmvYUXRg0TdO0p+jCoGmapj3FyegAKZE7d25ZvHhxo2NomqbZlb///vu2lDJPUtvZZWEoXrw4wcHBRsfQNE2zK0KIS8nZTl9K0jRN056iC4OmaZr2FF0YNE3TtKfowqBpmqY9RRcGTdM07SlWKQxCiHlCiFtCiKMJvC6EENOFEGeFEIeFEK/Ee62LEOKM5dHFGnk0TdO0lLNWi2EB0CyR198ASlsePYFZAEKIXMAXQE2gBvCFECKnlTJpmqZpKWCVcQxSyq1CiOKJbPI2sEiqdUR3CyFyCCEKAA2A9VLKUAAhxHpUgfnRGrmetfjQYi7dv4S7izs53XJSxqMM5XKXI4drjrQ4nH2QEq5fhxMn4MIFePAAwsIgUyZwd4f8+aFcOShVSj2naVqqSCm5EX6D4yHHuXjvIvci7hEeGY6rkytZXLJQ0L0gZT3KUipXKTI5GXPO2WqAWyHgcryfr1ieS+j5/xBC9ES1NihatGiKQvx07CfWnFnzn+fL5S5H4xKNebP0mzQt2RRnR+cUvb/duH8fVq2CP/+EDRvgxo2k93Fxgdq1oXFjeOcdqFQp7XNqWjpxP+I+q06t4s9zf/LX+b+4+fBmkvu4OLpQu3BtGpVohE8FHyrkqWCDpIpQv8Rb4Y1Ui+F/Usr/fGIIIX4Hxkkpt1t+3gAMBhoBmaSUX1qeHwk8klJOTuxYXl5eMqUjn6NiogiLDOP2o9ucun2KYyHH2HJpC1svbeVR1CPyZslLx8od6VejHyVylkjRMUxrxw6YMQNWroSICMibV33Q164NFSqoVkGOHJA1K0RGqpbDlStw8iQcOAAbN6qvUkLVqtCjB3TrBpkzG/0n0zRT2vHPDr4O/ppfT/xKRHQEebPkpUnJJtQqVIuKeSvyUs6XyOGag6wuWXkS84TwyHAu37/MqTun2H99P5subuLA9QNIJFXzV6WbZze6eHYhW6ZsKcojhPhbSumV5IZSSqs8gOLA0QRe+xZoH+/nU0ABoD3wbULbJfSoVq2atLaIqAi56uQq2WZpG+k8xlk6+jnKjr90lCdDTlr9WDa3fr2U3t5SgpQ5c0r58cdS7tolZWzsi7/XzZtSTpsm5SuvqPfLnVvKsWOlDAuzfm5Ns1Prz62X3vO8JaOROQJzyN7/6y13X94tY2JjXvi9boTdkNN2T5PVvq0mGY08fut4inMBwTI5n+fJ2ShZb5R4YXgL+AMQQC1gr+X5XMAFIKflcQHIldSx0qIwxHfl/hX5+brPZRb/LNJpjJP89I9PZeij0DQ9Zpo4eVLK5s3VP3ORIuoDPTzceu+/bZuUb72l3r9AASkXLJAy5sX/42taenHq9in51pK3JKORhacUltN2T5MPIx9a7f1PhJxI1f42LQyom8XXgSjUfYIeQC+gl+V1AcwEzgFHAK94+3YHzloe3ZJzvLQuDHFuht+UH67+UIrRQuadmFeuOLHCJsdNtchI9Vu8s7OU2bJJOXGilBERaXe8HTukrFFD/XeqX1/Ks2fT7liaZkKR0ZFyzOYx0nmMs3QPcJcTd0yUEVFpeM6lkM1bDLZ82KowxNl/bb/0/MZTMhrZ8ZeO8t7jezY9/gs5eVJKLy/1T9uunZQ3btjmuDExUs6dqwpR5sxSzpqVsktVmmZnToSckF6zvSSjke1/bi9vhNnonEuB5BYGPfI5GaoWqMreD/bi18CPn47+RPXvqnPk5hGjY/3Xr79C9eqq2+myZfDjj5Avn22O7eAA3bvDsWPg7Q29e0PHjhAebpvja5oBfjn+C9W/q86FuxdY/u5yfmjzA/my2uicS0O6MCSTs6Mzo14dxaYumwiPDKfmnJr8dPQno2MpMTEwZAi0aQPly6ueQ+++a0yWwoVhzRrw94elS6FGDTh3zpgsmpZGYmJjGPrXUHyW+1ApbyUO9jqITwUfo2NZjS4ML8i7mDf7P9pPtYLVaP9Le8ZvHx93r8QYjx+rgjBhAnz0EWzdCkWKGJcHVOth+HA1TuLmTdUddu9eYzNpmpU8jnpM62WtGb9jPL2q9WJzl80UzlbY6FhWpQtDCuTPmp+/3v+L9yq+x9ANQ+mzpg/RsdG2DxIaCk2bwurVMH06fPONuUYnN24MO3eqcRENGqicmmbHQh+H0nRxU3479RtfvfEVs5rPMmx0clqyy6U9zSCTUyZ+aPMDxbIXY8LOCdyNuMvidxbj5GCjv9IbN9QH79mz6pKNUZeOklK2LOzaBS1aqBHT338P7dsbnUrTXtj1sOs0XdyUM6FnWOqzlHcrmvScswJdGFLBQTgwvul4PDJ7MOSvIcTKWJa0XpL2xeHmTWjYEC5fhrVr1fdmli+fGjXdvDl06gSxserGtKbZiRvhN2i0qBGX719mbce1NCxh8nMulXRhsILBdQcjEAz+azBSSn5o80PaFYdbt6BRI/jnH/jjD6hfP22OY21Zs8Lvv6vi0LmzmlajUyejU2lakm49vEXjRY355/4/rO24Fu9i3kZHSnO6MFjJoLqDcBAODFw/kKwuWZnbci5CCOse5N49aNJEdUdds8Z+ikKcLFn+vzh07QrZs6tLTJpmUncf36XJoiZcuHuBNR3XZIiiAPrms1V9XudzRtYfyfyD8/Hd6GvdN4+IgFat1IR2q1erm7n2KHNmNbNr1arQtq2a2E/TTCgiOoJWS1tx8vZJVrdfTYPiDYyOZDO6MFiZXwM/er7Sk3HbxzFt9zTrvGlsrLr8smULLFyoWg32zN1dtXiKFFGth6PPXfhP0wwTK2PpvKIzWy9tZdE7i2hS0s7PuRekC4OVCSH4+q2vaV2+NZ+t+4zVp6zQRXPgQFi+HCZNSj89evLkUeMc3NxUcbh1y+hEmvavgX8OZPnx5UxqOol2ldoZHcfmdGFIA44Ojnz/zvdUK1iNjr92TN30GfPnQ1AQ9OsHAwZYL6QZFC+uLovdugWtW8OTJ0Yn0jTmH5hP0O4g+tXox4Da6eycSyZdGNKIm7MbK99bibuLOy1/aknIw5AXf5M9e6BXLzVeYcoUsPbNbDPw8oIFC9S9ht69VW8lTTPI7iu76fV7L5qUbMKU16dYvwOJndCFIQ0VylaIle1WciP8Bj7LfV5sdPS1a2pAWKFCagCbUzruQNa2LYwapVpH06cbnUbLoK6FXaP10tYUci/ET21+st1gVRPShSGN1ShUg9nNZ7P10lZGbhyZvJ0iI9X8Rw8eqB48Hh5pG9IMvvgCWrZU91N27zY6jZbBRMZE0mZZGx48ecCqdqvwyJwBzrlEWKUwCCGaCSFOCSHOCiGGPuf1ICHEQcvjtBDiXrzXYuK9li4n03m/yvv0fKUngTsC+f3070nvMGyY+nCcPx8qV077gGbg4KAuKRUurFoQd+4YnUjLQIasH8LuK7tZ0GoBlfNlkHMuMclZtCGxB+CIWpmtJOACHAIqJLJ9P2BevJ/DX/SYtl6oxxoeRz2Wnt94ypyBOeXFuxcT3vC339QiO3362C6cmezbJ6WLi5RvvqmXCdVsYvXJ1ZLRyL6/9zU6SprDhgv11ADOSinPSykjgZ+AtxPZvj1qKdAMxdXJleXvLidGxtD257ZExkT+d6MrV6BLF/D0VF1TMyIvL9ULa80aNZW4pqWhKw+u0HVVVzzzezLxtYlGxzENaxSGQsDleD9fsTz3H0KIYkAJYGO8p12FEMFCiN1CiFZWyGNapXKVYl7Leey9upcxW8Y8/WJ0tBqj8OSJutns6mpMSDPo3Rveew9GjoTgYKPTaOlUdGw0HX7pwJPoJyz1WYqrUwY+555hjcLwvP5cCfU5bAf8LKWMifdcUSmlF9ABmCqEeOm5BxGip6WABIeEpKDrp0m0qdCGbp7dGLd9HDv+iTcdxLhxsH27WlOhTBnjApqBEDBrFuTPrybae/TI6ERaOjRu2zi2/bONb5p/QxmPDH7OPcMaheEKEH/JsMLAtQS2bcczl5GklNcsX88Dm4Gqz9tRSjlbSuklpfTKkydPajMbalqzaRTLXoz3V7zPgycP1FKcY8aoFoOecVTJmVNN/3HqFAwaZHQaLZ05cP0AY7aOoUPlDnR6WZ9zz7JGYdgHlBZClBBCuKA+/P/Tu0gIURbICeyK91xOIUQmy/e5gbrAcStkMjX3TO4sfmcxl+5f4tPf+6l5kHLnhhkzjI5mLo0aqdHeX3+t7jlomhU8iX5C55WdyZM5DzPe0Ofc86S6MEgpo4G+wDrgBLBMSnlMCDFGCNEy3qbtgZ8sd8bjlAeChRCHgE1AoJQy3RcGgLpF6zKs3jDmH1nEyuijMHcu5MpldCzz8fdXXXa7d9ddWDWrGL15NEdvHWVOyznkdMtpdBxTEk9/TtsHLy8vGZwObkpGbd9K9SWvcjOPG8eHXdX/SRNy8CBUrw4dOqjLS5qWQrsu76Le/Hp09+zOdy2/MzqOzQkh/rbc002UHvlslMePce7+AfP25ifEKZJB6/V19AR5esKQIbBokVrKVNNS4FHUI7qs7EKRbEWY/Ppko+OYmi4MRhkzBs6c4ZWJSxhYZyBzD8xlw/kNRqcyrxEjoFw5+OgjCAszOo1mh8ZsGcOZ0DPMe3se2TJlMzqOqenCYITDh9UAtm7doFEjvnj1C0rnKs2Hv33Iw8iHRqczJ1dXdR/m8mUYPtzoNJqdOXzzMJN2TqK7Z3calWhkdBzT04XB1mJioGdPyJEDJqqRlm7ObsxpOYcL9y4wYuMIgwOaWJ06al2KGTPUmA9NS4aY2Bh6/taTXG659OjmZNKFwdZmzVLrLEyd+tSsqfWL1edjr4+Ztmca+67uMzCgyfn7qwV+PvxQzUKraUmYFTyLPVf3EPR6ELncdM+/5NCFwZauXFGXQV57TfWweUZA4wDyZc3Hx2s+JiY25jlvoJE1q2oxnDyp5lTStERcfXCV4RuG89pLr9Gh8n/POe35dGGwpf791ZxIs2Y9dzW27K7ZmfzaZIKvBfPd/ozXlS7Z3noL3n5b3cD/5x+j02gm1u+PfkTHRjPrrVkZdjW2lNCFwVb+/BNWrFATw5UsmeBm7Su1p2HxhgzfMDxly4FmFNOmqWVAP/3U6CSaSa09u5YVJ1cwsv5ISuZM+JzT/ksXBluIjFSthVKl1BQPiRBCMOPNGYRFhjHkryE2CmiHihVTRXbFCvjjD6PTaCYTGRPJJ2s/oXSu0gyonfg5p/2XLgy2MH26mgxu6lTIlCnJzSvkqcCAWgOYf3D+0zOwak/7/HMoW1b1VIqIMDqNZiLT90zn9J3TTG02lUxOSZ9z2tN0YUhr16+Dn5+6Lv7WW8nebeSrIymcrbC+EZ0YFxeYORPOnfu366+mXQ+7jt8WP5qXac6bpd80Oo5d0oUhrQ0Zoi4lTZ36QrtldcnKlNemcPjmYeYdmJdG4dKBxo3BxwcCA+HqVaPTaCYw5K8hRMZEEvS67rWWUrowpKWdO2HxYnXJo1SpF97dp4IP9YrWw3ejL/cj7qdBwHRiwgTV20uPiM7wdl7eyeLDixlYeyClcr34OacpujCklZgYde27UKEUf2AJIQh6PYiQRyEEbAuwcsB0pEQJdVN/0SLYpwcHZlQxsTH0+6MfhdwLMcx7mNFx7JouDGnl++9h/3517Ttr1hS/jVdBL7pU6cLUPVM5f/e8FQOmM8OGQb58qvuqHU4lr6Xe4sOL2X99PxObTiSrS8rPOU0XhrTx6BH4+kKNGtCuXarfLqBxAE4OTgxeP9gK4dKpbNnUdBk7d8KyZUan0WzsUdQjfDf6UrNQTdpVSv05l9FZpTAIIZoJIU4JIc4KIYY+5/WuQogQIcRBy+ODeK91EUKcsTy6WCOP4YKC1I3QSZOeO8L5RRV0L8iwesP45cQvbLm4xQoB06muXdXaDYMHw+PHRqfRbChoVxDXwq4x6bVJeoSzFaS6MAghHIGZwBtABaC9EKLCczZdKqX0tDzmWPbNBXwB1ARqAF8IIex7GbObN1UPmVatwNvbam/7ee3PKZKtCJ+u+1R3X02Io6Mqyv/8A1OmGJ1Gs5Gb4TcJ3BHIO+XeoV7RekbHSRes0WKoAZyVUp6XUkYCPwFvJ3Pf14H1UspQKeVdYD3QzAqZjOPnpwZbjR9v1bd1c3YjsEkgB28c5IcjP1j1vdOVBg3gnXdUcQ7RU4pkBH5b/IiIjiCwSaDRUdINaxSGQsDleD9fsTz3rDZCiMNCiJ+FEEVecF/7cPIkzJ4NvXpBmTJWf/t2ldrxSoFXGLlpJE+in1j9/dONgAB1n+fLL41OoqWxk7dPMvvv2fSq1osyHtY/5zIqaxSG513Qe7ZbyG9AcSnly8BfQNyK7snZV20oRE8hRLAQIjjErL8JDhkCWbLAqFFp8vYOwoHxTcZz6f4lZgXPSpNjpAvlykGPHmoW2wsXjE6jpaEhfw0hi0sWRr2aNudcRmWNwnAFKBLv58LAtfgbSCnvSCnjfsX9DqiW3H3jvcdsKaWXlNIrT548VohtZZs3w+rVqttkGuZrUrIJTUo24cutX+pBb4n54gtwclIT7Wnp0paLW1h9ajXD6g0jTxYTfibYMWsUhn1AaSFECSGEC9AOWB1/AyFEgXg/tgROWL5fB7wmhMhpuen8muU5+yKl6glTpAh88kmaHy6wcSB3Ht9h4k49P1CCChVSYxqWLIGDB41Oo1mZlJJB6wdRJFsRPqmZ9udcRpPqwiCljAb6oj7QTwDLpJTHhBBjhBAtLZv1F0IcE0IcAvoDXS37hgJjUcVlHzDG8px9WbVKjbj18wM3tzQ/XLWC1WhXqR1Tdk3hetj1ND+e3Ro8GHLlUq04LV1ZeXIl+67tw6+BH27OaX/OZTRC2uEoUS8vLxkcHGx0DCUmBqpUUXP1HD2qLl/YwLnQc5SbWY4Pqn7ArOb6fkOCpkxRc1Vt2ACNGhmdRrOCmNgYXv7mZWJlLEd6H8HJwTbnXHoghPhbSumV1HZ65HNq/fADHDsGY8farCgAvJTrJXpV68V3+7/j9J3TNjuu3fn4YyhaVHUMsMNfgrT/+uHIDxwPOc7YhmN1UUgjujCkRmSkuslZtSq0aWPzw498dSRuzm74bvS1+bHthqurKtrBwfDzz0an0VIpMiaSLzZ/wSsFXqF1+dZGx0m3dGFIjblzVXdIf39wsP1fZd4seRlQawA/H/+Zgzf0DdYEdewIFSqoIh6jR43bs7n753Lh3gX8G/njIPTHV1rRf7Mp9eiR+k20Xj1oZtxg7c9qf0YO1xyM2qT7cSfI0VF1DDhxAn780eg0Wgo9inrE2K1j8S7qzesvvW50nHRNF4aUmjlTLdsZEGCVifJSKodrDgbWHshvp39j79W9huUwvdatVScBPz/VUUCzOzP3zuR6+HX8G/nrifLSmC4MKXH/vpqLp1kzq06Ul1L9a/bHw81DtxoS4+CgWnhnz6oFfTS7cj/iPoE7AmlWqhnexYw/59I7XRhSYsoUCA01zVw87pncGVJ3COvOrWP7P9uNjmNezZurNTLGjFEdBzS7MWXXFEIfh/JlQ3Occ+mdLgwv6s4dNbVzmzZQrVrS29tInxp9yJclHyM36SkgEiSEKgqXLqmOA5pduPPoDlN2T6FN+TZUK2iecy4904XhRQUFQXg4jB5tdJKnZHbOzHDv4Wy+uJmNFzYaHce8XnsN6tZVPckiIoxOoyXDlF1TeBj5EL8GfkZHyTB0YXgRd+7A9Onw7rtQqZLRaf6jZ7WeFM5WmJGbRmKPI9ptQgh1r+HqVfj2W6PTaEm48+gO0/dO592K71Ixb0Wj42QYujC8iKAgCAsz7Yydrk6u+Hr7svPyTtads7+5CG2mYUM1PUZAADx8aHQaLRFxrYWR9c15zqVXujAkl8lbC3G6V+1O8RzFdashKWPHwq1bqtuxZkp3Ht3hq71f8W7Fd6mU17znXHqkC0NyxbUW0mgRHmtxcXRhhPcIgq8F88fZP4yOY1516sDrr8OkSbrVYFJBu4MIjwzXrQUD6MKQHKGhdtFaiNO5SmeKZS/GmC1jdKshMaNGqXWh9b0G07nz6A7T90zHp4KPbi0YQBeG5LCT1kIcZ0dnhtUbxp6re1h/fr3RccyrTh1o3BgmTIDHj41Oo8UTtDuIsMgwvWSnQXRhSEpoKEybZjethThdPbtSOFth/Lb46VZDYkaNgps34bvvjE6iWYQ+DmX6num8W0HfWzCKVQqDEKKZEOKUEOKsEGLoc14fIIQ4LoQ4LITYIIQoFu+1GCHEQctj9bP7Gs7kPZESkskpE0PrDmXn5Z1surjJ6DjmVb8+vPoqjB+vxzWYRNAu1VrQ9xaMk+rCIIRwBGYCbwAVgPZCiArPbHYA8JJSvgz8DEyI99pjKaWn5dESM4lrLfj4QOXKRqd5YT1e6UGBrAUYs2WM0VHMbdQouHYN5s0zOkmGF/o4lGl7puFTwYfK+ezvnEsvrNFiqAGclVKel1JGAj8Bb8ffQEq5SUr5yPLjbqCwFY6b9uzs3sKzXJ1cGVJ3CFsubWHLxS1GxzGvhg3VaOhx4+DJE6PTZGhTd09V9xbq2+c5l15YozAUAi7H+/mK5bmE9ADi96N0FUIECyF2CyFaJbSTEKKnZbvgkJCQ1CVOjrt3VWuhTRu7bC3E+bDah+TLko+xW8caHcW8hFDF/8oVWLjQ6DQZ1t3Hd3VrwSSsURieNzH6c+92CiE6AV7AxHhPF7UsTt0BmCqEeOl5+0opZ0spvaSUXnny5Elt5qTNmGGX9xaeldk5M4PqDGLDhQ3s+GeH0XHMq2lTqFlTjYaOijI6TYY0Y+8MHjx5wAjvEUZHyfCsURiuAEXi/VwYuPbsRkKIJoAv0FJK+W97XUp5zfL1PLAZqGqFTKkTHg5Tp6ppmqtUMTpNqvXy6kXuzLl1qyExca2GS5dg8WKj02Q44ZHhTN0zleZlmlMlv/2fc/bOGoVhH1BaCFFCCOECtAOe6l0khKgKfIsqCrfiPZ9TCJHJ8n1uoC5w3AqZUmf2bHXjefhwo5NYRRaXLAysPZB159ax58oeo+OY1xtvqKnU/f31Km829m3wt4Q+DsXX29foKOYlpVokzAZSXRiklNFAX2AdcAJYJqU8JoQYI4SI62U0EcgKLH+mW2p5IFgIcQjYBARKKY0tDBERapqEhg2hdm1Do1jTx9U/JpdbLt1qSExcq+H8eViyxOg0GUZEdASTd02mUYlG1Cpcy+g45vXHH1CkCOzfn+aHcrLGm0gp1wBrnnluVLzvmySw307AXHeZFi5Uazmns8sJ7pncGVBrACM2jeDA9QNULWD8FTtTatFCXT4MCIBOncDR0ehE6d6Cgwu4Hn6dxe+kr3POqqRULdlcuWzSGUaPfI4vOloNdKpZU03LnM70qdGHbJmyMW77OKOjmJcQ6hLi6dPw669Gp0n3omKiGL9jPDUL1aRRifR3zlnN1q2wcycMHgzOzml+OF0Y4vvxR7hwQX0wiOd1trJvOVxz0Kd6H34+/jMnb580Oo55tWkDZcqoVoOeTiRN/XT0Jy7eu4ivty8iHZ5zVhMQAPnyQbduNjmcLgxxYmPVAKfKlVVvpHTq01qf4urkyvgd442OYl6OjjB0KBw8CGvXGp0m3YqVsYzbPo6X871M8zLp95xLteBg+PNPGDAA3NxsckhdGOKsXAknTqjWgkP6/WvJmyUvH77yId8f/p5L9y4ZHce8OnZUN/r8/XWrIY2sOLGCE7dPMKzeMN1aSExAAOTIAb172+yQ6fcT8EXE3dgpVUrNoprODawzEIBJOycZnMTEXFzU9dwdO2DbNqPTpDtSSvy3+VM6V2nerZD+z7kUO34cVqyA/v3B3d1mh9WFAWDdOtUFbOjQDNELpUj2InR+uTNzDszhZvhNo+OYV48ekDev+o1Ns6p159Zx4MYBhtYbiqND+j/nUiwwELJkUYXBhnRhANVaKFIE3n/f6CQ2M7TeUCJjIgnaHWR0FPNyc4PPPlO/OPz9t9Fp0hX/bf4UyVaETi93MjqKeZ0/Dz/8AB99BB4eNj20LgzbtsH27TBokLp8kEGU9lBN+K/3fc3dx3eNjmNeH38M2bPrVoMVbb20le3/bGdQnUG4OGacc+6FTZyormB8/rnND60Lg78/5MmjLhtkMMPqDSMsMoyZ+2YaHcW8smWDfv3UmIbjxs/Wkh4EbAsgb5a8fPDKB0ZHMa+49UG6dYOCBW1++IxdGIKD1WWCAQMgc2aj09hclfxVaF6mOVN3TyU8MtzoOOb1ySfq/8d43cU3tYKvBbPu3DoG1BqAm7Ntul7apSlTICZGdYAwQMYuDOPGqW5gH39sdBLDDK83nDuP7/Dd33rN4wTlzq2u8y5ZogZAaikWsC2AHK456F3ddl0v7c6dO/DNN9C+PZQsaUiEjFsYjh9Xlwf69VOXCzKo2kVq06B4AybtmsSTaL16WYI+/1yNb5k4Melttec6dusYK06uoF+NfmTLlHHPuSRNnw4PH6pekgbJuIVh3Dh1ecDG3cDMyNfbl2th11h4SK9elqBChaBrV3Xd9/p1o9PYpcAdgWRxzsInNT8xOop5hYWpwtCqFVSsaFiMjFkYzp9X8yL16qUuE2RwjUs0pnrB6ozfMZ7oWL0OQYIGD1aruwXpLr4v6vzd8/x45Ed6efXCI7Ntu17alW++gXv3DF8LJmMWhgkTDOsGZkZCCIZ7D+f83fMsO7bM6DjmVaoUtGsHs2aphZy0ZBu/fTyODo4MqD3A6Cjm9fgxTJ6slpmtXt3QKFYpDEKIZkKIU0LEg/USAAAgAElEQVSIs0KI/1wYE0JkEkIstby+RwhRPN5rwyzPnxJCvG6NPIm6ehXmz4fu3Q3pBmZWLcu2pGKeiozbPo5YGWt0HPMaOlQt/frVV0YnsRtXH1xlwaEFdPfsTkF3fc4laP58uHnT8NYCWKEwCCEcgZnAG0AFoL0QosIzm/UA7kopSwFBwHjLvhVQS4FWBJoBX1veL+1MnmxoNzCzchAODKs3jKO3jvLbqd+MjmNelStDy5YwbZq6HqwlafKuycTExjC4rj7nEhQVpa5k1KkDr75qdBqrtBhqAGellOellJHAT8Dbz2zzNhB3Z/NnoLFQ0ym+DfwkpXwipbwAnLW8X9q4fRu+/RY6dIASJdLsMPbqvUrvUTJnSQK2ByD1jKIJGz4c7t5Va4Nribr96Dbf/v0tHSp3oEROfc4l6Icf4NIl06wFY43CUAi4HO/nK5bnnruNZY3o+4BHMve1nmnT1HW8YcPS7BD2zMnBiSF1h7D36l42XNhgdBzzqlkTGjdWa4NHRBidxtSm7Z7G46jHDKunz7kExcSoXpJVqsCbbxqdBrBOYXheeXv2182EtknOvuoNhOgphAgWQgSHhIS8YESL27fVtNrly6ds/wygS5UuFHQvSMA2PTdQooYPhxs31HVh7bnuR9znq71f8U75dyifR59zCVq5Ek6dUr+wmqC1ANYpDFeAIvF+LgxcS2gbIYQTkB0ITea+AEgpZ0spvaSUXnny5ElZ0lmzVJNNS1Amp0x8XvtzNl3cxK7Lu4yOY14NG0KtWuq6cFSU0WlMaVbwLO4/uc/wesbfTDWtuLVgSpcGHx+j0/zLGoVhH1BaCFFCCOGCupm8+pltVgNdLN/7ABuluoi9Gmhn6bVUAigN7LVCpoRlgPUWUuujah/h4eaB/zZ/o6OYlxDg6wsXL6oxMdpTHkU9YsquKTQr1YxqBasZHce81q2DAwdMtxZMqguD5Z5BX2AdcAJYJqU8JoQYI4RoadlsLuAhhDgLDACGWvY9BiwDjgNrgT5SypjUZtJSJ4tLFj6t9Sm/n/mdgzcOGh3HvN56C15+WV0fjtVdfOObu38uIY9CdGshKQEBai2YTuZal0LYY+8TLy8vGRwcbHSMdO1exD2KBhXljdJvsNRnqdFxzGvpUjXobflyU10KMFJkTCSlppeiWI5ibOuml0VN0LZtUL++mgKjXz+bHFII8beU0iup7TLmyGctSTlcc9Cneh+WH1vOqdunjI5jXj4+UKaM+s3PDn/JSgtLDi/h8oPL+Hr7Gh3F3AICTLsWjC4MWoI+q/0Zrk6uBO4INDqKeTk6quvDBw7A2rVGpzFcTGwM47aPo2r+qrz+UtpPZGC39u9X/18++8yUa8HowqAlKG+WvHz4yod8f/h7Lt27ZHQc8+rYUV0n9vfP8K2GX078wpnQMwz3Ho4wSddLUwoIUEvGmnQtGF0YtEQNrDMQgWDiTr0OQYJcXNQUKzt2qOvGGZSUkoBtAZTLXY7W5VsbHce8TpxQa8H07auKgwnpwqAlqkj2InSu0pk5++dwI/yG0XHMq0cPyJtXtRoyqDVn1nDo5iGG1h2Kg9AfLQkaPx7c3NSSsSal//W0JA2tN5So2CiCdul1CBLk5qbWDv/zT9i3z+g0NielxH+bP0WzF6VD5Q5GxzGvixfh+++hZ09149mkdGHQklQqVyneq/geXwd/TehjvQ5Bgnr3VmuIB2S86US2XtrKriu7GFxnMM6OzkbHMa+JE9USsSZfC0YXBi1ZhtUbRnhkOF/t0esQJChbNrVU7MqVcOyY0Wlsyn+bP/my5KN71e5GRzGvGzdg7lzo0gUKFzY6TaJ0YdCSpXK+yrQs25Jpe6YR9kSvQ5Cg/v0hSxY1GjqD2Hd1H+vPr2dA7QG4ObsZHce8pkxR82oNGWJ0kiTpwqAlm6+3L3cj7vLt398aHcW8PDzUWuI//gjnzhmdxibGbR9HDtcc9PLqZXQU8woNVZN4vveeWiLW5HRh0JKtRqEaNCnZhMm7JhMRrdchSNDnn4Ozs5p5NZ07dusYK06uoH+N/mTLlM3oOOY1Y4ZaEnbof1Y+NiVdGLQXMrzecG6E32DegXlGRzGvAgXUmuILFqg1xtOxwB2BZHHOQv+a/Y2OYl7h4WqRsBYt1KSLdkAXBu2FNCjegNqFazNhxwSiYvQ6BAkaNEitzDVpktFJ0sz5u+f58ciPapr2zB5GxzGvb79Vl5KG289Ms7owaC9ECIGvty+X7l/ihyN60aMElSihpsr49ltI6YqDJjdhxwQcHRz5vI65u14aKiICJk+GRo3Uwk52QhcG7YW9WfpNquSrwrjt44iJ1ctnJGjoUPXBMG2a0Ums7lrYNeYfnE83z24UdC9odBzzWrAArl+3q9YC6MKgpYAQguHewzl15xS/nvjV6DjmVb48tG6tbjzev290GquauGMiMbExDK472Ogo5hUZqbot16ypWgx2JFWFQQiRSwixXghxxvI153O28RRC7BJCHBNCHBZCvBfvtQVCiAtCiIOWh2dq8mi206Z8G8p6lMV/mz/2uNiTzfj6qqIwc6bRSazmRvgNvvn7G96v8j4lc5Y0Oo55LV4M//wDo0appWDtSGpbDEOBDVLK0sAGy8/PegR0llJWBJoBU4UQOeK9PkhK6Wl56HUk7YSjgyND6w3l0M1D/HH2D6PjmFfVqvDGGxAUBA8fGp3GKibvnExkTKRetjMxUVFqQsVq1dS/v51JbWF4G1ho+X4h0OrZDaSUp6WUZyzfXwNuAeadPUpLto6VO1I0e1HdakiKry/cvg1z5hidJNVCHobwdfDXdKjcgdIepY2OY14//AAXLthlawFSXxjySSmvA1i+5k1sYyFEDcAFiD8k1N9yiSlICJEplXk0G3J2dGZwncHsvLyTTRc3GR3HvOrWVWv7TpigbkbbsSm7pvA46rFetjMx0dGqtVClihq7YIeSLAxCiL+EEEef83j7RQ4khCgALAa6SSljLU8PA8oB1YFcQIKTiAghegohgoUQwSHptPufPerxSg8KuhfEb4ufbjUk5osv4No1u2413Hl0hxn7ZvBepfcol7uc0XHMa+lSOHPGblsLkIzCIKVsIqWs9JzHKuCm5QM/7oP/1vPeQwiRDfgdGCGl3B3vva9L5QkwH6iRSI7ZUkovKaVXHhPPY57RuDq5MqzeMLZe2srmi5uNjmNeDRuCt7fqpWKnrYapu6cSHhnOCO8RRkcxr5gY+PJLqFwZWv3nyrrdSO2lpNVAF8v3XYBVz24ghHABVgCLpJTLn3ktrqgI1P2Jo6nMoxngg1c+oKB7QUZvGa1bDQkRAkaPVq2GuXONTvPC7j6+y/S90/Gp4EPFvBWNjmNeP/8MJ0/CyJFq3QU7ldrkgUBTIcQZoKnlZ4QQXkKIuDZzW6A+0PU53VKXCCGOAEeA3MCXqcyjGcDVyZWhdYfqVkNSGjaEevXsstUwfc90Hjx5oFsLiYmNhbFjoUIFaNPG6DSpIuzxNzwvLy8ZHBxsdAwtnojoCEpOK0lpj9Js6brF6DjmtWEDNGmiBr316WN0mmS5H3Gf4tOK06B4A1a8t8LoOOb1yy/g46N6JLVvb3Sa5xJC/C2l9EpqO/tt62imou81JFOjRv/fanjyxOg0yTJj7wzuRdxjZP2RRkcxr9hYGDMGypSBtm2NTpNqujBoVvNhtQ8pkLUAozePNjqKecXda7h61S7uNYQ9CWPK7ik0L9OcVwq8YnQc8/rtNzh8GEaMAEdHo9Okmi4MmtW4OrkytN5QtlzaolsNiWnUSI1tCAgwfath+p7phD4O1a2FxMTGqmL/0kumvYT0onRh0Kzqw1d0qyFJdtJquBdxj0m7JtG8THNqFEqwJ7m2YgUcPKjGqjg5GZ3GKnRh0KzKzdlNtxqSo3Fj1Wow8b2GoF1B3Iu4x5gGY4yOYl4xMWogW7ly0KGD0WmsRhcGzeriWg1+W/yMjmJeca2GK1dgnvmWSb3z6A5Bu4NoU74NVQtUNTqOeS1dCsePq3/LdHBvIY4uDJrVxbUaNl/czKYLeg6lBMW1Gvz9TTeuYeLOiYRHhuPXQBf3BEVHq4JQuTK8+67RaaxKFwYtTfSs1pNC7oXw3eirR0MnRAg1IOrqVfjmG6PT/Otm+E2+2vsV7Su316OcE7N4sZoTacwYux7l/Dzp60+jmYarkyujXh3Friu7+P3M70bHMa+GDdWAt4AACAszOg0AgdsDiYiO4ItXvzA6inlFRqqCUK0avP1C84naBV0YtDTTzbMbL+V8Cd+NvsT+O6Gu9h/+/hASYoq1oa8+uMqs4Fl0rtKZMh5ljI5jXvPnw8WLqsVnpzOoJkYXBi3NODs6M6bhGA7fPMyyY8uMjmNeNWqomTgnToTQUEOjBGwLIEbGMKr+KENzmFpEhCoItWtDs2ZGp0kTujBoaapdpXZUzluZkZtGEhUTZXQc8xo7Vl1KmjDBsAiX7l3iu/3f0aNqD0rkLGFYDtObPVvdF/ryy3TZWgBdGLQ05iAc+LLRl5wNPcvCQwuT3iGjqlQJOnaE6dPh+nVDIozeMhohhF6dLTHh4erSX4MGagR7OqULg5bmWpRpQc1CNfHb4kdEtLm6ZZrK6NH/v4i8jR29dZRFhxbRr0Y/imQvYvPj240pU+DWLTUwMR3ThUFLc0IIAhoHcOXBFb4JNk+3TNN56SX44AN1qeLCBZseeviG4bi7uDOs3jCbHteu3Lql7gO1bg21ahmdJk3pwqDZRKMSjWhcojEB2wIIjww3Oo55xc3O6We7gWXbLm3jt9O/MbTeUDwye9jsuHbnyy/h8WPVtTidS1VhEELkEkKsF0KcsXzNmcB2MfFWb1sd7/kSQog9lv2XWpYB1dIp/0b+hDwKYfLOyUZHMa9ChaBvXzV46siRND+clJIhfw2hoHtB+tfsn+bHs1vnz6tBiD16QNmyRqdJc6ltMQwFNkgpSwMbLD8/z2Mppafl0TLe8+OBIMv+d4EeqcyjmVjNwjXxqeDDxJ0TuRF+w+g45jVsGGTLBoMHp/mhVp1axa4ruxj96mgyO2dO8+PZrZEj1cypX2SMQX+pLQxvA3FdTRYCrZK7oxBCAI2An1Oyv2afxjUeR2RMJF9syhgnWIrkyqUuKa1dC+vXp9lhomOjGbZhGGU9ytKtarc0O47dO3BALdf52WdQsKDRaWwitYUhn5TyOoDla94EtnMVQgQLIXYLIeI+/D2Ae1LKaMvPV4BCCR1ICNHT8h7BISEhqYytGaVUrlJ8XP1j5hyYw7Fbx4yOY159+0Lx4jBokJraOQ0sPLiQk7dPMq7xOJwc0sc6Amli6FBVrG3QgjOLJAuDEOIvIcTR5zxeZIKQopYFqDsAU4UQLwHPGxmS4GxrUsrZUkovKaVXnjx5XuDQmtmMrD8Sdxd3Bv+VcU60F5Ypk+oSeegQfP+91d/+UdQjvtj8BbUK16JVOd1QT9Bff8Gff6oWXPbsRqexmSQLg5SyiZSy0nMeq4CbQogCAJavtxJ4j2uWr+eBzUBV4DaQQwgR96tKYeBaqv9Emul5ZPbA19uXNWfWsOH8BqPjmNd776npMnx94dEjq7715J2TuRp2lQlNJiDS6ejdVIuJgc8/h2LFoHdvo9PYVGovJa0Guli+7wKsenYDIUROIUQmy/e5gbrAcanmYt4E+CS2v5Y+9avZj2LZizFo/SA9wV5ChIBJk9T0C1OnWu1trz64SuCOQHwq+OBdzNtq75vuzJsHhw+rsQuurkansanUFoZAoKkQ4gzQ1PIzQggvIcQcyzblgWAhxCFUIQiUUh63vDYEGCCEOIu652DeBXA1q3J1cmVc43EcuHGAJYeXGB3HvLy91QR7gYFqgJUVDN84nOjYaCY0MW5eJtO7f1+11OrVAx+fpLdPZ4Q9LqLi5eUlg4ODjY6hpVKsjKXmnJrcCL/Bqb6ndHfJhJw+DRUrqlHRs2al6q32Xd1HjTk1GFp3KOOapO9pHVJlyBA1oeG+feDlZXQaqxFC/G2535soPfJZM4yDcGDKa1O48uAK47ePNzqOeZUpAx9/rKbKOHQoxW8jpeTTdZ+SL0s+hnnrqS8SdO6cunTXpUu6KgovQhcGzVDexbxpX6k943eM58Jd284PZFdGj1ZdJvv1gxS28pcdW8bOyzvxb+RPtkzZrJsvPRk8WA1mywBTXyREFwbNcBOaTsDRwZEBfw4wOop55cypPqi2bYOffnrh3R9HPWbwX4PxzO9JV8+u1s+XXmzeDL/+qkafZ5DBbM+jC4NmuMLZCjPCewQrT67kz3N/Gh3HvLp3V2sMDxyo1gV4ARN2TOCf+/8Q9HoQjg6OaRTQzkVHwyefQNGiqptqBqYLg2YKA2oPoFSuUnyy9hMiYyKNjmNOjo7w1Vdw7doLrdlwLvQc47aPo12ldjQo3iDt8tm7mTNV99SgIHBzMzqNoXRh0Ewhk1Mmpr4+lZO3T/LVnq+MjmNetWtD584weTKcOZPk5lJK+v3RDxdHFya/pme1TdC1a2qivGbN4J13jE5jOF0YNNN4q8xbvFX6Lfy2+HE9zJjlLe3C+PFqwNWnnyZ5I3rlyZX8cfYP/Br4UdA9414zT9LAgRAZqVpkeiS4LgyauQS9HkRkTCSfrfvM6CjmlT+/6qW0Zg388kuCmz2MfMgnaz+hct7K9KvZz3b57M2GDfDjj2qyvFKljE5jCrowaKZS2qM0vt6+LD22lDVn1hgdx7z694eqVdXX+/efu8nYrWO5/OAyX7/1tZ49NSFPnkCfPmpZ1SFDjE5jGrowaKYzpN4QKuSpwMe/f6yXAU2Ik5Ma8Hbzpupa+Yyjt44yeddkunp2pV7RegYEtBOTJsGpU+oSUga/4RyfLgya6bg4ujC7+Wwu3b+kF/RJjJeXajHMmgU7d/77dExsDD1W9yCHaw49H1JiTpyAMWPg3XfhjTeMTmMqujBoplS3aF0+qvYRU/dMZf/1/UbHMa+xY6FIEejZU908Babtmcbeq3uZ3mw6ebLotUueKyZGrd+cNatqLWhP0YVBM63AJoHkzZKXD3/7kOjY6KR3yIiyZlX9748dgwkTOBt6lhEbR9CiTAvaVWpndDrzmjkTdu1ScyLly2d0GtPRhUEzrRyuOZjxxgz2X9+vJ9lLTIsW0LYtcowfH/7YAWdHZ75+62u9AE9CLlxQ92XeeAM6dTI6jSnpwqCZWpsKbWhXqR1+W/w4eOOg0XHMa+ZMvqvrxubb+5jYcByFsxU2OpE5Sakuuzk4wDff6DELCdCFQTO9mW/OxCOzB51XdOZJ9BOj45jSBccwBjaKpuEF+PB3PTgwQd9+q9ZxHj9ezYmkPVeqOjcLIXIBS4HiwEWgrZTy7jPbNASC4j1VDmgnpVwphFgAvArEdcTuKqVM0a+FUVFRXLlyhYiIiJTsni64urpSuHBhnJ2djY5iVbnccjGnxRya/9gcvy1+BDTOuNMhP09MbAzvr3gf4ezMPKc3EQHjoEVLqF7d6Gjmcvq0mhyvaVPo1cvoNKaWqhXchBATgFApZaAQYiiQU0qZ4CgRSyE5CxSWUj6yFIb/SSl/fpHjPm8FtwsXLuDu7o6Hh0eGvLYqpeTOnTuEhYVRokQJo+OkiQ9Wf8D8g/PZ0X0HtQrXMjqOaYzbNo7hG4ezqNUi3i/WAipXBnd3+Ptv3Tc/TlQU1K2rFuE5ciTDTqltqxXc3gYWWr5fCLRKYnsf4A8p5aNUHvc/IiIiMmxRABBC4OHhka5bTFNen0LhbIV5f8X7hD0JMzqOKey/vp9Rm0fRtmJbOr3cCXLkgLlzVR99PZL3/40dq5bp/PbbDFsUXkRqC0M+KeV1AMvXvEls3w748Znn/IUQh4UQQUKITAntKIToKYQIFkIEh4SEJLTNC0RPf9L7nz9bpmx8/873nL97nl6/98Ie1yu3pkdRj+j4a0fyZcnHrLdm/f+//2uvqQn2vvoKVq40NqQZ7Nyppinv0gV8fIxOYxeSLAxCiL+EEEef83j7RQ4khCgAVAbWxXt6GOqeQ3UgF5DgrzhSytlSSi8ppVeePHrQTkblXcwbvwZ+/HDkB+YfnG90HMNIKfn49485dfsUC1stJJdbrqc3GD9ejYzu1g0uXTImpBncuQPt2kGxYjB9utFp7EaShUFK2URKWek5j1XATcsHftwH/61E3qotsEJKGRXvva9L5QkwH6iRuj+OuXzwwQccP348ye2mTp3KokWLEt2mXbt2nEnG/PsZwbB6w2hUohF91/TleEjSf7/p0bwD81h4aCGjXh1F45KN/7uBi4taAjQmBtq3V9fYM5rYWHj/fTWf1PLlkE2vc51cqb2UtBroYvm+C7AqkW3b88xlpHhFRaDuTxxNZR5TmTNnDhUqVEh0m+joaObNm0eHDh0S3a53795MmKDnvQFwdHDk+3e+J6tLVtoub8vDyIdGR7KpQzcO0fePvjQp2YSR9UcmvOFLL8F336kRvr6+tgtoFuPGwR9/wLRpaklULdlSOxdvILBMCNED+Ad4F0AI4QX0klJ+YPm5OFAE2PLM/kuEEHkAARwErNOH7NNP4aCVB0N5eqrh8wl4+PAhbdu25cqVK8TExDBy5EhmzZrFpEmT8PLyImvWrHzyySf873//w83NjVWrVpEvXz42btzIK6+8gpOTE9HR0dSuXZuJEyfSoEEDhg0bhoODA/7+/nh7e9O1a1eio6NxctJTKBdwL8CS1ktotqQZ3VZ1Y6nP0nR/jwXgwZMH+Cz3IZdbLpa0XpL0+s3vvacWuJ84UX04vveeTXIabtMmGDUKOnSAjz4yOo3dSVWLQUp5R0rZWEpZ2vI11PJ8cFxRsPx8UUpZSEoZ+8z+jaSUlS2XpjpJKe12juW1a9dSsGBBDh06xNGjR2nWrNlTrz98+JBatWpx6NAh6tevz3fffQfAjh07qGb5bcbJyYkFCxbQu3dv1q9fz9q1a/niCzW7qIODA6VKleLQoUO2/YOZWNOXmhLYOJDlx5czbvs4o+OkuZjYGDr+2pELdy/wU5ufyJslqb4eFtOmqa6a3bpZ/xcmM7p4URXAMmVUL6QM8AuDtaXPXz0T+c0+rVSuXJmBAwcyZMgQmjdvjre391Ovu7i40Lx5cwCqVavG+vXrAbh+/Trly5f/d7uKFSvy/vvv06JFC3bt2oWLi8u/r+XNm5dr1679W0g0GFhnIAduHGDExhFUyVeFt8q8ZXSkNDN8w3D+d/p/zHhjBt7FvJPeIY6LC/z8s7oZ3aoVBAdD7txpF9RIYWFq7qioKNUjK2tWoxPZJT0lhpWUKVOGv//+m8qVKzNs2DDGjBnz1OvOzs7/XupwdHQkOlrNFurm5vafsQdHjhwhR44c3Lx586nnIyIicNMDlp4ihGBOyzl45vekw68dOBFywuhIaWLhwYVM2DmB3l696VOjz4u/Qf78sGIF3Lih1h+wTNGdrsTEQMeOagzHsmVQtqzRieyWLgxWcu3aNTJnzkynTp0YOHAg+/cnbw2B8uXLc/bs2X9//vXXX7lz5w5bt26lf//+3Lt379/XTp8+TcWKFa2e3d5lds7MynYrcXNyo9mSZlwLu2Z0JKvaemkrPf/Xk0YlGjGt2bSUv1H16jBnjrrn0L276rWTngwZAr/9pq4YNG1qdBq7pguDlRw5coQaNWrg6emJv78/I0aMSNZ+b7zxBlu3bgXg9u3bDB06lLlz51KmTBn69u3LJ598AsDNmzdxc3OjQIECafZnsGdFsxdlTcc1hD4O5c0lb/LgyQOjI1nFoRuHaPFjC0rmLMnyd5fj7JjKebA6dYIvv4QlS2D4cOuENINJk2DyZLV+c58UtKi0p0kp7e5RrVo1+azjx4//5zl70apVK3n69OlEt5kyZYqcM2dOku9lz38P1rDu7DrpNMZJNl7YWEZERRgdJ1XOhZ6T+Sfll4WnFJaX7l2y3hvHxkrZq5eUIOW0adZ7X6MsWKD+LG3bShkdbXQaUwOCZTI+Y3WLwQQCAwO5fj3xqZJz5MhBly5dEt1Gg9deeo25Leey4cIG3l3+LpEx9nkt/eqDq7z+/es8iX7Cuk7rKJrdilNECwEzZqgb0Z98osY62KtVq9QSnY0bw6JF4JhE910tWXRhMIGyZctSv379RLfp1q2bHr+QTJ2rdGbWW7P47fRvtF3elqgY+xr1e+XBFRosbMCN8Bv83uF3KuRJfJBkijg6qpHRb76pFq6ZN8/6x0hrK1aouY+qVVPfZ0pwqjXtBenCoKVLvbx6MeONGaw6tYr3fn7Pbhb4uXz/Mg0WNOBm+E3WdVpH7SK10+5gmTLBL7+oSfc++ADm29HcU7/8Am3bqi64f/6pphnXrEYXBi3d6lOjD9OaTWPFyRW8+YP5b0ifvH2S+gvqE/IohPXvr6dOkTppf1BXV9Xfv2lT1VNpwgS1/KWZLVigBrDVrAnr1kH27EYnSnd0YdDStf41+7Oo1SK2XtpK/fn1uR5mzmUvt17aSp25dXgU9YiNnTdSs3BN2x3czU1182zfXnX5HDDAnF1ZpYTRo9UI7kaN1DxIemK8NKELg5buvV/lfX5r/xtnQ89Sc05Ngq8FJ72TDS05vISmi5uSL2s+dvfYTbWCBoxsd3GB779X84xNnQrvvAP37ye9n61EREDXruDnpwrD77/ry0dpSBcGEzlw4AAffPBBotvMmDGD+fZ0LdgkmpVqxtZuWxFCUG9ePebun2t0JJ5EP6Hvmr50WtGJWoVrsaP7DkrkNHBZVgcHmDJFLfCzZo0aEHfUBBMenz8PdeqoXkd+fmqFunS2rrnpJKdPq9ke6W0cQxwfHx958ODBRLd5+PCh9PT0TPD19PD3kJZCHobIpouaSkYju6zoIu89vmdIjpMhJ2X12dUlo5ED1g6QkdGRhuRI0LZtUubPL2WWLFLOnq3GPhhh6VIpc+RQj9WrjcmQjgNsWtUAAArpSURBVJDMcQzpsv/jp2s/5eAN684i6Znfk6nNEp+cb9GiRUyaNAkhBC+//DJffvkl3bt3JyQkhDx58jB//nyKFi3K8uXL8fPzw9HRkezZs7N161bCwsI4fPgwVapUAaB///7kzp2bUaNGsW7dOvz9/dm8eTOZM2emePHi7N27lxo10tW6RjaRO3Nu/uj4B2O2jMF/mz8bLmxgTos5vF7qdZscPyY2hml7puG70Rc3Jzd+afsLrcu3tsmxX0i9erB/v1ropmdP+PVXmD0bihSxzfFv3VIjmH/+GWrUUF1rSxjYmspg9KUkKzl27Bj+/v5s3LiRQ4cOMW3aNPr27Uvnzp05fPgwHTt2pH///gCMGTOGdevWcejQIVavXg1AcHAwlSpV+vf9AgMDWbp0KZs2baJ///7Mnz8fBwf1z+Xl5cW2bdts/4dMJxwdHPFr6MeuHrtwd3Gn2ZJmvLP0Hc6FnkvT4268sJFqs6vx+Z+f07RkU459fMycRSFOgQKqK+jMmbB1K5QrB2PHwuPHaXfMyEh1OatMGVi9Wi22s2OHLgq2lpxmRUIP1MI8x4BYwCuR7ZoBp4CzwNB4z5cA9gBngKWAS3KOa8ZLSdOnT5fDhw9/6jkPDw8ZGakuEURGRkoPDw8ppZQfffSRbNKkiZw9e7a8ffu2lFLKJUuWyI8++uip/Xfs2CEdHR3l9OnTn3p+9uzZcsCAAc/NYfTfg715HPVY+m/1l1n8s0iXsS6y12+95LnQc1Y9xrZL2+SbS96UjEYWCyomlx5dKmONujSTUhcuSOnjo6aeKFxYyqlTpQwPt977R0RI+d13Ur70kjrG669Lqf8vWx02mhLjKNAa2JrQBkIIR2Am8AZQAWgvhIgbyjkeCJJSlgbuAj1SmccwUsokVxCLe/2bb77hyy+/5PLly3h6enLnzp0Ep9/28PDg2rWnZwvV029bj6uTK8O9h3O632m6VunKvIPzKPNVGdosa8PqU6tTPGr6XsQ9vvv7O+rMrYP3fG/2Xt1LQKMATvQ5QduKbe1vtbnixdW6yZs3Q8mSqvdSsWLw+edw+HDK3/fUKRg5UrUIPvxQjUlYswbWroV465RoNpac6pHUA9hMAi0GoDawLt7PwywPAdwGnJ63XWIPM7YYjh49KkuXLv1vC+DOnTuyRYsWctGiRVJKKefPny9btWolpZTy7Nmz/+7n6ekpDxw4IE+cOCHr1q377/MXL16UpUuXllevXpVVqlSRu3fv/ve1vn37yh9//PG5OYz+e7B3Vx9clYP+HCTzTMgjGY3MGZhT+izzkbP2zZJ7ruyR9yPu/2ef2NhYeT3sutx0YZMM2BogmyxqIjONzSQZjSz7VVn51Z6v5MPIhwb8adLQ9u1Stm4tpbOz+g2/TBkp+/SRctkyKU+ckDLyOTfTo6KkPH1ayhUrpPz0UykrV1b7OjhI2ayZlOvXG3eTO4PARDefCwGX4/18BagJeAD3pJTR8Z4vZIM8aaJixYr4+vry6quv4ujoSNWqVZk+fTrdu3dn4sSJ/958Bhg0aBBnzpxBSknjxo2pUqUKQgju379PWFgYWbNmpUePHkyaNImCBQsyd+5cunbtyr59+3B1dWXHjh3/LvmpWVdB94JMaDoB/0b+rD27ll9P/sr6c+v5+fjP/26TPVN2smXKhquTKw+jHnI/4j4Pox7++3rlvJXpU70P7Su3p1qBavbXOkiOunXV4/ZtWLpUjSuYP1/djwA1F1OOHP8/Kjk8HO7eVSurgRpxXbeumiq7fXt1P0MzDaGKSCIbCPEXkP85L/lKKVdZttkMDJRS/mfkkBDiXeB1aVkDWgjxPlADGAPsklKWsjxfBFgjpaycQI6eQE+AokWLVrt06dJTr584ceKpJTLtUVBQEO7u7omOZThw4ABTpkxh8eLFz309Pfw9mI2UknN3z3H01lFOhJzgRvgNHkQ+ICI6gqzOWXHP5E6JHCUom7ssnvk9k78Wc3oTGakuK504oS4RhYaqQXIODmqJzZw51U3lsmWhalVVHDSbEkL8LaX0Smq7JFsMUsomqcxyBYjfx60wcA11GSmHEMLJ0mqIez6hHLOB2QBeXl4mn8wlZXr37s3y5csT3eb27duMHTvWRok0UPeGSuUqRalcpWhVrpXRcczr/9q7vxep6jCO4+9P68qUJcIqsTXSGkg3XaSIEAsS1YaV9AO6MGiJrlMML/p1E/0D0V0QahhZIpoktWRBRnVRmWaYaSGL4WCxy0aU3Uj1dDFfYoc258yO7HfOnM8LFuYcDstnl2GeOc/3nPMsXtx8qN26tp871uMW4nLVo8BqSaskLQY2A4dSv+sI8Eg67nHgnQXI07NqtRrj4+OXPWZsbIyRkZGFCWRmldRVYZD0sKQGzYXj9yQdTvtvkDQBkM4GtgCHgdPAvog4lX7FM8B2SWdprjl09ZyCdm2xflf1v9/MroyuFp8j4iBwcI79F4D7Zm1PABNzHDdJc72ha7VajZmZGYaGhvpzsa+NiGBmZoaa+7Zm1qW+eSRGvV6n0WgwPT2dO0o2tVqNer2eO4aZlVzfFIbBwUFW+bZ5M7Ou+VlJZmbWwoXBzMxauDCYmVmLtnc+9yJJ08CPbQ+c23KaN9eVkbPn4ex5lDV7L+e+KSJWtDuolIWhG5K+KnJLeC9y9jycPY+yZi9r7tncSjIzsxYuDGZm1qKKheHV3AG64Ox5OHseZc1e1tz/qtwag5mZXV4VzxjMzOwyKlUYJG2U9L2ks5KezZ2nKEm7JE1J+jZ3lk5IWinpiKTTkk5J2pY7U1GSapK+lPRNyv5i7kydkjQg6WtJ7+bO0glJ5ySdlHRC0n+Gf/UyScsk7Zd0Jr3vb8+daT4q00qSNAD8AIzRHB50FHg0Ir7LGqwASRuAi8DrEXFr7jxFSRoGhiPiuKTrgGPAQyX5nwtYEhEXJQ0CnwHbIuLzzNEKk7QdWAcsjYhNufMUJekczRnyvXovwP+StBv4NCJ2pPkz10TEr7lzdapKZwzrgbMRMRkRl4C9wIOZMxUSEZ8Av+TO0amI+CkijqfXv9Ocx1GKud5pdvrFtDmYfkrzLUpSHbgf2JE7S1VIWgpsIM2ViYhLZSwKUK3CcCNwftZ2g5J8SPUDSSPAGuCLvEmKS62YE8AU8GFElCY78DLwNPB37iDzEMAHko6lWe9lcTMwDbyWWng7JC3JHWo+qlQY5preU5pvgGUm6VrgAPBURPyWO09REfFXRNxGcx75ekmlaONJ2gRMRcSx3FnmaTQi1gL3Ak+mVmoZLALWAq9ExBrgD6A0a5mzVakwNICVs7brwIVMWSoj9ecPAHsi4u3ceeYjtQM+BjZmjlLUKPBA6tXvBe6U9EbeSMWlCZBExBTNCZFXZMrjAmgAjVlnlvtpForSqVJhOAqslrQqLQptBg5lztTX0gLuTuB0RLyUO08nJK2QtCy9vhq4GziTN1UxEfFcRNQjYoTm+/yjiHgsc6xCJC1JFyqQ2jD3AKW4Gi8ifgbOS7ol7boL6PkLLebSNxPc2omIPyVtAQ4DA8CuiDiVOVYhkt4C7gCWS2oAL0TEzrypChkFxoGTqVcP8HyaAd7rhoHd6Wq2q4B9EVGqyz5L6nrgYJrbvgh4MyLezxupI1uBPenL5yTwROY881KZy1XNzKyYKrWSzMysABcGMzNr4cJgZmYtXBjMzKyFC4OZmbVwYTAzsxYuDGZm1sKFwczMWvwDTyfykmAUc5kAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "x = np.arange(0, 6.5, 0.01)\n",
    "plt.plot(x, np.sin(x), 'r')\n",
    "plt.plot(x, np.cos(x), 'g')\n",
    "plt.legend([\"sin(x)\", \"cos(x)\"], loc='best')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We were able to draw multiple lines on the same figure by multiple successive calls to `plt.plot`. Then `plt.legend` adds a legend to the figure: it takes a list of labels, and uses these to label the lines in the order they were drawn on the figure. The optional `loc` parameter specifies where the legend will be placed (defaults to top right).\n",
    "\n",
    "### Exercise 2\n",
    "\n",
    "Read in the data from the file `cse_staff_population.csv`. Each line of the file lists the name of a School/Planning unit, followed by the number of academic staff, followed by the number of professional services staff (the first line is a header line).\n",
    "\n",
    "Plot a bar chart showing, for each School/Planning Unit, the number of academic staff and the number of professional services staff (so each School/Planning Unit will have two bars associated to it). Your figure should have axes labels, appropriate labels for the xticks, and a title. The bars for academic and professional services should be colour coded, and this should be noted by a legend.\n",
    "\n",
    "(Hint: You can use two different calls to `plt.bar` to overlay two bar charts on one figure.)"
   "execution_count": 6,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAE4CAYAAABBiWRTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXecFUXywL/FkgVBkiIoYARhSe4KKAqICogiAooZEA/jnelU9Eynd4rhTCfGA8FwiIeKAQMqIkYkCGJCEPEn6imgIuAZgPr9Uf12h8fs8pZ9b98u1Pfzmc+b6emZqTehq7u6ulpUFcdxHMdJplK2BXAcx3HKJ64gHMdxnFhcQTiO4zixuIJwHMdxYnEF4TiO48TiCsJxHMeJxRWE42wGEdlbRN4TkdUi8icRqSEiz4jIKhH5T7blSyAiS0XkkC089kARWZhumZyKjSsIp8wQkRNEZLaIrBGRb0TkeRHpGvbVFZGxIvLfUBB/KiKXRI5VEVkbjk0sFxdxnaYi8riIrAiF+AIRGRr2NQ/nqlwC0S8GpqtqbVW9AxgE7AjUV9VjYq5/tYj8HmT8UUTeEpEuJbhexgn3YI/Etqq+rqp7Z1Mmp/zhCsIpE0TkAuA24DqscN0VuAs4KmS5FagFtALqAP2Az5JO005Va0WWG4u43EPAl0AzoD5wCvBtKcRvBnyYtP2pqq4r5piJqloLaAi8ATwhIlIKGRyn7FFVX3zJ6IIV+GuAY4rJ8wHQv5j9CuyR4vXWAO2L2Pd/4VxrwtIF2B2YBqwEVgCPAHVD/mnAeuCXkH8C8Bvwe9geHnONq4GHI9utwzUbYJWyy4EvgO+AB4E6IV/zkG8E8DXwDXBh5DzjgL9FtrsDyyLbS4FDwvp+wNvAj+E8dwJVw74Z4Tprw38YHHOuVsD0cPyHQL8kOUYDU4DVwExg92y/Z76kf/EWhFMWdAGqA08Wk+cd4O8iMkxE9izl9d4BRovIcSKya9K+g8JvXbVWyNuAANcDO2MF4y5YIY+qHgy8DpwT8h+PtYImhu0xxQkiItWAoVjhuyKsDwV6ALthraY7kw7rAewJHAaM3MJ+hfXA+ZhS6gL0BM4K/ylxDxItsolJMlcBngGmAo2APwKPiEjUBHU88FdgB2Ax8PctkNEp57iCcMqC+sAKLd4k80es5n4O8JGILBaRPkl55gabfmLpVcS5jsEK9SuAz0VknojkF3VhVV2sqi+p6q+quhy4BeiW6p8rgmNF5EfM1LUv0D+knwjcoqpLVHUNcClwXFKfyF9Vda2qLgAewArjEqGqc1T1HVVdp6pLgXtJ/T91xhTXKFX9TVWnAc8myfGEqr4bnukjQPuSyuiUf1xBOGXBSqBBcR3Dqvo/Vb1OVffFFMpjwH9EpF4kW0dVrRtZXiziXD+o6khVbY31d8wDJhfVByAijUTkURH5SkR+Ah7Gat6l4bEgYyNVPVhV54T0nTHzUoIvgMpBzgRfJu3fuaQXF5G9ROTZ0On/E9bqSfU/7Qx8qaobkuRoEtn+b2T9Z0yhOFsZriCcsuBtzIbff3MZAVQ1UaBtB7QozYWDWedmrNCrh9nek7k+pLdV1e2BkzCzUyb4GuvkTrArsI6NO9F3Sdr/dVhfC9SM7NupmOvcDXwC7Bn+02Wk/p++BnYRkWj5sCvwVYrHO1sJriCcjKOqq4ArsX6B/iJSU0SqiEgfEbkRQESuEJF8EakqItWBc7EO0hL75ovIDSLSRkQqi0ht4ExgsaquBJYDGzD7f4LaWGftjyLSBLioNP93M0wAzheRFiJSi8L+jKj57Ypwj1oDw4BEH8E84HARqSciOwHnFXOd2sBPwBoRaYndgyjfsvE9iDITU0YXh+fUHTgSeDTlf+lsFbiCcMoEVb0FuADz4FmOmVHOASYnsmD29hVYDfZQoG+w0yeYnzQO4rYiLlcT6xD/EViC1dj7BTl+xjpU3wz9GJ2xztaOwCrMM+eJ9PzrWMZibrgzgM+xltUfk/K8hnX8vgLcrKpTQ/pDwHzMW2kqhYojjj8DJ2BeRvfH5L0aGB/uwbHRHar6G3a/+mDP4y7gFFX9JNU/6WwdiKpPGOQ45QERaY4pjSqb6dB3nDLBWxCO4zhOLK4gHMdxnFjcxOQ4juPE4i0Ix3EcJxZXEI7jOE4sJQl5XO5o0KCBNm/ePNtiOI7jVCjmzJmzQlUbbi5fhVYQzZs3Z/bs2dkWw3Ecp0IhIl9sPpebmBzHcZwicAXhOI7jxOIKwnEcx4mlQvdBOM62xO+//86yZcv45Zdfsi2KU0GoXr06TZs2pUqVKlt0vCsIx6kgLFu2jNq1a9O8eXN8emtnc6gqK1euZNmyZbRosWVR893E5DgVhF9++YX69eu7cnBSQkSoX79+qVqcriAcpwLhysEpCaV9XzKqIERkqYgsCHMCzw5p9UTkJRFZFH53COkiIneEuYjfF5GOmZTNcZwt48knn0RE+OST9EwPUatWemYrffrppxk1alRazuUYZdEH0SNM+5hgJPCKqo4SkZFh+xJscpI9w9IJmzKxU6aEaj5ySqmOXzqqb5okcZwto7TvcDKpvtMTJkyga9euPProo1x99dVplaE09OvXj379+mVbjK2KbJiYjgLGh/XxFM5TfBTwoBrvAHVFpHEW5HMcpwjWrFnDm2++yZgxY3j00cIZSG+88UZyc3Np164dI0eOBOD+++8nPz+fdu3aMXDgQH7++WcAPv/8c7p06UJ+fj5XXHHFRue/6aabyM/Pp23btlx11VUALF26lJYtW3LaaafRpk0bTjzxRF5++WUOOOAA9txzT959910Axo0bxznnnAPAt99+y9FHH027du1o164db731VsbvzdZIphWEAlNFZI6IjAhpO6rqNwDht1FIb4JNQ5lgWUjbCBEZISKzRWT28uXLMyi64zjJTJ48md69e7PXXntRr1495s6dy/PPP8/kyZOZOXMm8+fP5+KLLwZgwIABzJo1i/nz59OqVSvGjBkDwLnnnsuZZ57JrFmz2GmnnQrOPXXqVBYtWsS7777LvHnzmDNnDjNmzABg8eLFnHvuubz//vt88skn/Pvf/+aNN97g5ptv5rrrrttEzj/96U9069aN+fPnM3fuXFq3bl0Gd2frI9MmpgNU9WsRaQS8JCLFGS3jelM2maxCVe8D7gPIy8vzySwcpwyZMGEC5513HgDHHXccEyZMYMOGDQwbNoyaNWsCUK9ePQA++OADLr/8cn788UfWrFlDr169AHjzzTd5/PHHATj55JO55JJLAFMQU6dOpUOHDoC1VhYtWsSuu+5KixYtyM3NBaB169b07NkTESE3N5elS5duIue0adN48MEHAcjJyaFOnToZuiNbNxlVEKr6dfj9TkSeBPYDvhWRxqr6TTAhfReyLwN2iRzeFJu83nGccsDKlSuZNm0aH3zwASLC+vXrEREGDhwY6y0zdOhQJk+eTLt27Rg3bhzTp08v2BeXX1W59NJLOf300zdKX7p0KdWqVSvYrlSpUsF2pUqVWLfOp+/OFBkzMYnIdiJSO7EOHAZ8ADwNDAnZhgBPhfWngVOCN1NnYFXCFOU4TvaZNGkSp5xyCl988QVLly7lyy+/pEWLFtSrV4+xY8cW9DF8//33AKxevZrGjRvz+++/88gjjxSc54ADDijov4im9+rVi7Fjx7JmzRoAvvrqK7777ju2hJ49e3L33XcDsH79en766actOs+2Tib7IHYE3hCR+cC7wBRVfQEYBRwqIouAQ8M2wHPAEmAxcD9wVgZlcxynhEyYMIGjjz56o7SBAwfy9ddf069fP/Ly8mjfvj0333wzANdeey2dOnXi0EMPpWXLlgXH3H777YwePZr8/HxWrVpVkH7YYYdxwgkn0KVLF3Jzcxk0aBCrV6/eIllvv/12Xn31VXJzc9l333358MMPt+g82zoVek7qvLw83dL5INzN1alofPzxx7Rq1SrbYjgVjLj3RkTmqGre5o71kdSO4zhOLK4gHMdxnFhcQTiO4zixuIJwHMdxYnEF4TiO48TiCsJxHMeJxRWE4zgpk5OTQ/v27WnTpg3HHHNMweC4VPnPf/5Dq1at6NGjR1rkufLKK3n55ZfTcq4E06dP54gjjtgk/eeff+bEE08kNzeXNm3a0LVr14JBfaXl8MMP58cff0zLudKJTznqOBWVq9McX+jqVZvNUqNGDebNmwfAiSeeyD333MMFF1xQsF9VUVUqVYqve44ZM4a77rorbQrimmuuSct5UuH2229nxx13ZMGCBQAsXLiwRHM9r1+/npycnNh9zz33XFpkTDfegnAcZ4s48MADWbx4MUuXLqVVq1acddZZdOzYkS+//JIJEyYU1LQTwfiuueYa3njjDc444wwuuugi1q9fz0UXXVQQ3vvee+8F4JtvvuGggw4qaKm8/vrrrF+/nqFDh9KmTRtyc3O59dZbAYv3NGnSJABeeeUVOnToQG5uLqeeeiq//vorAM2bN+eqq66iY8eO5ObmFkx09O6777L//vvToUMH9t9/fxYuXFjs//3mm29o0qQwwPTee+9dEBPq4YcfZr/99qN9+/acfvrprF+/HrDJkK688ko6derEddddx7HHHltw/PTp0znyyCMLZFyxwqbNefDBB2nbti3t2rXj5JNPBmD58uUMHDiQ/Px88vPzefPNNwF47bXXaN++Pe3bt6dDhw5bPPK8KFxBOI5TYtatW8fzzz9fEGF14cKFnHLKKbz33ntUqVKFSy65hGnTpjFv3jxmzZrF5MmTufLKK8nLy+ORRx7hpptuYsyYMdSpU4dZs2Yxa9Ys7r//fj7//HP+/e9/06tXL+bNm8f8+fNp37498+bN46uvvuKDDz5gwYIFDBs2bCN5fvnlF4YOHcrEiRNZsGAB69atK4jFBNCgQQPmzp3LmWeeWRAKpGXLlsyYMYP33nuPa665hssuu6zY/3zqqadyww030KVLFy6//HIWLVoE2EjliRMn8uabbzJv3jxycnIKYkytXbuWNm3aMHPmTC699FLeeecd1q5dC8DEiRMZPHjwRtf48MMP+fvf/860adOYP38+t99+O2Ah0s8//3xmzZrF448/zmmnnQbAzTffzOjRo5k3bx6vv/46NWrU2KLnWRRuYnIcJ2X+97//0b59e8BaEMOHD+frr7+mWbNmdO7cGYBZs2bRvXt3GjZsCJgpasaMGfTv33+jc02dOpX333+/oAWwatUqFi1aRH5+Pqeeeiq///47/fv3p3379uy2224sWbKEP/7xj/Tt25fDDjtso3MtXLiQFi1asNdeewEwZMgQRo8eXRCafMCAAQDsu+++PPHEEwXXGzJkCIsWLUJE+P3334v97+3bt2fJkiVMnTqVl19+mfz8fN5++21eeeUV5syZQ35+fsE9atTIprnJyclh4MCBAFSuXJnevXvzzDPPMGjQIKZMmcKNN9640TWmTZvGoEGDaNCgAVAYOv3ll1/mo48+Ksj3008/sXr1ag444AAuuOACTjzxRAYMGEDTpk2L/Q8lxRWE4zgpE+2DiLLddtsVrKca301V+ec//1kwT0SUGTNmMGXKFE4++WQuuugiTjnlFObPn8+LL77I6NGjeeyxxxg7dmzK10yYgnJycgrCg19xxRX06NGDJ598kqVLl9K9e/fNylyrVi0GDBjAgAEDqFSpEs899xxVq1ZlyJAhXH/99Zvkr169+kb9DoMHD2b06NHUq1eP/Px8ateuvck9iQuFvmHDBt5+++1NWggjR46kb9++PPfcc3Tu3JmXX355o8CIpcVNTI7jpJVOnTrx2muvsWLFCtavX8+ECRPo1q3bJvl69erF3XffXVBz//TTT1m7di1ffPEFjRo14g9/+APDhw9n7ty5rFixgg0bNjBw4ECuvfZa5s6du9G5WrZsydKlS1m8eDEADz30UOw1o6xataqgT2HcuHGb/V9vvvkmP/zwAwC//fYbH330Ec2aNaNnz55MmjSpIDT5999/zxdffBF7ju7duzN37lzuv//+TcxLYGHKH3vsMVauXFlwLrBIt3feeWdBvoSS/uyzz8jNzeWSSy4hLy+voH8lXXgLwnGctNK4cWOuv/56evTogapy+OGHc9RRR22S77TTTmPp0qV07NgRVaVhw4ZMnjyZ6dOnc9NNN1GlShVq1arFgw8+yFdffcWwYcPYsGEDwCa19erVq/PAAw9wzDHHsG7dOvLz8znjjDOKlfPiiy9myJAh3HLLLRx88MGb/V+fffYZZ555JqrKhg0b6Nu3b8FkSX/729847LDD2LBhA1WqVGH06NE0a9Zsk3Pk5ORwxBFHMG7cOMaPH7/J/tatW/OXv/yFbt26kZOTQ4cOHRg3bhx33HEHZ599Nm3btmXdunUcdNBB3HPPPdx22228+uqr5OTksM8++9CnT5/N/o+S4OG+t5BtNdy337fs4eG+nS3Bw307juM4accVhOM4jhOL90E4ThngpjmnIuItCMepQFTkPkOn7Cnt++IKwnEqCNWrV2flypWuJJyUUFVWrlxJ9erVt/gcbmJynApC06ZNWbZsGcuXL8+2KE4FoXr16qUaXe0KwnEqCFWqVKFFixbZFsPZhnATk+M4jhOLKwjHcRwnFlcQjuM4TiyuIBzHcZxYXEE4juM4sbiCcBzHcWJxBeE4juPE4grCcRzHicUVhOM4jhOLKwjHcRwnlowrCBHJEZH3ROTZsN1CRGaKyCIRmSgiVUN6tbC9OOxvnmnZHMdxnKIpixbEucDHke0bgFtVdU/gB2B4SB8O/KCqewC3hnyO4zhOlsioghCRpkBf4F9hW4CDgUkhy3igf1g/KmwT9vcM+R3HcZwskOkWxG3AxcCGsF0f+FFV14XtZUCTsN4E+BIg7F8V8m+EiIwQkdkiMtvDHjuO42SOjCkIETkC+E5V50STY7JqCvsKE1TvU9U8Vc1r2LBhGiR1HMdx4sjkfBAHAP1E5HCgOrA91qKoKyKVQyuhKfB1yL8M2AVYJiKVgTrA9xmUz3EcxymGjLUgVPVSVW2qqs2B44Bpqnoi8CowKGQbAjwV1p8O24T909TnVnQcx8ka2RgHcQlwgYgsxvoYxoT0MUD9kH4BMDILsjmO4ziBMplyVFWnA9PD+hJgv5g8vwDHlIU8juM4zubxkdSO4zhOLK4gHMdxnFhcQTiO4zixuIJwHMdxYnEF4TiO48TiCsJxHMeJxRWE4ziOE4srCMdxHCcWVxCO4zhOLK4gHMdxnFjKJNSG45QFzUdOKdXxS0f1TZMkjrN14C0Ix3EcJxZXEI7jOE4sriAcx3GcWFxBOI7jOLG4gnAcx3FicQXhOI7jxOIKwnEcx4nFFYTjOI4TiysIx3EcJxZXEI7jOE4sriAcx3GcWFxBOI7jOLG4gnAcx3FiSUlBiEi1VNIcx3GcrYdUWxBvp5jmOI7jbCUUOx+EiOwENAFqiEgHQMKu7YGaGZbNcRzHySKbmzCoFzAUaArcEklfDVyWIZkcx3GcckCxCkJVxwPjRWSgqj5eRjI5juMAPktgtkl1ytFnReQEoHn0GFW9JhNCOY7jONknVQXxFLAKmAP8mjlxHMdxnPJCqgqiqar2zqgkjuM4TrkiVTfXt0QktyQnFpHqIvKuiMwXkQ9F5K8hvYWIzBSRRSIyUUSqhvRqYXtx2N+8RP/EcRzHSSupKoiuwBwRWSgi74vIAhF5fzPH/AocrKrtgPZAbxHpDNwA3KqqewI/AMND/uHAD6q6B3BryOc4juNkiVRNTH1KemJVVWBN2KwSFgUOBk4I6eOBq4G7gaPCOsAk4E4RkXAex3Ecp4xJtQWhRSzFIiI5IjIP+A54CfgM+FFV14Usy7CBeITfLwHC/lVA/ZhzjhCR2SIye/ny5SmK7ziO45SUVFsQUzCFIEB1oAWwEGhd3EGquh5oLyJ1gSeBVnHZwq8Usy96zvuA+wDy8vK8deE4jpMhUlIQqrpRB7WIdAROT/UiqvqjiEwHOgN1RaRyaCU0Bb4O2ZYBuwDLRKQyUAf4PtVrOI7jOOlli8J9q+pcIL+4PCLSMLQcEJEawCHAx8CrwKCQbQg2xgLg6bBN2D/N+x8cx3GyR0otCBG5ILJZCegIbK4DoDEWpiMnHPOYqj4rIh8Bj4rI34D3gDEh/xjgIRFZjLUcjkv9bziO4zjpJtU+iNqR9XVYn0SxsZlU9X2gQ0z6EmC/mPRfgGNSlMdxHMfJMKn2QSQGudW2TV2zmUMcx3GcCk6qM8q1EZH3gA+AD0Vkjoi0yaxojuM4TjZJtZP6PuACVW2mqs2AC0Oa4ziOs5WSqoLYTlVfTWyo6nRgu4xI5DiO45QLUu2kXiIiVwAPhe2TgM8zI5LjOI5THki1BXEq0BB4IiwNgGGZEspxHMfJPql6Mf0A/CnDsjiO4zjliFS9mF5KjIoO2zuIyIuZE8txHMfJNqmamBqo6o+JjdCiaJQZkRzHcZzyQKoKYoOI7JrYEJFmpBDu23Ecx6m4pOrF9BfgDRF5LWwfBIzIjEiO4zhOeSDVTuoXQojvzti8Deer6oqMSuY4juNklWIVRFAKURJzN+wqIruGsN+O4zjOVsjmWhD/CL/VgTxgPtaCaAvMBLpmTjTHcRwnmxTbSa2qPVS1B/AF0FFV81R1XyyM9+KyENBxHMfJDql6MbVU1QWJDVX9AGifGZEcx3Gc8kCqXkwfi8i/gIcx99aTsOlDHcdxnK2UVBXEMOBM4NywPQO4OyMSOY7jOOWCVN1cfwFuDYvjOI6zDZCSghCRPYHrgX0wjyYAVHW3DMnlOI7jZJlUTUwPAFdhLYgemMlJMiXUtk7zkVNKdfzSUX3TJInjONsyqXox1VDVVwBR1S9U9Wrg4MyJ5TiO42SbVFsQv4hIJWCRiJwDfMW2Hs316jqlPH5VeuRwHMfJEKm2IM4DamKTBu2LubkOyZRQjuM4TvZJ1YtpFoCIqKr6VKOO4zjbAKnOKNdFRD4iDI4TkXYicldGJXMcx3GySqomptuAXsBKAFWdj80J4TiO42ylpKogUNUvk5LWp1kWx3EcpxyRqhfTlyKyP6AiUhXrrPZYTI7jOFsxqbYgzgDOBpoAy7BIrmdnSijHcRwn+6TqxbQCODHDsjiO4zjliM1NOfpPLLx3LKr6p7RL5DiO45QLNmdimg3MCUu/yHpiKRIR2UVEXhWRj0XkQxE5N6TXE5GXRGRR+N0hpIuI3CEii0Xk/Zj5sB3HcZwypNgWhKqOT6yLyHnR7RRYB1yoqnNFpDYwR0ReAoYCr6jqKBEZCYwELgH6AHuGpRM230SnkvwZx3EcJ32k7OZKMaam2Myq36jq3LC+GvN6agIcBSQUzXigf1g/CnhQjXeAuiLSuCTXdBzHcdJHSRTEFiMizYEOwExgR1X9BkyJUBj0rwkQHWuxLKQln2uEiMwWkdnLly/PpNiO4zjbNJvrpF5NYcuhpoj8lNgFqKpuv7kLiEgt4HHgPFX9SaTIaSTidmzSalHV+4D7APLy8krUqnEcx3FSZ3N9ELVLc3IRqYIph0dU9YmQ/K2INFbVb4IJ6buQvgzYJXJ4U+Dr0lzfcRzH2XIyZmISayqMAT5W1Vsiu56mMFT4EOCpSPopwZupM7AqYYpyHMdxyp5UQ21sCQcAJwMLRGReSLsMGAU8JiLDgf8Djgn7ngMOBxYDP2PTmjqO4zhZImMKQlXfoOh5q3vG5Fc8fIfjOE65oUy8mBzHcZyKhysIx3EcJ5ZM9kE4jlMBaD5ySqmOXzqqb5okccob3oJwHMdxYnEF4TiO48TiCsJxHMeJxRWE4ziOE4srCMdxHCcW92JyHMfJBlfXKeXxq9IjRzF4C8JxHMeJxRWE4ziOE4srCMdxHCcWVxCO4zhOLK4gHMdxnFhcQTiO4zixuIJwHMdxYnEF4TiO48TiCsJxHMeJxRWE4ziOE4srCMdxHCcWVxCO4zhOLK4gHMdxnFhcQTiO4zixuIJwHMdxYnEF4TiO48TiCsJxHMeJxRWE4ziOE4srCMdxHCcWn5PacRJUgDmCHacs8RaE4ziOE4u3IJyyxWvpjlNhcAXhOBUBV6xOFsiYiUlExorIdyLyQSStnoi8JCKLwu8OIV1E5A4RWSwi74tIx0zJ5TiO46RGJvsgxgG9k9JGAq+o6p7AK2EboA+wZ1hGAHdnUC7HcRwnBTKmIFR1BvB9UvJRwPiwPh7oH0l/UI13gLoi0jhTsjmO4zibp6y9mHZU1W8Awm+jkN4E+DKSb1lI2wQRGSEis0Vk9vLlyzMqrOM4zrZMeXFzlZg0jcuoqvepap6q5jVs2DDDYjmO42y7lLWC+DZhOgq/34X0ZcAukXxNga/LWDbHcRwnQlkriKeBIWF9CPBUJP2U4M3UGViVMEU5juM42SFj4yBEZALQHWggIsuAq4BRwGMiMhz4P+CYkP054HBgMfAzMCxTcjmO4zipkTEFoarHF7GrZ0xeBc7OlCyO4zhOySkvndSO4zhOOcMVhOM4jhOLKwjHcRwnFlcQjuM4TiyuIBzHcZxYXEE4juM4sfh8EI7jbL34PBqlwlsQjuM4TiyuIBzHcZxYXEE4juM4sbiCcBzHcWJxBeE4juPE4grCcRzHicUVhOM4jhOLj4PYGnHfb8dx0oC3IBzHcZxYXEE4juM4sbiCcBzHcWJxBeE4juPE4grCcRzHicUVhOM4jhOLKwjHcRwnFlcQjuM4TiyuIBzHcZxYfCS14zilw0fub7V4C8JxHMeJxRWE4ziOE4srCMdxHCcWVxCO4zhOLK4gHMdxnFhcQTiO4zixuJur4zjOFtB85JRSHb+0epoEySDlqgUhIr1FZKGILBaRkdmWx3EcZ1um3CgIEckBRgN9gH2A40Vkn+xK5TiOs+1SbhQEsB+wWFWXqOpvwKPAUVmWyXEcZ5tFVDXbMgAgIoOA3qp6Wtg+Geikquck5RsBjAibewMLy1TQQhoAK7J07c3hsm0ZLtuW4bJtGdmUrZmqNtxcpvLUSS0xaZtoL1W9D7gv8+IUj4jMVtW8bMsRh8u2ZbhsW4bLtmWUZ9kSlCcT0zJgl8h2U+DrLMniOI6zzVOeFMQsYE8RaSEiVYHjgKezLJOWzKC/AAAgAElEQVTjOM42S7kxManqOhE5B3gRyAHGquqHWRarOLJu5ioGl23LcNm2DJdtyyjPsgHlqJPacRzHKV+UJxOT4ziOU45wBeE4juPE4grCqfCISJyLtONs84hIqcp4VxDlkODFVa4oj4WwGJU0dKSJSLVsy5RMQsZsyxGlvMlTHBVJ1vJE4r6p6obSnMdvfjlCRKqIyB3AXtmWBazAFZGTooVweUFERI0NItJQRM4C+pW3AiUi464iclC25QnPckNY37E8KtUESbI2Ly+yxin98laBity3/iJyl4gMDfHuSkS5+pi2ZUSksqr+DlwDLBGROmV8/bh34UDgICCnPBa8ACJyNfAQcCZwKrBrFsWKRUSuA14AOmf7PgZl1UBEHgFuBppkU57iCLI2EZEngOuAZtmWCTZS+k1FpHUiLdtyJRSAiFQSkRwRuQz4A3A/8CfgahHZviTnLFcf/bZIpCm4LtSYVgD/AU4VkYyPUwkvk0RqHPuIyIFh9zdAJ6BSaZuqpSUhZ1LawUB3Ve0N9AU2AD1EpGY5knFfLCpAV1W9sazvY0xNtz4wGZirqier6pKylKc4kmu4IlIPGAc8r6onqOqnWRGMjQpfCc95FPAKcKuI3CgiLcL+Mh9bFilD1gfzdFVVXQ+sA/4KtAJqAQtU9aeSnNsVRBZJKpjPBO4RkVrA7UBPYLdMy6CqG1RVRWQ3EXkQ6B/kaBMGKr4D9Mq0HMWRMDVE5Nwx7KoEfCciNVT1/4AJwNHAHtmQMyJjvojsH2pr9YDtgOtE5AoRmSYiA0SkRqblSTLR9BWR/bFBqO8DP4lITxEZLiIDMy3L5giyrg/rA0XkcKyA+xGoKSJHi8g5wZRY5iRkA+oCzYFcVd0bGAZUwaYn2F5V15WVTCLSIMiWeManAQuAPiLSGJs24SGgGxb49LGgdFPGFUQZIyLdROQfItIoFCY1RORO4AjgHmCtqk4F/guckKgNi0hbEWmZhutXEpFdI9siIpcClwGvq+p1wL3A6SJyBfATFierTO2sIlJLRJpBgalhOxG5C3gJGBdaD19h0TATzfyHgQ7AIUHRloWclcKviEjN8CzvBLoC04EZwETsw50GvIop4YzY00VkJxHpDwX3bWcRmQhcBfyKBcV8GzPHdcZMiMNFpF8m5NmMrLuIyKkRWZuKyGTgXOz9/w1T+kdhSr8x1rI+OguythGRp7HvpD5QT0RqqupXwPNAC6B2+J4fEpHmGZSlhYhcDLRNfJNByQ8GjlPVJ1X1G+z7eBG4RFV/EJG+wNjQikwNVfWlDBYstO844F3MLtgkpNcGngF2DNtVwu/eWGHYNWyfD7RLgxw7As9hYVYGA+2DXPOT8uUCD2Jmm5EhTcroXm0f7lGnsN0DuAu4KWwPARaG9eswG+uBWG3uWWAKUC3DMlaKScsFLsYK4eOwAnm/pDynYwXK9hmQSYCDo+8JcAxwfzHH1AfGAi3L4tlG7x/QBmibeK+AQcADxRxTG3ggHd/BZmTLA7qE9R2AdpiCPyektQZuAvpEjnkP2D2sZ0Q+rCX6b+AGzJGlKrBX2DcWODGs1wy/uwG3YP1fjwOzgUEluaa3IMqOQ4DfVHU/Vb1freYB1lxdA9QRkapqHdWo6kLsgQ4L27eq6vwtuXDCbhrO8y1QHViJzd73LfB3oK6ItAv5c1R1AfAX4DagfpAtox1xQU5Rs5P+C/hKRPKwvpB9gF/CfxgPrBaRP6rqZcBc4Erswx6MNfl3ibtGutDCZn0/EblfRGpjSmpfYCpW2LVS1XdDvm4iMgM4DDhdS2gLLo7QSthRjWnAWrHOe7CJuD4J+eqE38piHdXnY3b0n4DF6ZJnM7K2CLJuAD4EfsaeNcCewGch33bht4qI7CAiVwJvAMsxE1kmZEu0kH/GzKzXY4ogB4ss3S7s/wr4P+BcEekjNj3yEuw+sqXfaXFyiUgnrOLUVlUvAVYBo4Azxfod5mP9cKjqz+F3CXAR9m38W1XzVHVSiS5elrWGbXnBplM9M6x3xmp6PbGa1GNYrbh+2H9c2F8FqBs5R4lr8EDlyPouWMvkhvCCtYjsGwk8FdmuFH4HAbdv6fVLIKdE1lthivECYAzW2jkPuB7YM+TpgJkgdgjbtbAa07hwP7fL8POsAvwTK7SOCGl7AKvZuGZ5RFhqAx0yIEctoB9mljkYU5DHAuMxhdkX+DjpmFZYYXwW0LoMv4GqwJHAjcChwB+BLsBTmJ28D6Zco+/sfpj55hRgtwzJVSnp/WuHKYGPImk9sZZp68h9PwFrvT4I7JQh2fbAFOl1YftzTEmeCOSH53wUVoF6ChgW8g0BxsWcL6dE1y+rl2NbWjAzTrWwXjn89gNew2bAm4Z5knwLXAH0xiI7Tg4fyKuEpmM4dhNzRjHXFqzGc0QkrXIoXD/DvH4A/gzMjOSpC7wJDE2S+17Mq6pEL1ZJ5I2sVwuF6VSsxZUP3IGZSeoBD4fCL9GEHgMcFpF/OsEMkGYZN/nvmDvtC9F7HH7/hU2XeyJwK1bb7ZcBmSpF1k8J79KnoaDYHnNrvCPsfxEz0R0DTMIUaN10y5SirH2xfqOPQ+FXORRmk8L+R8I9PB0zFz5CqDiVgZz7Y14/e4TvdS7QPOzbEevHuSPpmBpx/zONMvXGKnS7YebL2QTzath/MeauvEf4Zt7ATNMvAgeU+vpl9ZJsKwvQMRSqR4btaAG4D+ZlsztmWqqPdcbtEQrHPkDfNMjQGLg0sn15KFwlKd9i4OiwvjdWu7s8Kc/pQL0M3Kc4G/45mNfUxWG7aij87scUxHGhwNg36biEDbtyuuVMus7QyP2qhSn6vISsEZkHY62L60hzSyapsM0Jv90wpXpLZF9nrNXaD7OjD8MU1/mZvEdJsuZE1hN9aweEZ/hoZF8LzIZ+Cmb+PDo889MzKVfkvckJz+ttrO8rsf9q4InIcXnAy0DPVN7nLZStPtaCqRd5jiswM2HPkHY3ha36HbGK0h8i/6V15HylavWXyYuyLSwUmmRqYTWNywnNToqpfWOthk1MD8UdU8R5JLGE7QYUdupeED6AC7GWww3YoKNDgEVYzfseMtyxW4TcfTDz0V6Y2WY85imyfdi/dyhoLwkv/3kkmd1K+xGkIOPemCfSFMwraTTWYvk7kRZLKIwPCOuZVlanYZ3dp4Zn3TTINTxyX07GvID2KguZipH1PKyv49Iga054zudF8vTCWrAJE2JGninWAp0JNI6k1cVcy1uG7QaYUm0IzMFaXscCx2OFd9pbCuG6V2Mtq/GYpeFQYDim2MdE8uViLdM2YXsEpmCbJp2v1K1+76QuJcFttMDfXFXXYKakRkD3kLY+kr9W6Kg7WkTeAn7AXoqNiB6TggyJsBNKmARKbcDdhSLSGbOR/oLVbn8jmCBU9WXgbMy+eYaq/pr4TyW9DyVFRKqLyHjMFLIMM33shxXEzYCW4X8sxD6GukB1Vb1NVX9MnCfyv9MlV/Jgra6YgvpZVfsCAzAX1hZYrf0wEXlAbLTv+dj9RdPkDx91MAjbtUXkIezd+kv4vUZVlwHzgPzg4rsD8B1maliVTpmKkXWjgYLB7Xci5q10AlYbvjW8209i9247EdkN67v5JzY+Q9L5TJNog7XezxeRYSGtNtZyeVhE7sG8/EZjLfGLsY7e/sA0VZ2v5pKbVpdvsXFQHTET8BDgH+GaVVT1OGAXETkm4kAyCTNhgrW2/hzegQJKUoYUSSY04ba4YOajYQSbJFbw3UhhrSTanP0bVqM6pJTXzEna/hvWSds/bJ9BpKMtku8W4K8x6ZmqGcXZ8BsRzB1YZ+USrDWRaO5fSGELrFbSsZluMVTBFEEjrAPzb1hNvHHYfyXmbijATlhHfkbMIRGZEiasalgHfZXwHN/C+pYOw5TCKKxVOJXgdlnWC1CTwhb1PlgBfBfWt/a/xHsfvo/PsJbQXhmWKfH9HYu1CvKALzHPM8EqTZ0wV9JmmBmnczhmxzKQazRwStK+4zG33l0w8+rjFLrHN8JMdQ0i9zrt30WZvzxbw8LGduCqmCvoLEyj34HVBJqE9DMiL0HCttmwqPOV9Pphu14opO7B7LiLgX3CvvnAH8P64LA9FmiUhft2EtYJ3RBrJn+F2X3vS8gTPtauWA2pVWnuU4oyHYiNik1sD8ZMEDdg5qT+2FiR24BjI/k+BYZk6D4lK/4bQoE/IlIYjCKMb8BME29E7t+AMnym0X4GwRTBK1irJpF+PXBPWP8b8Elk32Fl/A42xsy6VTATzljgssj+hkHGWQQTTibfv3De7bCO5bZhO+Hw0CLcz75h+2nM1FqlrO6Xm5hKQKJZqYU+8FWwQTOfqmo+Zjc8HDPbrMQ8Clpio1XR0ORT1eXh+Jzo+VIlcv0WIvIS5u1xDnClqj6IubudGbKfCdwkFiPmc8xGfaqqfpfuZnJRiEUynY55sDTHzEhfYKajt1R1RJCnD9ZB/QZm29/I9FbS+5SCXPWxWvfSSHJrTJH9AytMugMfYLXNtiKyT8h3BlZ7T6c8iXEgiZATrUUkHyt4b8DcWK8I2XfCwigAKLCbiByhxhPplKsIWQvi/4Tt/bDWwirMseFAEfl7yF4LeD2srwJ2FxsJj1rUgIzJF0OdIEMONkivDzaS/BIR6Y71H+4AdFPVD6IHpuP9S/7mwvNei30Pl4fkDcGU9DlW0UxEd/4nsFrDWKlwfGbL8LLU3lvLghV0j1Oo2WtidsApWEflw1hNtEZ4qMdSWm+CwtZHJazAuATzljohvEAvAH8JeRpjNZKEJ9XDhOZy2BbK1pzUk1CrxTwuZgYZD8BMSxdizeX3gd5ROctCRqwpfyxWeDyH9dnMJNLkxxT9eMJo1QzIFPV22z28X3OCHIlxFvtiI3oTHeRjQ55bgWZl/R0EmXbD3GY/wmrdQ0J6K6wgroWN0RiH+fOPAnbNkCyHYS3PBpvJNwsb1PY0VgA3wVy5T4keG/cul+b5Jn9z0TTMZPQNsH9SntuJ8Zoqs+ebrQtXlIXQWRTZPhlzxexLoeloD4Ifd9iegblANqKULqLJhSSFYwASI4hzw3ZPrCWR6PP4SyhkysRzJfk6mMlrl7D+Z8wu/jbwt6R8eZinxoVZeLYHh99LMRuwYMp0WiRPDUwZVyJiikqjDFETTVUKPcuOwEwPz2Culwmvrn8A94b1LmRIYW1O1rB9Dlbz7YN18t4V7mXCXDgWmBjW25KB8SARWS7Gwl0cR0wYk/BsE5WsM4DxSfsbJeXNVAVqN8wDrV5EOSRMSudhFYJLMRPsJMzhZcfk/1Jmz7ysLlTRlshDaxB9KAQ7f1hPPOAqWNydQVgH5v0kaf3SPlSs0/R1bOj/6eElfp7CmnldbC6JsZFjdkzX9YuRq1/S9sFY6yUxYCcPcxNNbh2cRsyYj+RCKEMyD8aU/PhwHztgfUfHhg94cShEzgyFzu1kPrZTIkbT3lhHbsLn/cTwPu0XtncJ9zIrHdBBhsRo4kbA7xQOVjwy3KvEWJFqwPdkqMWQJNPV0XcRMyFVBo4J29F+w3MxbypIsuen8ztJPleQcQ7WJzMaODk5HzYw7nrMGnFFtp5xYvE+iCQittV14XeFWBjshF33R6BaiE2UcG39Hfs4+mAhDC5S1Vei59Xw9FOUoXLSdh7W/B2BBfu7AjNDPAScJCJN1Fw/nwN+FpF6wfX228j/Sfn6JaRrJMbPQKwwu15Vu2KjPvthBcV9WMjrE0XkufB/Fib9zwL7ezoIJv1kt9UdMAVxrqoOCfdlAVZzOwwr0E7CzIb7Y+7A52pwAU6DTMmuoA1F5F+YC+gZam69N2KFGKr6CBYbqHeIYfQlNtbis3TIU0LZTxSRmcClInIhZqa5lsJ+kRexmEUHisje4Z41VQvFnmlqAH1F5EIRaRDeo8pY/9suaq6pifLuPSDRH/h79CTp+E7ivrnQ31VdVfcN1z8YazGiqho55gVVvRRTsteGY0s8E1zayLaGKk8LG9cy2hE8MYCdsYKjCRYWYBTQI+zrhjVvc4jURii5Z1JVIiOE2TgezTmY22yiRntGZN8k7AMtaEKXwX1KNjVciRWoTbExHYmol/tg/SSJKJMDsAJlWBk/1/rhudXBPJIWR/YlQqLsgXUEj8qgHNFnul34rYN12s9IvDdB3jcIkTexQWSjyMCI9lRkDdstsf6j6sBATLkPDPu+BI4K692wPqUy8ZKjsBXfMLxbb2ED7sZg8cVuJjKancy7SEdbA7lBhoaYU8FCzNX3GQojFdcp6hwkxYjKxpK1C5fXBRu6ficWD2YDFl8dzPY7Jayfj9nT/0OYoCPpHCVVDgdjgdNexRTNH7DRzX8O+w/FmvK3RAq0xuHF64wpD9nS65dAzmTF0DD8vkYIDIaFo3gcqB22T8dMOftu7nxpkjG5Wf+n8Iyuw8xwiVnKDo/kSfTr9I4Uymn5MLF+hH9QOKajOtbKegZTnnWwmFPPE4mdgzkffFbG734NQr9M4r5Q2PeRCKp3DdbJOyyS73jgl7KUtQj5L8dapjWwMQ33YgNEX0l8x0n5M/WdNAjPeEL4bs/Dxln8i0jfB2ZtOJUMB5YszVLm0+OVJ4IrWbJJ4xpsJqs/YDWjv2JxYy4UkS9F5HBVvVVEXsE6Yackn1dTdIcTkV7YS/0dphy+wVoEX2F2yD+LyGrsBX8E+FZVfxWRQ7BWw52q+h/Mnl7i65cULXRp7ILVEptgBUd/4PPgAvpoSDsLq5FPwtwwC6aLjIz8Tqs5CSvUN0TSqmFmolNVdVZI2xFTvheLyBKsz+EaEblMVV+I/Nd0mBqqYX0b1VT1vyF5FFZoDcae6YWYsngW65d5M+SbBGwXXKnXZ+qZJjEQOFhEfsGU1jDsuY7AggHuiHlL5Yf/tz02VmWCiNSPmEnS7Y6c6pS3KzHTayVVnRm+k79iTgczkzOnQ84iypALsXfxeLEQ74Mx89skbF7oEVhrezAWP2ttaeXIGNnWUNla2LjGnZisRzAtv39k3zsUmppGAN/HnKvENWHsY5xDqMliNc0eWNiJ7iHtGMxNthtmAnkb6wt5i6SJPyiDpjNW+30QK8zOBtZS6NZ4LTYjHVhfzDtEwomX4XNtjQV72xuryd2CFbo3YR/pPzDz4QVYS+JtMjRYCzMb3kShS3ITrN8o0YnbLKQfFp7vs5gyK8v7VY/CiW7qYQXq7ZiJpg6F4awbY2ME/oWZwI7ABl2em+F3LvqdJlqlse86NujxQayD932s36t+9Hzpli+yvhchRhhWMTo1sm8icENY7xHevXuBncvyWW/Rf8y2AGX6Z612sUNkuy3maTMFq83VDB/wmZE852D+3HXCdofkl2NLXiqsI/LYsB4N9Hc3cFck/3Xhw0xcf4+482XgXsVFW62NtRASISeOx1wyE/J/DZwU1rtkWs7IvUwEKjw3yHMbNijwIMx2PhiLwdM73PeEe2v1DMiUbIZ7CavZnhW2bybiiol5s/wjrPcnaQa6TC5YJ25XzGW6a7hPp2CKalTiHmHOBodgJrobwjuQScWabCbsHArZs1I4tgamKDpm4t2LKUNysRb+Y6EcaYa1Es+nUGEcHd6BtjHny3o/Q3HLNuPFJDbj1wUEj4vgKXQNNuz+SKy/YRRW4xwuNlNUE0xp/B9hlKOqvleaYGKR49pjHx+EucHVAv3dDTQWkR5h31TMVrl7yLM4yJ+TdL60IRtPdn+2iJwgIjtjNcx6wO8iUk1VJ2DmuOvDoRdjNXdU9e3oOdMpZ7KXSPithhViR6rqedjgsaOwztaJaqNiG2C19eXhuF/SIEtiTuDE81gvIjkismfYdwdmu18eDvkQGyDYP3Ka2eHYyRpmoMskEVnXYd48p2EF8HpsHMgb2Gje3cM9uht7/39Tm81shKp20QyNgo6+KyIyAOsTfAxzMd/oPyT9L1HV/6nq66o6N3ixVUrHuxfxPruYwjJEMFPqrap6LPZND8UG4B0EDBGRFpizxkJsvE/0namkqhsy8Q2ni61eQURc29ZgnUa7BbfR6pi/+ZTwkE7Gms0/YwVeP8xW/S1hoFTiwabpgb4ItA/usuuCrRlsfohlhFAZqjod66yeGz1Y02i/BxCRHiJyvohsp+YSmCsil2NjA/bHCrqvsKibJ2uh2+cLwHEiUltVH1bVK+KvkBYZN7Jxi8ghQXk1p9DnvkXI/i/sw2wqIk1EZBzmvnqSWjTMdNE4yJTonzkK8zSbgN2nZ7BKyBEi0pbCAniQWDTfelgfRMaRpPAYgc+xUdAvYbb6DdhAz5pYqwJVHYM5T3QK22mbLjUiW3IIimFiU+DWw+7Xy0AXETkqvKOJ+71H4pjk71KNdPQz5AOPh/M/iIUKycNaKz8BnYL777+xyMhvYS3DXbGotd9iHdUNRKRypGJTFv1KpWKrVRCR2kNirIJiNtNZmOfAWmzQ0c6RwyZjNdDHMRt7OywOz5XA/DRr+newQu3wIF/CHzsRxG65iOwWakX/LeIcpUZEmovIA5it/CNVXRtaC29iXkrdMBPEcswj6HzMJ/8WEXkKM799ivXPJM6Z1vdKRJqJyI1YoVpdRKqJyJ1YTa4xZh7MDbLsJCIN1eblXYR1rP4XuFZVe2tSfJ1SyrUzVrgmQltfj92HQ7GR7H1EpJeqPo2FdT8Ms6NPxGrtJ6jq8aHlmDFEpC5solinishZmCfcAMwh45yQ7y2sxruviOwfTnOYqr6aKRljvq3dMIX0AlZxG415dl2FecUhIoOxTvVMxxRbBOwsIgNV9U2sxXdqeMc6hOUYVb1IVX8P+V5W1QuxytUCzOz5lmY45Hq62eoURLSWH2rCbURklIj0x1oH/8EKlU5Y0/UqEekuIntjfRIzwqkqYR/0/cDVakHw0sk7mPK5QESOEBvcdilmI/9UVc9W1SWZbH6GmvcS7MXNU9UXRaSKqn6Ndea2Dln/h4VN6IvVJI/FCsZHsE7NT7BaHpC+mlFo1t+EdcyvxryhEpPjfB+U1w9YYfIDVhPfD/iHiFyLhR+ZparrNQMDy8J9+o+InBsKi2pYH9G3qvoiVjB0F5F6WO2yB6bIUNXvVHVpumVKECpI1UTkceAREake0q/AzEXXY31Kd6jqb9jzaxZq7WCVlC8x5Yqq/i8DMlaOyFpfRK6M7K6OeW8tAw5U1ZNU9WxMsa4IeZ5T1fsyZGYtMGGpDUK9CfN8E6x12EREDqDQ7LWPiOwjIk8Cw8QGZIKVM3dhFZTR6ZYz42g56AhJ14J1mkZnqToBi1f0Z6wJfRdWYxpGYYyYs7CY6++S5JFB8I/PoLyC1doewtxcHyPELwr7M+KnnSTDPAq9WM7C7OW7Y83nTykM+VATK1QeS8iGKdDZ4f6l/V5hYSYmJZ8bGzcyCVOwYykcY1AVU/5/xMIaNEy3TDEybod1QFbHWqNPUzh2phXmSZOYDrJbpuWJke/V8BzPCNsdw7M7G/Oim49FAQYzg7wX7muXDMlTDTgosp2YinR7rNV6BVYJ6AW8HPblYKbD0VhlJDm8S6YcNWpgnc4JGR8nTMmLje9JlCEnY4ri1eQypKIvWRcgzQ+0fnj5Ex4/1xIURnjppoRCbSesmXpB2FebiEdLpl64zcjeJLKeccUQuVYLzEb6TFiiUV/PAl6NbDelcErIHMw0sX+G5MrBOk6TC4O24WOcTIhlE9JPIDLCvIyf3RnAv8L60FCQ1Arb52EmzbIa5X4EhQEca2KthavDs01UBE4O30LV8D0sIUxXiTlsFBsNtZTy9cS83apjHlPvY63QncL3m5iedABWa68b+V+3kzR5VBrl6sbG3knDsP6ZJ7CKWy1MuS7A3JXrhjIkMZi1CmFSp8T7m413Md1LhTYxiUhPEXlRLJb7vqq6Ehvg9mzIsh2wWkRqqk3B+Tqm4f+L1ZTrh87htar6i2TQM2hzqOpX4T+lOigoXdf9HPsAflXVI1X1nci+uzDb69CwvUxVF4V+kfWq+oSavToTcq3HPKR2AWvyi8ifMZPf/phZqaWI/ENExmAeat9kQpYUuA/rb0jMXf0/zLEBbDDjWE2zU0EcYoMAnwb+KSI7q5m9qoflOazwBfPZf1bNtNQYmyZ1OICqPhO+lXTK1VNEbhebvnUu1tH7ImbC/BPWT3QO5nF2G/Zt/gUb65OYXnaKWkysNZLG2EQi0ktEXsfen64iUkdEmmGuyN1VdQBm2hyBzRvyLGZy/hG71zuEMmSDqv5WhCNAxSXbGmpLFkyDT8bCE5yOfYwvhn0NsIFkXTFXwnFAu7CvO3BzWK+aDdnL44Ip0uWEVhSFYwo6kKXBPEGGM7BaY2IgYyJ+TR7WcZiLmQ//XA7uYRfgzbDeE+iVJTlGYX0Hp2NeW82wcQtdwzeTi7W2JmI19acI0VkzIEsTrAaeGKA4ESv4dw/vW8IUdyA2PmR45NiOWD9d76RzpnNMQ2Kwap+wnQhjs3coW3YN2wdgrcJGWCt6GTGhY7bGJesCbOGDHYxp7MR2Ykh9IkT3qcD0sP53rGN6LNaUPirpXGVmzinPSyhQRmO183ewfoXoKNQyv0/hQ/0nYe7qSPrxwO3Zvmcx8r5N0jSVWZAh4XrZAavhjsLG+9QNSv+BkG9PQt9IBmVJ/k4HYWaZnbABoFMi+0ZgY1eiA9yuB/IzIFfcYNXoqOg22NiPbpG0dykcYLlv0vm22jIk6wKU4iHPxcYK9ME8LV7AOol2DvufJUwkj83EdXa0wPNlk/tZCQtl/gbQNdvyROTqHQre67ARqVPCs+2YbdliZC0Xdmes5XUT5pAxGbOb1whK4WnKsLMcc2JI2Ok7BnmqYtN6vkXhfCZtsUGqvcP2gZjJsHMGZZtK4dwuySPgL8NMh8eH9+4VIv2EIU+5HQGdriWhSSscYfDKTOwhX6CqH4nI/Zg5op9YoK4HsRrd95Hj4oJrOVjMerV+nMR2mfaHFJfvPx4AAAV+SURBVIWIdMaa+R0wM87dWRapXBPs4F9iJtXFWAdsoq9oe01zH8NmZOmMKfRBmJ1/MXCpWtDJE4BLVLVdyLuDqv4Q1ttgZuC5RZw6HbIlAk6OVOs/qIy1eDaE8R/1MHPcdljokbeLOd1WSYVVEAAi8gg2ifcZYbs25rbXWVW/E5E8VZ0dOlU18ZtVoSsA5VWJ+vNLHbGIu7eoapdyIMs4zHOqt6q+FEmvitXSbwA+SXyjUDaOImEcwwnAS6o6OZJ+KFBDVZ8Wke01jBzfFt+/iq4g6mGuaC1V9RsR+TvWiXSaJs0U5TjbGmKhPM5Q1fezLEddbO7qPVR1uYhU1zTEwUqDXDlY38fxWH/EW5gX5AnAVUlKo1xWmjJNhVYQACLyV6zz7V3Mv/pytdGXjrNNU54KNRG5GgtH0TpmX9ZMmaHFcjY24rkp5l11odrUrts8FV5BAIjIZCxkwLSwXS5s547jFCIiL2Cj478vj6YasbndszIeqbyyVSiIKP5gHccpDV6GFFKhR1JHkQxNd+g4TvpI5yjoTOFlSCFbXQvCcRzHSQ9bTQvCcRzHSS+uIBzHcZxYXEE4juM4sbiCcMoVIvIXEflQRN4XkXki0qmYvEPFph5Nx3WXikiDyPa9InKAiIwTkc+DLHPDCGVC+qB0XDtJjufCwLLSnqe7iDyblLZZmUWkn4iMDOv9RWSf0sriVFxcQTjlhlD4HoEF4muLRenN1oClTlhUW4CLVLU9MBK4N5MXVdXDtXAOhDJHVZ9W1VFhsz/gCmIbxhWEU55oDKxQ1V8BVHWF2rzPiEi+iLwlIvNF5N0QdwtsQqMXRGSRiNyYOJGIHC8iC0TkAxG5YXPpUUSkFTYvePIo5BnAHjH5rxSRWeGc9yXiCYnIdBG5Icj7qYgcGNKHisgTRci9VEQaiEhzEflYRO4PLaqpIlIjci/eF5G3ReQmEfmgpDc6XOevoVW0QERaRmS7MwSr6wfcFFpPu5f0Gk7FxxWEU56YCuwSCtO7RKQbFAR1m4jNBtgOa1n8LxzTHpt3IBcYLCK7iMjOWAC4g8P+/GAuiU2PkaMPFj4+mSOx0NnJ3Kmq+araBgurfURkX2VV3Q+bze2qSPomcsecd09gdAhP8SM2wQ3YXB1nhEB8pQmlsUJVO2JzH/w5ukNtpsCnCa0nVf2sFNdxKiiuIJxyg6quwebuGIHFxJkoNt3p3sA3qjor5PtJVdeFw15R1VUh+NtH2Axq+diEUctDvkeAg4pJT6YXGyuIm0RkXpBreEz+HiIyU0QWYMonGm/oifA7B2geSY+TO5nPVXVe9PjQP1FbC6d6/XfMcWDTZG4uvSjZHAeAytkWwHGiBLPOdGB6KHCHYJNDFVXg/RpZX4+901JE3qLSCzOI1ATqJkxbgYtUdVIR+asDdwF5qvplCEpXPUa+hGzFyZ1Mcp4aqfyHwEpsUp4o9YDoXBBFyeY4gLcgnHKEiOwtIntGktpjYaI/wfoa8kO+2mKTuxTFTKBbsOXnYOGcXysmPUoPbGbCVEkogxUiUgubGCdjhAl1VotNxANwXBFZF2H3rBWAiDQD2gHzisgfx2qg9mZzOVstXmtwyhO1gH8GM8o6bPaxEWG2r8FhXw2s/+GQok4S5ga5FCvoBXhOVZ8CKCo9Qh8gtrVQxLV+FJvJcAGwFJiV6rGlYDhwv4isxVpbq2Lk+lVETgIeCK2c37F5UjbJWwyPhuv8CRjk/RDbHh6LyXEiiMhcoFN5nnBKRGqF/hrCmIXGqnpulsVytkJcQThOBSO0pi7FLABfAENVdXl2pXK2RlxBOI7jOLF4J7XjOI4TiysIx3EcJxZXEI7jOE4sriAcx3GcWFxBOI7jOLG4gnAcx3Fi+X/813YUxRb4zAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "rawdata = np.genfromtxt(\"./data/cse_staff_population.csv\", dtype=np.str, delimiter=\",\") # read data into an np array\n",
    "header = rawdata[0] # Separate out column headers\n",
    "schools = rawdata[1:, 0] # Separate first column\n",
    "academic = np.asarray(rawdata[1:, 1], dtype=np.int) # Separate second column\n",
    "professional = np.asarray(rawdata[1:, 2], dtype=np.int) # Separate third column\n",
    "plt.bar(np.arange(len(academic))-0.2, academic, 0.4) # Create bar chart\n",
    "plt.bar(np.arange(len(professional))+0.2, professional, 0.4) # Create bar chart\n",
    "plt.xlabel(\"School/Planning Unit\")\n",
    "plt.ylabel(\"Headcount\")\n",
    "plt.xticks(np.arange(len(schools)), schools, rotation=30)\n",
    "plt.title(\"CSE Staff Population\")\n",
    "plt.legend([\"Academic\", \"Professional Services\"], loc='best')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Saving Figures\n",
    "The function used to save the current figure is `plt.savefig`. This function accepts a string representing a file path, which tells Python where the image should be saved. In specifying an extension, the `plt.savefig` method will infer which format to export to. We can additionally control the resolution with the `dpi` parameter, which stands for dots-per-inch."
   "execution_count": 7,
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAC71JREFUeJzt3V9oZGcZx/HfzzEQwapbGqh0rSsoMjKIwiBIA5rai1WLoiA4oggO7JWDguAf5qLtRa4EEaIgwZQKyoigRfAPWnFKGdDqrFTJmipFFFeFTtmVKhKdxseLbpempk0y5905m2e+H1jYTM6+57n67vCeM3McEQIA5PGiugcAAJRF2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJPPiOk560003xZkzZ+o4NQCcWOfPn38iIlYOO66WsJ85c0bj8biOUwPAiWX7T0c5jq0YAEiGsANAMoQdAJIh7ACQDGEHgGQIOyBpMBio1Wqp0Wio1WppMBjUPRIws1pudwSuJ4PBQP1+X1tbW1pdXdVoNFK325UkdTqdmqcDjs91PBqv3W4H97HjetFqtbSxsaG1tbWrrw2HQ/V6PW1vb9c4GbCf7fMR0T70uFJht92QNJb0l4i484WOJey4njQaDe3u7mppaenqa9PpVMvLy9rb26txMmC/o4a95B77JyTtFFwPmItms6nRaLTvtdFopGazWdNEQDVFwm77tKR3S/pqifWAeer3++p2uxoOh5pOpxoOh+p2u+r3+3WPBsyk1MXTL0r6tKQbCq0HzM0zF0h7vZ52dnbUbDa1vr7OhVOcWJXDbvtOSY9HxHnbb3+B485JOidJt956a9XTAkV1Oh1CjjRKbMXcJuk9tv8o6ZuSbrf99eceFBGbEdGOiPbKyqHfOgkAmFHlsEfE5yLidESckfRBST+NiA9XngwAMBM+eQoAyRT95GlEPCjpwZJrAgCOh3fsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ICkwWCgVqulRqOhVqulwWBQ90jAzIo+QQk4iQaDgfr9vra2trS6uqrRaKRutytJ6nQ6NU8HHJ8jYu4nbbfbMR6P535e4CCtVksbGxtaW1u7+tpwOFSv19P29naNkwH72T4fEe1DjyPsWHSNRkO7u7taWlq6+tp0OtXy8rL29vZqnAzY76hhZ48dC6/ZbGo0Gu17bTQaqdls1jQRUE3lsNtetv0L27+2fcH2PSUGA+al3++r2+1qOBxqOp1qOByq2+2q3+/XPRowkxIXT/8t6faI+KftJUkj2z+MiJ8XWBu45p65QNrr9bSzs6Nms6n19XUunOLEqhz2eHqT/p9Xfly68mf+G/dABZ1Oh5AjjSJ77LYbth+R9LikByLi4RLrAgCOr0jYI2IvIt4k6bSkt9huPfcY2+dsj22PJ5NJidMCAA5Q9K6YiPi7pAclnT3gd5sR0Y6I9srKSsnTAgCepcRdMSu2X3Hl7y+RdIekR6uuCwCYTYm7Yl4p6Wu2G3r6P4pvRcT3CqwLAJhBibtifiPpzQVmAQAUwCdPASAZwg4AyRB2AEiGsANAMoQdEE9QQi48QQkLjycoIRsetIGFxxOUcFLwBCXgiHiCEk4KnqAEHBFPUEI2hB0LjycoIRsunmLh8QQlZMMeOwCcEOyxA8CCIuwAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGDyghNdtzOU8dnwcBng9hR2rHDa5tIo0Tr/JWjO1X2R7a3rF9wfYnSgwGAJhNiXfsT0n6VET8yvYNks7bfiAifltgbQDAMVV+xx4Rf4uIX135+z8k7Ui6peq6AIDZFL0rxvYZSW+W9HDJdQEAR1cs7LZfKunbkj4ZEU8e8Ptztse2x5PJpNRpAQDPUSTstpf0dNS/ERHfOeiYiNiMiHZEtFdWVkqcFgBwgBJ3xVjSlqSdiPhC9ZEAAFWUeMd+m6SPSLrd9iNX/ryrwLoAgBlUvt0xIkaS5vPxPgDAofiuGABIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZIqE3fa9th+3vV1iPQDA7Eq9Y79P0tlCawEAKigS9oh4SNKlEmsBAKphjx0Akplb2G2fsz22PZ5MJvM6LQAsnLmFPSI2I6IdEe2VlZV5nRYAFg5bMQCQTKnbHQeSfibp9bYv2u6WWBcAcHwvLrFIRHRKrAMAqI6tGABIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRT5gBIwDzfeeKMuX758zc9j+5quf+rUKV26xLdc49oh7DgxLl++rIioe4zKrvV/HABbMQCQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRTJOy2z9r+ne3HbH+2xJoAgNlUDrvthqQvS3qnpDdI6th+Q9V1AQCzKfGO/S2SHouIP0TEfyR9U9J7C6wLAJhBibDfIunPz/r54pXXAAA1KBH2g75c+v++NNv2Odtj2+PJZFLgtACAg5R40MZFSa961s+nJf31uQdFxKakTUlqt9sn/2kJmLu462XS3S+ve4zK4q6X1T0CkisR9l9Kep3t10j6i6QPSvpQgXWBfXzPk2meoBR31z0FMqsc9oh4yvbHJf1IUkPSvRFxofJkAICZFHnmaUT8QNIPSqwFAKiGT54CQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIJkiX9sLzIt90JMYT5ZTp07VPQKSI+w4Mebx9CTbKZ7ShMXGVgwAJEPYASAZwg4AyRB2AEiGsANAMpXCbvsDti/Y/q/tdqmhAACzq/qOfVvS+yU9VGAWAEABle5jj4gdKceHRgAgi7ntsds+Z3tsezyZTOZ1WgBYOIe+Y7f9E0k3H/CrfkR896gniohNSZuS1G63+WgfAFwjh4Y9Iu6YxyAAgDK43REAkql6u+P7bF+U9FZJ37f9ozJjAQBmVfWumPsl3V9oFgBAAWzFAEAyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQTKVnngLXO9tz+TcRcex/A1wrhB2pEVwsokpbMbY/b/tR27+xfb/tV5QaDAAwm6p77A9IakXEGyX9XtLnqo8EAKiiUtgj4scR8dSVH38u6XT1kQAAVZS8K+Zjkn74fL+0fc722PZ4MpkUPC0A4NkOvXhq+yeSbj7gV/2I+O6VY/qSnpL0jedbJyI2JW1KUrvd5ooWAFwjh4Y9Iu54od/b/qikOyW9I7gFAQBqV+l2R9tnJX1G0tsi4l9lRgIAVFF1j/1Lkm6Q9IDtR2x/pcBMAIAKKr1jj4jXlhoEAFAG3xUDAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsgaTAYqNVqqdFoqNVqaTAY1D0SMDMetIGFNxgM1O/3tbW1pdXVVY1GI3W7XUlSp9OpeTrg+FzH17u02+0Yj8dzPy9wkFarpY2NDa2trV19bTgcqtfraXt7u8bJgP1sn4+I9qHHEXYsukajod3dXS0tLV19bTqdanl5WXt7ezVOBux31LCzx46F12w2NRqN9r02Go3UbDZrmgiohrBj4fX7fXW7XQ2HQ02nUw2HQ3W7XfX7/bpHA2bCxVMsvGcukPZ6Pe3s7KjZbGp9fZ0Lpzix2GMHgBOCPXYAWFCEHQCSIewAkAxhB4BkCDsAJFPLXTG2J5L+NPcTA4e7SdITdQ8BPI9XR8TKYQfVEnbgemV7fJTbyYDrGVsxAJAMYQeAZAg7sN9m3QMAVbHHDgDJ8I4dAJIh7IAk2/faftw2j0zCiUfYgafdJ+ls3UMAJRB2QFJEPCTpUt1zACUQdgBIhrADQDKEHQCSIewAkAxhByTZHkj6maTX275ou1v3TMCs+OQpACTDO3YASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMn8D7B7EBXFfVkUAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "data = np.random.randn(100) # Generate some random data\n",
    "plt.boxplot(data) # Create a boxplot of that data\n",
    "plt.savefig(\"my_boxplot.png\", dpi=300) # Save the figure as a png, with high resolution."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Figure Objects\n",
    "\n",
    "As we have seen, we build plots in matplotlib by successive calls to `plt`. We start by calling an artist method, which draws a figure. Then if we call other artist methods, these draw on the same figure. Calling methods such as `plt.xlabel` or `plt.title` update the current figure too, which we can save using `plt.savefig`. To see the current figure, we can call `plt.show`.\n",
    "\n",
    "In the background, matplotlib always maintains a \"current figure\", which is empty to start with. Successive calls to functions from the `plt` module draw on or change the current figure. This allows us to build up a figure piece-by-piece: layering different plots on the same figure, and updating the figure's annotations and other settings one-by-one. But then we need to know: how do we clear the current figure to create something new? It turns out, this is done automatically every time we call `plt.show`.\n",
    "\n",
    "### Exercise 3\n",
    "Take a look at the file `my_graph.jpeg` produced by running this code block. Something is wrong: change the code block so that the output file is the same as the displayed graph."
   "cell_type": "code",
   "execution_count": 8,
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHAhJREFUeJzt3Xl0XOWdp/Hn1WZrl7VbmyXZ8iLbeEG2IRAgGBzTQFgCBEinGUiaZKYDaSDTIZCEk+kmnemkSTKHTiYOa9MBBgiEBAhglmA2G8sG402ybC2WbK0lSyrtUtU7f0g2DvGuUt2qW9/POT7IcnHrV7F5cv3WW/caay0iIuIeUU4PICIigaWwi4i4jMIuIuIyCruIiMso7CIiLqOwi4i4jMIuIuIyCruIiMso7CIiLhPjxJNmZmba4uJiJ55aRCRsbdq0qcNam3W8xzkS9uLiYiorK514ahGRsGWMaTiRx2kpRkTEZRR2ERGXUdhFRFxGYRcRcRmFXUTEZRR2ERGXUdhFRFzGkX3sIiKRwFpLR+8wDZ4+6j39NHj6uKaikML0hEl9XoVdRGQCDsa73tNHXUcf9R19NHj6qfeM/bN3aPTQY6MMLC2aprCLiISC7v4Rajt6xwLe3kedp5/6jrGYHx7vmChDwbR4ijMTWVaczoyMBIozEynOSCQ/LZ64mMlfAVfYRUTGDY742NvZT217L7UdYwGvHY93Z9/wocdFGcifFk9xRiJfXJpPSWYiMzITKclIpGBaPDHRzr59qbCLSESx1tLuHWJ3ey+17X3Utvexp72X2o5e9h0YwG8/eWx28hRKMhNZVZ5DaVYiJZlJlGQmUJiewJSYaOdexHEo7CLiSiM+Pw2efva097K7rZc97b3sae+jtq0X72FLJ/Gx0ZRkJrKoII0rlhQwMyuRksyxH8lTYx18BadOYReRsDYw7DsU75o2L7vbxr5u8PQzetjpd27KVGZmJ3L5knxmZiUyMzuJ0qwkpqdMJSrKOPgKAk9hF5Gw0Ds0Sk2rl5rxcB/8el/XAHa839FRhhkZCczKSuLz83OZlZ3EzKwkSrPC9+z7VCjsIhJS+odHqWntZdd4uKtbvNS0etnfPXjoMXExUZRmJrKkaBpXn15IWU4SZdlJzMhIDMquk1CnsIuII4ZH/dR2jIV7V6uX6paxmO/t7D/0mLiYKGZmJbGsJJ3ZOcmUZSdRlpNMUXoC0S5bPgmkCYfdGFMI/CeQC/iBNdbaX0z0uCLiDtZa9nUNUN3ipWr8R3VLD7XtfYfWwGOiDCWZiSzMT+Wq0wuYnZPM7JyxM3AF/OQF4ox9FLjDWrvZGJMMbDLGrLXW7gjAsUUkjPQNjVLd6mVncw9VzV6qWnqoavHiHfxkF0p+Wjxzc5O5YF4Oc3KTmZObTGlmkpZQAmjCYbfWNgPN4197jTE7gXxAYRdxKWst+7sH2bm/hx3NPewc/9HQ2X/ojczkKTHMyU3m8sX5zMlNZu54xCPpTUynBHSN3RhTDCwBNgTyuCLinFGfnz3tfWzf382O8ZDvaO6hq3/k0GNmZCQwLzeFK5YUMG96MvOmp1AwLR5jtIzihICF3RiTBPwO+Edrbc8Rfv1m4GaAoqKiQD2tiATQ4IiP6hYv2/Z3s31/D9v3dVPV4mVo1A/AlJgo5k5P4aIF0ymfnkx5XgpzclNImqJ9GKHEWGuP/6jjHcSYWOAF4BVr7X3He3xFRYWtrKyc8POKyKkbGPaxo7mHbfu62bqvm237uqlp68U3/oZmytQY5uelMj8vhfn5KczPS6U0M9Hx66BEMmPMJmttxfEeF4hdMQZ4ENh5IlEXkeAbHPFR1eJla1MXHzeNhfzwiGckxrEgP5WV87JZkJfKgvxULaWEsUD8/eks4CvAVmPMR+Pfu8ta+1IAji0iJ2nU56emrZePm7rY0tTNx01dVLd4GfF9EvGFBalcWJ7DwvxUFhakkpsyVRF3kUDsinkH0J8IEQcc3CO+pbGbLU1dfLS3i637uhkY8QGQPDWG0wpS+dpnS1lUkMrCgjTyUhVxt9M7HiJhpG9odCzgjV18uHfsR0fvEDD2Kc35eSl8aVkhiwpTWVSQRnFGousucCXHp7CLhChrLfWefjY3HGDz3gNs3ttFdUvPoeuFl2Qmck5ZJouL0lhcmMbc3BR9yEcAhV0kZAyO+Pi4qZtNDQfYNB7zg3ftSZ4aw+LCNC48v4yl4yFPS4hzeGIJVQq7iEM8vUNUjkd8Y30n2/Z1H3qDszQzkZVzs1k6YxpLi6ZRlp2kJRU5YQq7SJA0HehnY30nH9SN/djT3gdAXHQUpxWkctPZJVTMSOf0GdNIT9TZuJw6hV1kElhrqevo44O6TjaMh3xf1wAw9sGfiuJ0vnh6AcuK01mYn8rU2NC9f6aEH4VdJACstdR29LG+1sP62k421Hpo847tVslMimN5STo3n1PK8pJ05uQka1lFJpXCLnKKGjv7eW9PB+/t8fD+nk9Cnp08hTNnZrCiJIMVpemUZiZq37gElcIucoLavUNjId/t4b3aDho7x5ZWMpPGQn5maQZnlKZTopCLwxR2kaPoHx7lg7pO3qnp4J3dHVS1eIGxNfIzZ2bwtbNL+czMDGZlJynkElIUdpFxfr9lR3MPb9d08HZNO5X1Bxj2+YmLiaJixjT+afUczp6Vyfy8VN2uTUKawi4RzdM7xNs1Hazb1c66mnY6esc+EDRvegr/7axizp6VybLidOLjtGtFwofCLhHF77dsaerizep23qpu4+N93VgL6YlxfLYsk3PKsvhsWSbZKVOdHlXklCns4no9gyOs29XOGzvbeGtXO56+YYyBxYVp3HbBbM6dncXC/FRtQRTXUNjFlRo8fazd0crrO9vYWN/JqN+SlhDLubOzOH9uNueUZTFNn+4Ul1LYxRUOLrG8uqOV13a0UtPWC8DsnCT+/pxSVs7NZnFhmm7rJhFBYZewNTzqZ32th1e2t7B2Rytt3iGiowzLi9O5bnkRF8zLoSgjwekxRYJOYZewMjji461d7by8rYXXdrbiHRwlIS6a8+Zksao8l8/NySY1IdbpMUUcpbBLyBsY9vFmdRsvbm3mzao2+od9pCXE8vn5uayen8vZZZm6iJbIYRR2CUmDIz7+XN3GHz9u5o2dbQyM+MhMiuOKJflctGA6K0rTidV6ucgRKewSMkZ8ft6uaeePW5p5dXsLfcNjMf/i6fn8zcLprCjJ0Cc+RU6Awi6O8vstm/Ye4Pcf7uOlrc0c6B8hNT6WSxflcemiPFaUpGsni8hJUtjFEXvae3lu8z5+/9E+mg4MEB8bzYXlOXxhUR7nzM7STZlFJkBhl6Dp6h/mj1v288zmfWxp7CLKwNllWdyxajarynNJnKI/jiKBoP+SZFL5/Ja3a9p5urKJtTtaGfb5mZubzN1/M4/LFufpmiwik0Bhl0nR2NnPU5WNPF3ZREvPINMSYrl+RRFXVxQwPy/V6fFEXE1hl4AZHvWzdkcrj3/QwLu7PUQZOHd2FvdcWs7KeTlaNxcJEoVdJqyxs5/HP9jL05WNdPQOk58Wz+0Xzuaq0wvIS4t3ejyRiKOwyynx+y1v7WrnsfUNvFndhgFWzsvh+hVFnFOWpf3mIg5S2OWkdA+M8HRlI4+tb6DB009W8hRu+dwsrl1epLNzkRChsMsJqevo4+F363hmUxP9wz4qZkzjjlVzWD0/V2vnIiFGYZejstayvraTB96u5Y3qNmKjorh0UR43nlXMgnztbBEJVQq7/JVRn5+XtrXwm3W1bN3XTUZiHLecX8bfnlFEdrL2nYuEOoVdDhkc8fF0ZSO/XldL04EBSjMT+dEVC7lyab4uiysSRgISdmPMQ8AlQJu1dkEgjinB4x0c4bH1DTz0Th0dvcMsKUrjB5eUc8G8HN3gWSQMBeqM/RHgfuA/A3Q8CYLu/hEefq+Oh9+tp3tghHNmZ/E/zpvJipJ0jFHQRcJVQMJurV1njCkOxLFk8nUPjPDgO3U8/E4d3qFRVpXn8M3zZ3FaQZrTo4lIAGiNPYJ4B0d46J16HninFu/gKBctyOXWlWXMm57i9GgiEkBBC7sx5mbgZoCioqJgPa0w9qboY+838Ms/7+ZA/wgXludw2wWzKc9T0EXcKGhht9auAdYAVFRU2GA9byTz+S3PbGrkZ2traOkZ5LNlmXx71RwWFWrJRcTNtBTjQtZa3qhq48d/qqKmrZfFhWn8/NrFnFGa4fRoIhIEgdru+ARwHpBpjGkC7rHWPhiIY8vJ2bG/h395cQfv7fFQkpnIr768lNULcrXLRSSCBGpXzHWBOI6cuo7eIf791Wqe3NhIanwsP/zCfK5fUUSsbgQtEnG0FBPmRnx+Hnu/gZ+9touBYR83nVXCreeXkZoQ6/RoIuIQhT2Mbaj18P3nt7GrtZfPlmVyz6XzmZWd5PRYIuIwhT0MeXqH+Nc/VfHMpiby0+L59VdOZ1V5jtbRRQRQ2MOKtZZnNjVx70s76R0c5b+fN5Nbzy8jPk4X6BKRTyjsYWKvp5+7ntvKO7s7WFY8jXuvWMjsnGSnxxKREKSwhzi/3/LIe/X85JVqoqMM/3z5Ar68vEhXXRSRo1LYQ9heTz//85ktbKjr5HNzsrj3ioW6r6iIHJfCHoKstTy5sZF/fmEHUcbwb1edxtWnF+jNURE5IQp7iOnsG+bO333MqztaOWtWBv921SLydZYuIidBYQ8h79R0cPtTH9HVP8L3Lp7HTWeVaC1dRE6awh4CRn1+fvF6Dfe/uZuZWUk8fOMy5uelOj2WiIQphd1hrT2D3PrEh2yo6+Tq0wv44WXzSYjTb4uInDoVxEEbaj38w+Ob6Rvycd81i7hyaYHTI4mICyjsDrB2bG/6vS/upCg9gSf+/gzK9GEjEQkQhT3IBkd83PXsVp79cB8XzMvhvi8tImWqrsQoIoGjsAdRu3eIrz9Wyea9Xdx2wWxuOX+Wdr2ISMAp7EGys7mHrz1aiadviF99eSkXLZzu9Egi4lIKexC8XdPONx7bRNLUGJ7++mdYWKCtjCIyeRT2Sfb7D/fx7ae3MCs7iUduXE5u6lSnRxIRl1PYJ9GadXv40UtVnFGazpq/q9CbpCISFAr7JLDW8pNXqvnln/dw8WnTue+aRUyJ0c0wRCQ4FPYAs9bywz/u4JH36rl+RRH/ctkC7XwRkaBS2API57fc/dxWntzYyFfPLuF7F8/TpXZFJOgU9gDx+y3fffZjnqps4pbzZ3H7hbMVdRFxhMIeANZafvCHbTxV2cSt58/i9lVznB5JRCJYlNMDhDtrLf/rhR381/q9fOPcmdx24WynRxKRCKewT9DP1u7i4XfruemsEr6zeo6WX0TEcQr7BDy2voH/88Zurqko4PuX6I1SEQkNCvspenlbMz94fhsr52bzoysWKuoiEjIU9lOwsb6TW5/8iCWFadx//VJiovU/o4iEDhXpJDV29vP1xzZRkBbPgzcsIz5OnygVkdCisJ+E3qFRvvZoJaM+Pw/cUMG0xDinRxIR+Svax36CfH7Lt574kN3tvTx643JKs5KcHklE5Ih0xn6CfrZ2F69XtXHPpeWcXZbp9DgiIkcVkLAbY1YbY6qNMbuNMXcG4pih5M3qNu5/czdfqijk784sdnocEZFjmnDYjTHRwH8AFwHlwHXGmPKJHjdU7O8a4Pb/9xFzc5P54WXznR5HROS4AnHGvhzYba2ttdYOA08ClwXguI4b8fn55uObGR7188svL2VqrHbAiEjoC0TY84HGw37eNP69sPfTV6vZvLeLH3/xNL1ZKiJhIxBhP9JHLu1fPciYm40xlcaYyvb29gA87eT6oK6TNetquW55EZcuynN6HBGRExaIsDcBhYf9vADY/+kHWWvXWGsrrLUVWVlZAXjaydM7NModT39E4bQEvnfxPKfHERE5KYEI+0agzBhTYoyJA64F/hCA4zrm3hd30nRggH+/ZhGJU7TVX0TCy4SrZa0dNcZ8E3gFiAYestZun/BkDnmzqo0nPtjL188pZVlxutPjiIictICcjlprXwJeCsSxnNQ3NMpdz21ldk6SbpghImFLnzw9zM9f20Vz9yD/euVCbW0UkbClsI/b2dzDQ+/Wc+2yQk6foSUYEQlfCjvg91u+9/ttpMbH8p3Vc50eR0RkQhR24JlNTWxqOMCdF83VpXhFJOxFfNi9gyP875erWFY8jauWFjg9jojIhEV82H+zrhZP3zDfv6ScqCjdt1REwl9Eh73NO8hv3q7jktOmc1pBmtPjiIgERESH/Rev1TDi8/PtVXOcHkVEJGAiNuy17b08ubGR61cUUZyZ6PQ4IiIBE7Fh/+mr1UyNieLWlWVOjyIiElARGfbqFi8vbW3hq2eXkJk0xelxREQCKiLD/uu39pAQF82NZ5U4PYqISMBFXNibDvTz/Jb9XLe8SB9GEhFXiriwP/B2HQb46tk6WxcRd4qosHt6h3hy414uX5JPXlq80+OIiEyKiAr7o+83MDji5xvnljo9iojIpImYsA8M+3j0vXpWlecwKzvZ6XFERCZNxIT9hY/30z0wwk1aWxcRl4uYsD+5sZHSrERWlOgmGiLibhER9l2tXjY1HOC6ZUUYoys4ioi7RUTYn/hgL7HRhiuX5js9iojIpHN92AdHfDz34T4+Pz+XDF0+QEQigOvD/sr2Frr6R7hueZHTo4iIBIXrw/74hr3MyEjgzNIMp0cREQkKV4e9wdPHhrpOvrSsULe9E5GI4eqwv7S1BYDLFutNUxGJHK4O+8vbW1hUkEq+rgsjIhHEtWHf3zXAlsYuVi+Y7vQoIiJB5dqwv7xtbBlm9YJchycREQkuV4d9bm4yJbpRtYhEGFeGvc07yMaGTp2ti0hEcmXYX93eirVwkdbXRSQCuTLsL29roTQzkdk5SU6PIiISdK4Le1f/MO/Xevj8glxdyVFEItKEwm6MudoYs90Y4zfGVARqqIlYV9OBz29ZVZ7j9CgiIo6Y6Bn7NuBKYF0AZgmI9bUekqfEsDA/1elRREQcETORf9lauxMIqSWP9Xs8LC9JJybadatMIiInxFX1a+0ZpLajjzN0JUcRiWDHPWM3xrwGHGlD+N3W2udP9ImMMTcDNwMUFU3OtdHX13oAFHYRiWjHDbu19oJAPJG1dg2wBqCiosIG4piftr7WQ/LUGMrzUibj8CIiYcFVSzHraztZUZJOtK69LiIRbKLbHa8wxjQBZwIvGmNeCcxYJ6+le5A6ra+LiEx4V8xzwHMBmmVCNtRpfV1EBFy0FPP+Hg8pU2OYN13r6yIS2VwT9vW1HpaXZGh9XUQinivC3tw9QL2nnzNK050eRUTEca4I+wd1nYDW10VEwCVh39HcQ1x0FHNyk50eRUTEca4Ie1Wzl5nZScTq+jAiIu4Ie3WLl3k6WxcRAVwQ9gN9w7T0DGoZRkRkXNiHvarFC8Bc7V8XEQFcEPbqlh4ALcWIiIwL+7BXtXiZlhBLVvIUp0cREQkJrgj73NyUkLqLk4iIk8I67H6/ZVerV2+ciogcJqzD3nign/5hH/OmK+wiIgeFddh3No/viMnVjhgRkYPCOuzVLV6Mgdk5OmMXETkorMNe1dJDcUYi8XHRTo8iIhIywjzsXubobF1E5C+EbdgHhn3Ue/qYqzdORUT+QtiGfVerF2v1xqmIyKeFbdirD14jRnvYRUT+QtiGvd7TR0yUoTA9welRRERCStiGvaVnkJyUqbp5tYjIp4Rt2Ft7BslO0YW/REQ+LYzDPkRuylSnxxARCTnhG/busaUYERH5S2EZ9r6hUbxDowq7iMgRhGXYW3sGAchN1Rq7iMinhWXYW8bDrjN2EZG/FpZhb1XYRUSOKkzDPgSgXTEiIkcQlmFv6R4keUoMiVNinB5FRCTkhGXY9eEkEZGjC9uw56ZqGUZE5EgmFHZjzE+MMVXGmI+NMc8ZY9ICNdixtPYM6Y1TEZGjmOgZ+1pggbX2NGAX8N2Jj3Rsfr+ltUefOhUROZoJhd1a+6q1dnT8p+uBgomPdGyd/cOM+q12xIiIHEUg19hvAv4UwOMdUUu39rCLiBzLcfcLGmNeA3KP8Et3W2ufH3/M3cAo8NtjHOdm4GaAoqKiUxoWDv9wknbFiIgcyXHDbq294Fi/boy5AbgEWGmttcc4zhpgDUBFRcVRH3c8hz6cpF0xIiJHNKFP+BhjVgPfAc611vYHZqRja+kZxBjIStIZu4jIkUx0jf1+IBlYa4z5yBjzfwMw0zG1dg+SmTSFmOiw3IIvIjLpJnTGbq2dFahBTlSrd1A7YkREjiHsTntbdOckEZFjCruwj304SevrIiJHE1ZhHxzxcaB/REsxIiLHEFZhb/eObXXM0VZHEZGjCquw65Z4IiLHF15hH7+cgJZiRESOLqzCfvByAgq7iMjRhV3Yp8REkRKvW+KJiBxNWIV9ZlYSly/Oxxjj9CgiIiErrE59r11exLXLT/3KkCIikSCszthFROT4FHYREZdR2EVEXEZhFxFxGYVdRMRlFHYREZdR2EVEXEZhFxFxGWOtDf6TGtMONJzEv5IJdEzSOKFMrzuyROrrhsh97Sf7umdYa7OO9yBHwn6yjDGV1toKp+cINr3uyBKprxsi97VP1uvWUoyIiMso7CIiLhMuYV/j9AAO0euOLJH6uiFyX/ukvO6wWGMXEZETFy5n7CIicoJCPuzGmNXGmGpjzG5jzJ1OzxMMxphCY8ybxpidxpjtxphvOT1TMBljoo0xHxpjXnB6lmAxxqQZY54xxlSN/76f6fRMwWCMuW38z/g2Y8wTxhhX3vfSGPOQMabNGLPtsO+lG2PWGmNqxv85LVDPF9JhN8ZEA/8BXASUA9cZY8qdnSooRoE7rLXzgDOAf4iQ133Qt4CdTg8RZL8AXrbWzgUWEQGv3xiTD9wKVFhrFwDRwLXOTjVpHgFWf+p7dwKvW2vLgNfHfx4QIR12YDmw21pba60dBp4ELnN4pklnrW221m4e/9rL2H/k+c5OFRzGmALgYuABp2cJFmNMCnAO8CCAtXbYWtvl7FRBEwPEG2NigARgv8PzTApr7Tqg81Pfvgx4dPzrR4HLA/V8oR72fKDxsJ83ESGBO8gYUwwsATY4O0nQ/Bz4J8Dv9CBBVAq0Aw+PL0E9YIxJdHqoyWat3Qf8FNgLNAPd1tpXnZ0qqHKstc0wdjIHZAfqwKEe9iPdtTpitvEYY5KA3wH/aK3tcXqeyWaMuQRos9ZucnqWIIsBlgK/stYuAfoI4F/LQ9X4mvJlQAmQByQaY/7W2ancIdTD3gQUHvbzAlz6V7VPM8bEMhb131prn3V6niA5C/iCMaaesWW3840x/+XsSEHRBDRZaw/+rewZxkLvdhcAddbadmvtCPAs8BmHZwqmVmPMdIDxf7YF6sChHvaNQJkxpsQYE8fYGyt/cHimSWeMMYytt+601t7n9DzBYq39rrW2wFpbzNjv9RvWWtefwVlrW4BGY8yc8W+tBHY4OFKw7AXOMMYkjP+ZX0kEvGl8mD8AN4x/fQPwfKAOHBOoA00Ga+2oMeabwCuMvWP+kLV2u8NjBcNZwFeArcaYj8a/d5e19iUHZ5LJdQvw2/ETmFrgRofnmXTW2g3GmGeAzYztBPsQl34C1RjzBHAekGmMaQLuAX4MPGWM+Spj/yd3dcCeT588FRFxl1BfihERkZOksIuIuIzCLiLiMgq7iIjLKOwiIi6jsIuIuIzCLiLiMgq7iIjL/H9IEuoLwZcFoQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 432x288 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "x = np.arange(0.1, 10, 0.1)\n",
    "plt.plot(x, np.log(x))\n",
    "plt.show()\n",
    "plt.savefig(\"my_graph.jpeg\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The current figure is also cleared when we run a new Jupyter cell. This means we must complete a figure in a single cell, and we then have a \"blank canvas\" in every new cell. This is something to be aware of if you try to migrate code from a Jupyter notebook to a regular python script: in the background, Jupyter will have been clearing the current figure for you, so you may need to add code to clear the current figure manually. Here's an example showing how Jupyter clears figures automatically:"
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "x = np.arange(0, 6, 0.1)"
   "cell_type": "code",
   "execution_count": 10,
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7fccab6920b8>]"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcVOWd7/HPr3eggQa62XdBFhcWW0VFYxQNGqNmMTGL8TrOYCZmRie5MzGTyTXOTXK9uTFmkpk4Y9QRR2NCXEaimMQ14gY2iGwt0rJ1Q9MLDfS+Vf3uH33QFlu66erqU1X9fb9e9TrnPHVO1e8A/e3DU0+dx9wdERFJXWlhFyAiIvGloBcRSXEKehGRFKegFxFJcQp6EZEUp6AXEUlxCnoRkRSnoBcRSXEKehGRFJcRdgEA+fn5PnXq1LDLEBFJKuvWrat294Lu9kuIoJ86dSpFRUVhlyEiklTMbHdP9lPXjYhIilPQi4ikOAW9iEiKU9CLiKQ4Bb2ISIpT0IuIpDgFvYhIilPQi4iE5F+e3c6rJdVxfx8FvYhICGoaWvnZc+9QtPtg3N9LQS8iEoJXSqpxh3Nn5sf9vRT0IiIhWL29imE5GZw6MS/u76WgFxHpZ+7O6u3VLJ6ZT3qaxf39FPQiIv3s3ap6yg83c+7Mbm882Se6DXozyzGztWb2lpltMbPbgvb7zWynmW0IHvODdjOzn5tZiZltNLOF8T4JEZFk8tI7HSNtFs+If/889Ow2xS3ABe5eb2aZwMtm9nTw3N+7+yNH7X8JMDN4nAncFSxFRISO/vnp+UOYNHJwv7xft1f03qE+2MwMHn6MQ64AHgiOex3IM7NxsZcqIpL8WtojvL6jpl9G2xzRoz56M0s3sw1AJfCMu68Jnvph0D1zp5llB20TgNJOh5cFbUe/5jIzKzKzoqqqqhhOQUQkeazbfZCmtki/9c9DD4Pe3SPuPh+YCJxhZicD3wFmA6cDI4FvB7t39RHyh/4H4O53u3uhuxcWFPTfCYuIhGn19moy0oxFJ4zqt/c8rlE37n4IeBFY6u7lQfdMC/CfwBnBbmXApE6HTQT29UGtIiJJb/X2KhZOGUFudv/N5NqTUTcFZpYXrA8ClgBvH+l3NzMDrgQ2B4esBL4ajL5ZBBx29/K4VC8ikkQO1LeweW8t5/Vj/zz0bNTNOGC5maXT8Ythhbs/aWbPm1kBHV01G4CvBfuvAi4FSoBG4Lq+L1tEJPm8HNzArD/756EHQe/uG4EFXbRf8BH7O3Bj7KWJiKSW1duryRucyckThvfr++qbsSIi/aDjtgdVLJ7RP7c96ExBLyLSD7ZX1lNR28J5/dxtAwp6EZF+8dI7Hd8XWtzPH8SCgl5EpF+8tL2aGaNzGZ83qN/fW0EvIhJnzW0R1uw40K+3PehMQS8iEmev7zhAS3uU804M5y4ACnoRkTh7triCwVnpnDW9/2570JmCXkQkjtyd54srWTwjn5zM9FBqUNCLiMTR1vJa9h1uZsncMaHVoKAXEYmjZ7dWYgYXzB4dWg0KehGROHru7QrmT8ojPze7+53jREEvIhInFbXNbCw7zJI54XXbgIJeRCRuniuuBFDQi4ikqueKK5g0chAnjskNtQ4FvYhIHDS1Rni5pJoLZ4+hY36m8CjoRUTi4OWSalrao6F324CCXkQkLp4rrmBodgZnTBsZdikKehGRvhaNOs8WV3LerAKyMsKP2Z5MDp5jZmvN7C0z22JmtwXt08xsjZltN7PfmllW0J4dbJcEz0+N7ymIiCSWjXsPU13fwpI54X1JqrOe/KppAS5w93nAfGCpmS0C/i9wp7vPBA4C1wf7Xw8cdPcZwJ3BfiIiA8azWytITzM+PitJgt471AebmcHDgQuAR4L25cCVwfoVwTbB8xda2B85i4j0o2eLKzhtygjyBmeFXQrQwz56M0s3sw1AJfAM8C5wyN3bg13KgAnB+gSgFCB4/jAQzr05RUT6WdnBRt7eX5cw3TbQw6B394i7zwcmAmcAc7raLVh2dfXuRzeY2TIzKzKzoqqqqp7WKyKS0P64pQKAi+aODbmS9x3Xx8Hufgh4EVgE5JlZRvDURGBfsF4GTAIInh8O1HTxWne7e6G7FxYUhDPriohIX3tq4z7mjBvGtPwhYZfynp6Muikws7xgfRCwBCgGXgA+F+x2LfBEsL4y2CZ4/nl3/9AVvYhIqtl3qIn1ew5x2anjwi7lAzK634VxwHIzS6fjF8MKd3/SzLYCvzGzHwBvAvcG+98L/JeZldBxJX91HOoWEUk4qzaVA3DpKUkW9O6+EVjQRfsOOvrrj25vBq7qk+pERJLIqk3lzE2wbhvQN2NFRPrEkW6bTyZYtw0o6EVE+kSidtuAgl5EpE88laDdNqCgFxGJ2d5DTbyZoN02oKAXEYnZ00G3zScTsNsGFPQiIjF7alM5J40fxtQE7LYBBb2ISEzKDjYmdLcNKOhFRGLy9Kb9QOJ224CCXkQkJk9tKufkCcOYMioxu21AQS8i0mtlBxvZUHooIcfOd6agFxHppac2JvZomyMU9CIiveDuPLZ+Lwsm5yV0tw0o6EVEemXLvlq2VdTxmYUTwy6lWwp6EZFeeHR9GVnpaXwqgYdVHqGgFxE5Tm2RKCs37OPCOaMTZgLwY1HQi4gcpz9vq+JAQyufTYJuG1DQi4gct8feLGPUkCw+Nis55rtW0IuIHIfDjW08u7WSy+ePJzM9OSK0J5ODTzKzF8ys2My2mNlNQfv3zWyvmW0IHpd2OuY7ZlZiZtvM7BPxPAERkf70+437aI1Ek6bbBno2OXg78C13X29mQ4F1ZvZM8Nyd7v6Tzjub2Vw6JgQ/CRgPPGtmJ7p7pC8LFxEJw2Pry5g1ZignjR8Wdik91u0VvbuXu/v6YL0OKAYmHOOQK4DfuHuLu+8ESuhiEnERkWSzo6qe9XsO8ZmFEzCzsMvpsePqYDKzqcACYE3Q9A0z22hm95nZiKBtAlDa6bAyjv2LQUQkKTz+5l7SDK5ckFyR1uOgN7Nc4FHgZnevBe4CTgDmA+XAHUd27eJw7+L1lplZkZkVVVVVHXfhIiL9KRrtuOXB4pkFjBmWE3Y5x6VHQW9mmXSE/EPu/hiAu1e4e8Tdo8CveL97pgyY1OnwicC+o1/T3e9290J3LywoSI4hSiIycK3ZWcPeQ018dmFyXc1Dz0bdGHAvUOzuP+3U3vl7v58GNgfrK4GrzSzbzKYBM4G1fVeyiEj/+926UnKzM7h47tiwSzluPRl1cw5wDbDJzDYEbf8IfNHM5tPRLbMLuAHA3beY2QpgKx0jdm7UiBsRSWaHGlt5amM5VxVOZFBWetjlHLdug97dX6brfvdVxzjmh8APY6hLRCRhPLKujJb2KF8+c0rYpfRKcnytS0QkJO7Or9fs4bQpI5gzLnnGznemoBcROYbX3j3AjuoGvnzm5LBL6TUFvYjIMTy4Zjd5gzMTfl7YY1HQi4h8hMraZv60pYKrTptITmbyfQh7hIJeROQjrCgqpT3qfClJP4Q9QkEvItKFSNR5eG0pi2fkMy0/sSf/7o6CXkSkCy9uq2TvoSa+sih5P4Q9QkEvItKFB1/fzeih2Vw4Z0zYpcRMQS8icpTSmkZefKeKq8+YnDSzSB1L8p+BiEgfe3jtHgy4+vRJ3e6bDBT0IiKdNLVG+M0bpSyZM4bxeYPCLqdPKOhFRDp5dH0ZNQ2t/OW508Mupc8o6EVEAtGoc+/LO5k3cTinTx3R/QFJQkEvIhJ4triCndUN/NV505NqTtjuKOhFRAL3rN7JhLxBLD0p+SYXORYFvYgIsKH0EGt31XD94mlkpMCQys5S62xERHrpV6t3MDQng8+nyJDKzhT0IjLgldY08vSmcr505mRys3syw2py6cnk4JPM7AUzKzazLWZ2U9A+0syeMbPtwXJE0G5m9nMzKzGzjWa2MN4nISISi/te2UmaGdedPS3sUuKiJ1f07cC33H0OsAi40czmArcAz7n7TOC5YBvgEmBm8FgG3NXnVYuI9JHDjW389o1SLp83nrHDc8IuJy66DXp3L3f39cF6HVAMTACuAJYHuy0HrgzWrwAe8A6vA3lmlrxTs4hISvv12j00tkZS6gtSRzuuPnozmwosANYAY9y9HDp+GQCjg90mAKWdDisL2kREEkpzW4T7X93J4hn5zB2fnBN/90SPg97McoFHgZvdvfZYu3bR5l283jIzKzKzoqqqqp6WISLSZ377RikVtS18/eMnhF1KXPUo6M0sk46Qf8jdHwuaK450yQTLyqC9DOg8PmkisO/o13T3u9290N0LCwoKelu/iEivNLdFuOvFdzlj6kjOmj4q7HLiqiejbgy4Fyh29592emolcG2wfi3wRKf2rwajbxYBh4908YiIJIoVRaXsr23m5iUzU+p2B13pyYDRc4BrgE1mtiFo+0fgdmCFmV0P7AGuCp5bBVwKlACNwHV9WrGISIxa2iP88oV3OX3qCM46IbWv5qEHQe/uL9N1vzvAhV3s78CNMdYlIhI3K97ouJq/4/PzUv5qHvTNWBEZYFraI/zyxXcpnDKCswfA1Two6EVkgFlRVEb54WZuXnLigLiaBwW9iAwgHX3zJRROGcE5MwbG1Two6EVkAPldcDV/0wAYadOZgl5EBoQjV/OnTRnB4hn5YZfTrxT0IjIgPPDqbvYdbuabFw2cvvkjFPQikvIONbbyi+e387ETCzhngF3Ng4JeRAaAf32+hPqWdr5z6eywSwmFgl5EUlppTSMPvLabz502kdljU/cOlceioBeRlPbjP24jLQ2+edGssEsJjYJeRFLWW6WH+P1b+/irc6en7OxRPaGgF5GU5O78cFUx+blZ3PCx1L7ffHcU9CKSkp4trmTtzhpuWnIiudk9uVFv6lLQi0jKaY9Euf3pYqYXDOHq0yd1f0CKU9CLSMr5r9d3825VA7csnU1mumJOfwIiklIqa5u540/v8LETC7ho7piwy0kICnoRSSk/eKqY1kiU2y4/acDd6uCjKOhFJGW8UlLNyrf28fXzT2Bq/pCwy0kYPZkc/D4zqzSzzZ3avm9me81sQ/C4tNNz3zGzEjPbZmafiFfhIiKdtbRH+N4Tm5kyajBfG+DDKY/Wkyv6+4GlXbTf6e7zg8cqADObC1wNnBQc80szS++rYkVEPso9q3eyo6qB2y4/iZxMxU5n3Qa9u78E1PTw9a4AfuPuLe6+EygBzoihPhGRbpXWNPKL57dzycljOX/W6LDLSTix9NF/w8w2Bl07I4K2CUBpp33KgjYRkbi57fdbSTPje5fNDbuUhNTboL8LOAGYD5QDdwTtXX3E7V29gJktM7MiMyuqqqrqZRkiMtD9cct+ni2u4OYlMxmfNyjschJSr4Le3SvcPeLuUeBXvN89UwZ0/hraRGDfR7zG3e5e6O6FBQUFvSlDRAa4gw2tfPfxzcwZN4zrzpkWdjkJq1dBb2bjOm1+GjgyImclcLWZZZvZNGAmsDa2EkVEunbryi0cbmrljqvm6Ruwx9DtnX7M7GHgfCDfzMqAW4HzzWw+Hd0yu4AbANx9i5mtALYC7cCN7h6JT+kiMpA9vamclW/t41sXncjc8QNzQpGeMvcuu9D7VWFhoRcVFYVdhogkiQP1LVx850uMzxvEY18/e8BezZvZOncv7G6/gfmnIyJJy935p//eTF1zOz9Rl02P6E9IRJLKkxvLeXrzfm6+aCazxg4Nu5ykoKAXkaRRWdfM957YzLxJeSw7d3rY5SQNBb2IJIVo1PmHRzbS2BrhjqtOJUNdNj2mPykRSQq/Wr2DF7dV8b1PzmHGaHXZHA8FvYgkvHW7D/L//riNS04ey1cWTQm7nKSjoBeRhHaosZW/ffhNxuXlcPtnT9VkIr0wsKdGF5GE5u78/SMbqaxr5pGvnc3wQZlhl5SUdEUvIgnr/ld38czWCr69dDbzJuWFXU7SUtCLSELaWHaIH60q5sLZo7l+sW5YFgsFvYgknAP1Lfz1g+vJz83mJ1fNU798jNRHLyIJpbU9yl8/uJ7q+hZW3HAWI4ZkhV1S0lPQi0jCcHduXbmZtbtq+Jer56tfvo+o60ZEEsYDr+3m4bWlfP38E7hivmYh7SsKehFJCK+UVPPPT25lyZzR/M+LZ4VdTkpR0ItI6HZVN/D1h9ZzQsEQ7vzCfNLS9OFrX1LQi0ioDja0cv3yNzCDX321kKE5+lJUX1PQi0hoGlvb+Yvlb1Ba08S/f+U0powaEnZJKanboDez+8ys0sw2d2obaWbPmNn2YDkiaDcz+7mZlZjZRjNbGM/iRSR5tUWi3PjQejaUHuLnX5zPoumjwi4pZfXkiv5+YOlRbbcAz7n7TOC5YBvgEmBm8FgG3NU3ZYpIKnF3vv3oRl7YVsUPrjyZpSePC7uklNZt0Lv7S0DNUc1XAMuD9eXAlZ3aH/AOrwN5Zqa/QRH5gNv/8DaPrd/L3y05kS+fqdsOx1tv++jHuHs5QLAcHbRPAEo77VcWtImIAHDP6h38x593cM2iKfzthTPCLmdA6OsPY7saE+Vd7mi2zMyKzKyoqqqqj8sQkUT0wGu7+MFTxVx6yli+f/lJuodNP+lt0Fcc6ZIJlpVBexkwqdN+E4F9Xb2Au9/t7oXuXlhQUNDLMkQkWTzw2i7+1xNbWDJnDD/7wgLSNVa+3/Q26FcC1wbr1wJPdGr/ajD6ZhFw+EgXj4gMXMtffT/kf/nlhWRlaGR3f+r2pmZm9jBwPpBvZmXArcDtwAozux7YA1wV7L4KuBQoARqB6+JQs4gkkeWv7uLWlVu4aO4Y/u1LCvkwdBv07v7Fj3jqwi72deDGWIsSkdRw/ys7+f7vt3Lx3DH8q0I+NLpNsYj0OXfn314o4Sd/eodPnDSGX3xRIR8mBb2I9KlI1Lnt91t44LXdXDl/PD/+3DyFfMgU9CLSZ5rbInxzxQZWbdrPsvOmc8vS2boTZQJQ0ItIn6htbmPZA0W8vqOGf/rkHP7y3OlhlyQBBb2IxGz/4Wauu/8NtlfU8bMvzOfKBfpCfCJR0ItITNbvOcgN/7WOxpZ27vsfp3PeifoCZKJR0ItIr/2uqJTvPr6ZscNzePD6M5k1dmjYJUkXFPQictzaI1F+uKqY/3xlF+fMGMW/fnEhI4ZkhV2WfAQFvYgcl0ONrXzj12/yckk1150zle9eOoeMdA2fTGQKehHpsXW7a/jbhzdQVdfCjz93Kp8vnNT9QRI6Bb2IdCsade7687v89Jl3mJA3iN997SzmTcoLuyzpIQW9iBxTVV0L31yxgdXbq7ns1HH86DOnMCwnM+yy5Dgo6EXkI/35nSq+teIt6prb+D+fOYWrT5+kyUKSkIJeRD6krrmNH60q5uG1pcwYncuDf3kGs8cOC7ss6SUFvYh8wOrtVdzy6CbKDzdxw3nT+buLTiQnMz3ssiQGCnoRAaC+pZ0fPlXMw2v3MD1/CL/72tmcNmVE2GVJH1DQiwxw7s4fNu/nfz+5lfLaZpadN51v6io+pSjoRQawndUN3LpyCy+9U8XssUP5xZcW6io+BSnoRQagptYIv3yxhP/48w6yM9K49VNzuWbRFH3DNUXFFPRmtguoAyJAu7sXmtlI4LfAVGAX8Hl3PxhbmSLSF6JR5/cb9/HjP2xj76EmPr1gAt+5ZDajh+WEXZrEUV9c0X/c3as7bd8CPOfut5vZLcH2t/vgfUQkBq+WVPOjp4vZvLeWk8YP447Pz2PR9FFhlyX9IB5dN1cA5wfry4EXUdCLhObt/bXc/vTbvLitigl5g/jZF+Zz+bzxmuJvAIk16B34k5k58B/ufjcwxt3LAdy93MxGd3WgmS0DlgFMnjw5xjJE5Gjb9tfx8+e3s2pTOUOzM/jupXO45qwpGk0zAMUa9Oe4+74gzJ8xs7d7emDwS+FugMLCQo+xDhEJFJfX8ovnt7Nq036GZKXztY+dwA3nTSdvsO4XP1DFFPTuvi9YVprZ48AZQIWZjQuu5scBlX1Qp4h04809B/n3P7/LH7dUMDQ7g7+5YAbXL56mgJfeB72ZDQHS3L0uWL8Y+GdgJXAtcHuwfKIvChWRD4tEnWe27uee1Tsp2n2QoTkZ3HThTP7inGkMH6w7TEqHWK7oxwCPB3eyywB+7e5/MLM3gBVmdj2wB7gq9jJFpLP6lnYeKSrlvld2saemkUkjB3Hrp+by+cJJDMnW12Pkg3r9L8LddwDzumg/AFwYS1Ei0rUt+w7z6zV7+O8399LQGmHB5DxuuWQ2nzhpLOkaRSMfQb/6RRJcU2uEJzfu46E1e9hQeojsjDQuO3U8X140mYWTdbsC6Z6CXiQBRaPOmp01PLa+jKc376e+pZ0TCobwvy6by2cWTtAHrHJcFPQiCaSkso7/fnMfj7+5l72HmsjNzuDSU8by2YUTOWPaSM3uJL2ioBcJ2faKOp7aVM6qTeW8U1FPmsG5Mwv4h6WzuHjuWAZl6QtOEhsFvUg/i0adzfsO82xxJU9vKmd7ZT1mcPrUkXz/U3O59JRxusmY9CkFvUg/aGqN8HJJNc8VV/D825VU1rWQFoT7P19xEktPGqtwl7hR0IvEQTTqFO+v5eXt1azeXs3aXTW0tkfJzc7gYycWcOGc0Zw/azQjh+hDVYk/Bb1IH3B3dlY3sGZnDa+9e4BXSqo50NAKwKwxQ7lm0RQ+Pms0Z0wbSVaGJveQ/qWgF+mFSNR5p6KOot0HWbPjAGt21lBV1wJAfm42587MZ/HMAs6dmc8YdclIyBT0Ij1Q09DKW6WHWL/nIOv3HOSt0sPUt7QDMHZYDmefMIozp43izOkjmZ4/RMMgJaEo6EWOUtPQyua9h9m09zCbyjqWew81AZCeZsweO5RPL5jAwil5LJw8gskjByvYJaEp6GXAammPsLO6gW3769haXsvb5XUUl9dSGXTBAEwdNZiFU0Zw7dlTOGVCHvMmDWdwln5sJLnoX6ykvLrmNnZVN7Kjup6Synreqahje2U9uw80Eol2zHmTmW7MGD2UxTPzmTN2GHPHD+PkCcMZPki3+pXkp6CXlHC4sY09NY3srmlgT00jew40sqO6gZ3VDe99SAodXS9TRg1m5uhcPnnKOGaMzmXW2KGcUJBLZrpGw0hqUtBLwotGnQMNrZQfbmLfoWb2Hmqi7GAjew82BetNHG5q+8Ax+blZTMsfwsdnFTAtP5dp+UOYXjCEKaMGk52hWwrIwKKgl9C4O4eb2qiub6GytoXKuhYqapupqG2hsq6Zitpmyg93LNsiH5xWeHBWOhPyBjFxxCAWTM5j8sjBTB7ZEeSTRg4mV5NviLxHPw3SZyLRjuA+2NjKocZWDja0UdPQyoGGVmoaWoJlK9X1LVTXtXKgoeVDAQ4dIT5mWA6jh2Zz+tSRjB2ew7jhOYwdlsP4vEFMyBtE3uBMjXQR6SEFvbynPRKlvqWduuZ26luCR3M7tc1t1Da3U9vURl1zO4eb2qhtauPwUY/a5jb8w7kNQE5mGqOGZDNiSCb5udnMHjuM/NxsCoZmk5+bxeihOYwels2YYTm6GhfpY3H7iTKzpcC/AOnAPe5+e7zea6CIRp3WSJTmtgjNbcGyPUJTa7AdrDe1Rmhsi9DcGqGxNUJjWztNrREaWiI0tbXT0BKhsbWd+pYIDS3tNASh3tIe7baGrPQ0hg3KYNigTIYPymRUbhbTC4YwfFAmeYOzGDE4kxGDs8gLliOHZDEqN0tDEkVCFJefPjNLB/4NuAgoA94ws5XuvjUe79cb0agTcScSddqjTiTitEejRNxpj3Rqj0ZpC7bbIlHaox3Pt0ejtEfeb2uLRN9rbwvaOx5Oa3v0g9uRKK3tnR6dtluC9Zb2CC1tUVqOrAfP90ZWRhpDstIZnJXB4Kx0BmelMyQ7gwl5WeRmpzM4O4Pczo+cDIYGy9zsjlAflpPJ0JwMcjL1QaZIsonXZdYZQEkwgThm9hvgCqBPg/7FbZX84KniD4T2++sQ/VBb8HD/yC6GeMlIM7Iy0shMP/Lo2M5KT+tYBuvDgjDNDtqyMzrWszPTyMlI/8ByUGY6gzLTyXnvkcbgrIyOtqz3n8/QsEGRAS1eQT8BKO20XQac2XkHM1sGLAOYPHlyr95kaE4mJ47JJc2M9DQj3Yy0zss0PtCWnt6xzEh7vy0jPe297Yy04HWC9cz0tPfW04PtjPRO653aMtI6wjvjSIgHgZ6RbmSmpZGWpg8ORSQc8Qr6rlLtA9fQ7n43cDdAYWFhr66vT5sygtOmnNabQ0VEBox4/Z++DJjUaXsisC9O7yUiIscQr6B/A5hpZtPMLAu4GlgZp/cSEZFjiEvXjbu3m9k3gD/SMbzyPnffEo/3EhGRY4vb4GZ3XwWsitfri4hIz2jcnYhIilPQi4ikOAW9iEiKU9CLiKQ48/6+F0BXRZhVAbt7eXg+UN2H5YRN55O4UulcILXOJ5XOBXp+PlPcvaC7nRIi6GNhZkXuXhh2HX1F55O4UulcILXOJ5XOBfr+fNR1IyKS4hT0IiIpLhWC/u6wC+hjOp/ElUrnAql1Pql0LtDH55P0ffQiInJsqXBFLyIix5DUQW9mS81sm5mVmNktYdcTCzO7z8wqzWxz2LXEyswmmdkLZlZsZlvM7Kawa4qFmeWY2Vozeys4n9vCrilWZpZuZm+a2ZNh1xIrM9tlZpvMbIOZFYVdT6zMLM/MHjGzt4OfobNifs1k7boJ5qV9h07z0gJfTKR5aY+HmZ0H1AMPuPvJYdcTCzMbB4xz9/VmNhRYB1yZxH83Bgxx93ozywReBm5y99dDLq3XzOybQCEwzN0vC7ueWJjZLqDQ3VNiHL2ZLQdWu/s9wW3eB7v7oVheM5mv6N+bl9bdW4Ej89ImJXd/CagJu46+4O7l7r4+WK8DiumYXjIpeYf6YDMzeCTnFRJgZhOBTwL3hF2LfJCZDQPOA+4FcPfWWEMekjvou5qXNmnDJFWZ2VRgAbAm3EpiE3R1bAAqgWfcPZnP52fAPwDRsAvpIw78yczWBXNRJ7PpQBXwn0HX2j1mNiTWF03moO92XloJl5nlAo8CN7t7bdj1xMLdI+4+n45pMc8ws6TsXjOzy4CV9b/aAAABTElEQVRKd18Xdi196Bx3XwhcAtwYdIMmqwxgIXCXuy8AGoCYP39M5qDXvLQJLOjLfhR4yN0fC7uevhL8N/pFYGnIpfTWOcDlQb/2b4ALzOzBcEuKjbvvC5aVwON0dOsmqzKgrNP/GB+hI/hjksxBr3lpE1Tw4eW9QLG7/zTsemJlZgVmlhesDwKWAG+HW1XvuPt33H2iu0+l42fmeXf/Sshl9ZqZDQk+8Cfo4rgYSNqRa+6+Hyg1s1lB04VAzIMY4jaVYLyl2ry0ZvYwcD6Qb2ZlwK3ufm+4VfXaOcA1wKagXxvgH4PpJZPROGB5MNIrDVjh7kk/LDFFjAEe77i2IAP4tbv/IdySYvY3wEPBBewO4LpYXzBph1eKiEjPJHPXjYiI9ICCXkQkxSnoRURSnIJeRCTFKehFRFKcgl5EJMUp6EVEUpyCXkQkxf1/xUY+WdcuGnIAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "plt.plot(x, np.exp(x))"
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7fccab5ef400>]"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHxlJREFUeJzt3Xl8VPW9//HXJzsJS4CwhxBAREBkC5vUrdZ9q1dtpS5oVay1rVdrrbW9V6u3/ry39mr1d5VS1OJacKsbKoqK9SpLkJ2wBAQSEkiAhJA9mXzvHxks1UhCJpMzc/J+Ph7jzJycmfM5xLzzzXe+5/s15xwiIuJfMV4XICIi4aWgFxHxOQW9iIjPKehFRHxOQS8i4nMKehERn1PQi4j4nIJeRMTnFPQiIj4X53UBAGlpaS4zM9PrMkREosqKFSv2Oud6NbdfRAR9ZmYm2dnZXpchIhJVzGxHS/ZT142IiM8p6EVEfE5BLyLicwp6ERGfU9CLiPicgl5ExOcU9CIiPqegFxHxyMPvb2bFjv1hP05EXDAlItLRrM4r5eH3t2AYEwb1COux1KIXEfHAgws30SMlgetOGhz2YzUb9GY20Mw+NLMcM1tvZrcEt/cws/fMbEvwvntwu5nZI2aWa2ZrzGx8uE9CRCSaLNm2j79v2ctNpwylc2L4O1Za0qKvB37unBsBTAFuNrORwJ3AIufcMGBR8DnAOcCw4G0m8HibVy0iEqWcczz47ib6dE3kqqmD2uWYzQa9c67QOfd58PFBIAcYAFwEzA3uNhf4bvDxRcDTrtESINXM+rV55SIiUeijTcVk7yjhZ6cPIyk+tl2OeVR99GaWCYwDlgJ9nHOF0PjLAOgd3G0AkHfYy/KD2776XjPNLNvMsouLi4++chGRKNPQ4Pj9u5vI6JHM97IGtttxWxz0ZtYZeBn4V+dc2ZF2bWKb+9oG52Y757Kcc1m9ejU7nbKISNR7e91uNhSWcesZw4iPbb+xMC06kpnF0xjyzznnXglu3nOoSyZ4XxTcng8c/qsqHShom3JFRKJTfaCBP7y3iWP7dObCMV/r5Airloy6MeAJIMc599+Hfel1YEbw8QzgtcO2Xx0cfTMFOHCoi0dEpKN6deUuthVXcNsZw4mNaarjI3xaMq5nGnAVsNbMVgW33QU8AMw3s+uAncBlwa8tAM4FcoFK4No2rVhEJMrU1Ad4+P0tnJDejbNG9Wn34zcb9M65T2i63x3g9Cb2d8DNIdYlIuIbzy3Zya7SKh64ZDSNnSTtS1fGioiEUVl1HY9+sIVvHZPGScO8GXiioBcRCaPZi7dRUlnHL88+zrMaFPQiImFSVFbNnE+2ceGY/oxO7+ZZHQp6EZEweXjRFgINjtvPHO5pHQp6EZEw2FpczrzleVwxeRAZPZM9rUVBLyISBr9/ZxNJcTH85NvHeF2Kgl5EpK19vrOEd9bv5sZThpLWOdHrchT0IiJtyTnHAws2ktY5keu+Ff5FRVpCQS8i0oYW5RSxbPt+bvnOMFLaYVGRllDQi4i0kbpAA/e/ncOQXilcPrH9piFujoJeRKSNvLBsJ9uKK7jrnBHtOg1xcyKnEhGRKHagqo6H3tvM1CE9OX1E7+Zf0I4U9CIibeCxD3Mprarj1+eN8GTisiNR0IuIhChvfyVP/e92LhmfzvEDvJvq4Jso6EVEQvTAOxuJjTHPpzr4Jgp6EZEQrNhRwltrCrnh5CH07ZbkdTlNUtCLiLSSc47/eGsDvbskcuPJQ7wu5xsp6EVEWumNNYWs3FnK7WcOj5iLo5qioBcRaYWq2gAPLMhhZL+uXDIh3etyjkhBLyLSCrMWb6XgQDX3XDiK2JjIGk75VQp6EZGjtKu0ilmLt3L+Cf2YNLiH1+U0S0EvInKU7l+Qgxn86twRXpfSIgp6EZGjsHTbPt5aU8iPThnKgNROXpfTIgp6EZEWCjQ47nljA/27JXHjyUO9LqfFFPQiIi00b3keOYVl3HXeCDolxHpdTosp6EVEWuBAZR0PLtzEpME9OG90P6/LOSoKehGRFnh40WZKKmu5+4KRETc7ZXMU9CIizcgpLGPup9uZPimDUf0jb3bK5ijoRUSOwDnHv7+2jm6d4rnjrMicnbI5CnoRkSN4deUulm8v4c5zjiM1OcHrclpFQS8i8g0OVNVx/4Icxg5M5bIJkbPY99GK3OnWREQ89tB7m9lXUctfrp1ETITPZ3MkatGLiDRhQ0EZT3+2nSsnD4rI5QGPhoJeROQrGhoaP4BNTU6I2OUBj4aCXkTkK15ZuYvsHSXcefZxdEuO97qckCnoRUQOU1JRy/0LchiXkcqlEb6gSEsp6EVEDvPA2xsbR9tcPDqqP4A9nIJeRCRo6bZ9zMvO4/qTBjOiX1evy2kzCnoREaCmPsBdr64lvXsnbjl9mNfltKlmg97MnjSzIjNbd9i2e8xsl5mtCt7OPexrvzKzXDPbZGZnhatwEZG2NHvxNrYWV3DfRceTnOCvS4xa0qL/C3B2E9sfcs6NDd4WAJjZSOByYFTwNY+ZWfRM2iwiHdIXeyt49MNczhvdj9OO6+11OW2u2aB3zn0M7G/h+10E/NU5V+Oc+wLIBSaFUJ+ISFg55/i3v60jMTaGf79gpNflhEUoffQ/MbM1wa6d7sFtA4C8w/bJD24TEYlIr60q4JPcvdxx9nD6dE3yupywaG3QPw4MBcYChcAfgtubGovkmnoDM5tpZtlmll1cXNzKMkREWq+kopb73tzA2IGp/GDyIK/LCZtWBb1zbo9zLuCcawD+zD+6Z/KBw6d4SwcKvuE9ZjvnspxzWb169WpNGSIiIbnvzQ0cqKrjgUtGE+uTMfNNaVXQm9nhCyZeDBwakfM6cLmZJZrZYGAYsCy0EkVE2t6Hm4p4ZeUufnzaMRzX1z9j5pvS7BgiM3sBOBVIM7N84G7gVDMbS2O3zHbgRgDn3Hozmw9sAOqBm51zgfCULiLSOuU19fz6lbUM692Zm08b6nU5Ydds0Dvnpjex+Ykj7P874HehFCUiEk7/9c5GCsuqefmmE0mM8/8IcF0ZKyIdyvLt+3n6sx1cc2Im4zO6N/8CH1DQi0iHUV0X4JcvryG9eydfzDPfUv66zldE5Age/WAL24oreOa6SaQkdpz4U4teRDqEdbsOMGvxNi6dkM5JwzrWkG4FvYj4Xk19gNvmryKtcwL/dp4/pzk4ko7zt4uIdFh/fH8Lm/eU89S1E32xNODRUoteRHxt5c4SZi3eyvezBnLacP/NTNkSCnoR8a3qugA/f3E1fbsm8ZvzR3hdjmfUdSMivvWHhZvYVlzBs9dNpktSx+uyOUQtehHxpeXb9zPnky+4YnIG3xqW5nU5nlLQi4jvVNbW84sXVzMgtRN3ndtxu2wOUdeNiPjO/Qty2LG/kuevn9KhLoz6JmrRi4ivfLBxD88u2cn13xrM1KE9vS4nIijoRcQ39pXXcMdLazmubxduP6vjzGXTHP1NIyK+4JzjzlfWUlZVx7PXT+oQ0w+3lFr0IuIL85bn8d6GPdxx9nDfrxh1tBT0IhL1tu+t4N43N3Di0J78cNpgr8uJOAp6EYlq9YEGbp2/irgY48HLxhDj40W+W0t99CIS1R79IJeVO0t5ZPo4+qd28rqciKQWvYhErSXb9vHoB1v4l3EDuHBMf6/LiVgKehGJSiUVtdw6bxUZPZK597vHe11ORFPXjYhEHeccd7y8hr3lNbxy0zQ66+rXI1KLXkSizjNLdvDehj388uzjGJ3ezetyIp6CXkSiSk5hGf/xVg6nDu+loZQtpKAXkahRWVvPT19YSbdO8RpKeRTUsSUiUeO3r29ga3E5z143mbTOiV6XEzXUoheRqPDSinzmZedx86nHMO2Yjr2QyNFS0ItIxNu0+yC/+dtapg7pya1nHOt1OVFHQS8iEa2ipp6bnltBl6R4/jh9LLHqlz9qCnoRiVjOOX71ylq2763gkcvH0btLktclRSUFvYhErOeW7uT11QX8/MzhWi0qBAp6EYlI63Yd4N43NnDq8F7cdMpQr8uJagp6EYk4JRW1/OjZFaR1TuCh743VePkQaRy9iESUQIPjZ39dSVFZDfN/NJXuKQlelxT1FPQiElEeXLiJv2/Zy39eMpqxA1O9LscX1HUjIhHj7bWFPP7RVqZPyuD7EzO8Lsc3FPQiEhG27DnI7S+uZlxGKvdcONLrcnxFQS8iniurrmPmMyvolBDL41dMIDEu1uuSfEV99CLiqYYGx23zVpG3v5Lnrp9M3266KKqtNduiN7MnzazIzNYdtq2Hmb1nZluC992D283MHjGzXDNbY2bjw1m8iES/Bxdu4v2cIn5z3ggmD9FFUeHQkq6bvwBnf2XbncAi59wwYFHwOcA5wLDgbSbweNuUKSJ+9NqqXTz20VamTxrIjBMzvS7Ht5oNeufcx8D+r2y+CJgbfDwX+O5h2592jZYAqWbWr62KFRH/WJVXyi9eWsOkwT347YXHY6aLosKltR/G9nHOFQIE73sHtw8A8g7bLz+4TUTkS7sPVDPz6Wx6d0lk1pUTSIjTuJBwaut/3aZ+JbsmdzSbaWbZZpZdXFzcxmWISKSqrgsw85lsKmrqmTMjix668jXsWhv0ew51yQTvi4Lb84GBh+2XDhQ09QbOudnOuSznXFavXr1aWYaIRBPnHHe8tIa1uw7w8OXjOK5vV69L6hBaG/SvAzOCj2cArx22/erg6JspwIFDXTwiIg+9t5nXVxfwi7OGc8bIPl6X02E0O47ezF4ATgXSzCwfuBt4AJhvZtcBO4HLgrsvAM4FcoFK4Now1CwiUejF7Dwe+SCX72Wla9rhdtZs0Dvnpn/Dl05vYl8H3BxqUSLiL5/m7uVXr6xl2jE9+d3FozXCpp3po24RCastew5y47MrGJyWwmNXTCA+VrHT3vQvLiJhU3ywhmv/spzEuFieunYi3TrFe11Sh6SgF5GwqKoNcP3T2ewtr+GJGVmkd0/2uqQOS5OaiUibqw808JPnP2dNfimzrpzAGC0g4im16EWkTTnnuOvVtSzaWMR9Fx3PWaP6el1Sh6egF5E29eDCTczPzudnpw/jyimDvC5HUNCLSBua++l2/ufDxqUAb/3OMK/LkSAFvYi0ibfWFHLPG+s5Y2Qf7rtolMbKRxAFvYiE7NPcvdw6bxUTMrrz6PRxxGmsfETRd0NEQvL5zhKufzqbwWkpzJmRRVK81nuNNAp6EWm1DQVlXPPkMnp3SeSZ6yaRmqwphyORgl5EWmVrcTlXP7mUlMQ4nr1+Mr27alHvSKWgF5Gjll9SyZVzlgLw3PWTddVrhFPQi8hRKTpYzZVzllJRU8/TP5zMkF6dvS5JmqEpEESkxYoP1vCDPy+l6GANz14/mZH9tUJUNFCLXkRaZG95DVfMWcKukiqevGYi4zO6e12StJCCXkSatb+ilivnLGXn/kqevGYiU4b09LokOQoKehE5opKKWn7w5yV8sbeCJ2ZMZOpQhXy0UdCLyDcqrazlijlLvwz5acekeV2StII+jBWRJu0rr+GqJ5aRW1zOnKuz+NYwhXy0UtCLyNcUlVVzxZyl5JVUMufqLE4+tpfXJUkIFPQi8k8KSqu4Ys5S9pRV85drJ+mDVx9Q0IvIl/L2VzL9z0s4UFnHM9dNYsKgHl6XJG1AQS8iAGwrLucHf15KdX2A52+Ywuj0bl6XJG1EQS8irNt1gGueWoZz8MINUxjRT1e8+omGV4p0cJ9t3cfls5eQGBfL/B9NVcj7kFr0Ih3Yu+t389MXVpLRI5lnrptEv26dvC5JwkBBL9JBzV+ex52vrOGE9FSeumYi3VO0aIhfKehFOhjnHH/6eBsPvL2Rk4alMevKCaQkKgr8TN9dkQ4k0OC49431zP1sBxeM6c8fLhtDQpw+qvM7Bb1IB1FZW8/PXljF+zl7mHnyEO48+zhiYszrsqQdKOhFOoDigzVcP3c5a3cd4N6LRnH11EyvS5J2pKAX8bmtxeVc89Qyig/W8KersjhjZB+vS5J2pqAX8bFPt+7lpmc/Jz7WmDdzKmMGpnpdknhAQS/iU88u2cE9r69ncFoKT8yYSEbPZK9LEo8o6EV8pj7QwL1vbuDpz3Zw2vBePDJ9HF2S4r0uSzykoBfxkQOVddz8/Od8kruXG04azJ3njCBWI2s6PAW9iE/kFh3khqdXkF9SyX9degLfyxrodUkSIRT0Ij7w9tpCbn9xNUnxsTx/wxQmZmoeefmHkILezLYDB4EAUO+cyzKzHsA8IBPYDnzPOVcSWpki0pT6QAMPLtzMrMVbGTswlcevHK+JyeRr2uLa59Occ2Odc1nB53cCi5xzw4BFweci0sb2V9Qy46llzFq8lSsmZzDvxikKeWlSOLpuLgJODT6eC3wE/DIMxxHpsFbnlfLj5z6nuLxG/fHSrFBb9A5YaGYrzGxmcFsf51whQPC+d4jHEJEg5xxPfPIFl876FICXf3SiQl6aFWqLfppzrsDMegPvmdnGlr4w+IthJkBGRkaIZYj4X2llLbe/uIb3c/Zw5sg+/P7SMXRL1vh4aV5IQe+cKwjeF5nZq8AkYI+Z9XPOFZpZP6DoG147G5gNkJWV5UKpQ8TvVuwo4afPN3bV3H3BSK45MRMzjY+Xlml1142ZpZhZl0OPgTOBdcDrwIzgbjOA10ItUqSjCjQ4Hvsol+//6TPiYmN4+aYTuXbaYIW8HJVQWvR9gFeD/8PFAc87594xs+XAfDO7DtgJXBZ6mSIdz67SKm6bt4qlX+znvNH9+H+XjKarpjKQVmh10DvntgFjmti+Dzg9lKJEOrrXVu3iN39bR0OD48HLxnDJ+AFqxUur6cpYkQhyoKqOf39tHa+tKmB8RioPf3+cZp2UkCnoRSLE4s3F3PnyGooO1nDbGcfy41OHEher9VwldAp6EY+VVdfxuzdzmJedx9BeKbx804mM1QIh0oYU9CIeOtSK31NWzY2nDOHW7xxLUnys12WJzyjoRTxQWlnL/QtymJ+d/2UrflxGd6/LEp9S0Iu0I+ccr68u4L43N1BSWadWvLQLBb1IO9m5r5LfvLaOjzcXMya9G3N/OIlR/bt5XZZ0AAp6kTCrrW/giU++4I+LNhNrxj0XjOSqqZla4k/ajYJeJIw+3lzMPW+sZ1txBWeO7MNvLxqlOeOl3SnoRcIgb38l9725gYUb9pDZM5knr8ni28f18bos6aAU9CJtqKo2wKzFW5m1eCsxZvzirOFcf9JgEuP0Yat4R0Ev0gYCDY5XPs/nwYWb2FNWw/kn9OOuc0fQP1XdNOI9Bb1IiP43dy+/eyuHDYVljBmYyv//wXgmZvbwuiyRLynoRVpp4+4y/vPtjXy4qZj07p14dPo4zj+hn2aZlIijoBc5Sl/sreCh9zbzxpoCOifGcde5x3H11Exd9CQRS0Ev0kK7Sqt45P0tvPR5PgmxMdx0ylBuPHmo1m2ViKegF2lGQWkVsxZv5a/L8gC4euogfnzqMfTqkuhxZSIto6AX+QY791Xy2Ee5vPx5PgCXTkjnJ98exgCNpJEoo6AX+YrconIe+yiX11YVEBtjTJ+UwY2nDFXAS9RS0IvQOKvk8u0lzP54K+/nFJEUH8M1J2Yy8+Qh9Oma5HV5IiFR0EuHFmhwvLt+N3/6eBur80rpnhzPLacP4+qpg+jZWX3w4g8KeumQSitrmZ+dxzNLdpC3v4pBPZO577vHc+n4dDolaJik+IuCXjqUDQVlzP10O39btYua+gYmDe7BXeeM4MxRfTVtsPiWgl58r6o2wNvrCnlh2U6Wby8hKT6Gfxk/gKumZDKyf1evyxMJOwW9+Nb6ggPMW57Hqyt3cbC6nsyeyfz63BFclpVOanKC1+WJtBsFvfjKvvIa3lhdwCsrd7Em/wAJcTGcc3xfLp+YwZQhPTQPjXRICnqJetV1ARblFPHqynw+2lRMfYPjuL5duPuCkVw8boBa79LhKeglKtUFGvgkdy9vrSnk3fW7OVhdT+8uifzwW4O5eNwARvRT37vIIQp6iRp1gQY+27qPt9YU8s763RyoqqNLYhxnjOrDxeMGcOLQNI2cEWmCgl4iWnlNPYs3FbNww24+3FhEWXU9nRPjOGNkH84b3Y+Tjk3TMn0izVDQS8TZua+SxZuLeD+niM+27qM20ECPlATOHNWXM0f24eRje2nud5GjoKAXz1XXBViybR+LNxezeFMx2/ZWAJDZM5kZJw7ijJF9mTCou7plRFpJQS/tri7QwJr8Uj7N3cenW/exYmcJtfUNJMbFMHVoT66aOohTh/cms2eyhkOKtAEFvYRddV2A1XmlZO8oYdkX+1m+fT+VtQHMYGS/rsyYOohpx6QxZUhPdcmIhIGCXtpc4YEqVueVsnJnY7ivzT9AbaABgGG9O3PJ+HROHNqTKUN60j1FY9xFwk1BLyHZV17D+oIy1hUcYNXOUlbnl7KnrAaA+Fhj9IBuXDstk4mZPZgwqLuCXcQDCnppkfpAAzv2V7J590FyCstYX9B4211W/eU+mT2TmTqkJ2MGpjJ2YCoj+nVVV4xIBFDQyz+prguwfV8F24or2FZcTm5ROZv2lLO1qPzL7pcYg6G9OjNlSA9G9e/GqP5dGdm/q6YaEIlQCvoO6GB1HXn7q9i5v4Kd+yvZsa+Snfsr+WJvBbtKq3DuH/v265bE8L5dOHlYGsf26cLwvl0Y2quzFucQiSJhC3ozOxv4IxALzHHOPRCuY0kj5xwHa+opKqtmT1kNe8qq2V1WTWFpNQWlVewqraKgtIqy6vp/el1qcjyDeiQzPqM7l05IZ0ivzgxJS2FwWgopiWoLiES7sPwUm1ks8D/AGUA+sNzMXnfObQjH8fyqLtDAwep6DlTVUVJZS2llLSUVjY9LKmvZV17L3vIa9pbXsq+ihr0Ha6mqC3ztfVKT4+nfrRPp3ZOZPLgH/VI7MbB7MoN6JjOwRzLdOsV7cHYi0l7C1VybBOQ657YBmNlfgYuAqA965xwNrjGE6xsc9YEGagMN1AUcdfWNj2vrG6ipD1BT10BNfQPVdQGqDt1qG2+VdQEqa+oprwlQUVNPRW095TX1lFfXU1ZdR1lVfZOhfUhsjNEjJYG0zomkdU5gcFoKPVMS6NM1id5dE+nTNYm+wcfJCWqVi3Rk4UqAAUDeYc/zgcltfZDFm4u5782v/+5wh3cyH9oW/I8Lfr3xHhyu8d5Bg3PBGzQ0OALOEWhwXz6uDzjqG77+3q0RF2MkJ8TSOTGOlOCtc2Icfbok0bVTHF2T4unaKZ6uSXF07RRP9+QEUpMb77snJ9AlKY4YTQkgIi0QrqBvKoH+KSHNbCYwEyAjI6NVB+mcGMfwPl1aXIE1Hjd4f9hzgxgzYgwMIyam8XlsjH15HxtjxB26xcYQG2PExxrxsTHEx8aQEBtDfFzj88S4WBLjYkiMiyEpPpaEuBg6xceSnBBLUkIsneJjiY+NadU5i4gcrXAFfT4w8LDn6UDB4Ts452YDswGysrJa1UyeMKg7EwZ1b22NIiIdQrialcuBYWY22MwSgMuB18N0LBEROYKwtOidc/Vm9hPgXRqHVz7pnFsfjmOJiMiRhW04hnNuAbAgXO8vIiIto08ERUR8TkEvIuJzCnoREZ9T0IuI+JyCXkTE56yp6QLavQizYmBHK1+eBuxtw3K8pvOJXH46F/DX+fjpXKDl5zPIOderuZ0iIuhDYWbZzrksr+toKzqfyOWncwF/nY+fzgXa/nzUdSMi4nMKehERn/ND0M/2uoA2pvOJXH46F/DX+fjpXKCNzyfq++hFROTI/NCiFxGRI4jqoDezs81sk5nlmtmdXtcTCjN70syKzGyd17WEyswGmtmHZpZjZuvN7BavawqFmSWZ2TIzWx08n996XVOozCzWzFaa2Zte1xIqM9tuZmvNbJWZZXtdT6jMLNXMXjKzjcGfoakhv2e0dt0EFyDfzGELkAPTo3UBcjM7GSgHnnbOHe91PaEws35AP+fc52bWBVgBfDeKvzcGpDjnys0sHvgEuMU5t8Tj0lrNzG4DsoCuzrnzva4nFGa2HchyzvliHL2ZzQX+7pybE1zPI9k5VxrKe0Zzi/7LBcidc7XAoQXIo5Jz7mNgv9d1tAXnXKFz7vPg44NADo3rCEcl16g8+DQ+eIvOFhJgZunAecAcr2uRf2ZmXYGTgScAnHO1oYY8RHfQN7UAedSGiV+ZWSYwDljqbSWhCXZ1rAKKgPecc9F8Pg8DdwANXhfSRhyw0MxWBNeijmZDgGLgqWDX2hwzSwn1TaM56JtdgFy8ZWadgZeBf3XOlXldTyiccwHn3Fga1z+eZGZR2b1mZucDRc65FV7X0oamOefGA+cANwe7QaNVHDAeeNw5Nw6oAEL+/DGag77ZBcjFO8G+7JeB55xzr3hdT1sJ/hn9EXC2x6W01jTgwmC/9l+Bb5vZs96WFBrnXEHwvgh4lcZu3WiVD+Qf9hfjSzQGf0iiOei1AHmECn54+QSQ45z7b6/rCZWZ9TKz1ODjTsB3gI3eVtU6zrlfOefSnXOZNP7MfOCcu9LjslrNzFKCH/gT7OI4E4jakWvOud1AnpkND246HQh5EEPY1owNN78tQG5mLwCnAmlmlg/c7Zx7wtuqWm0acBWwNtivDXBXcB3haNQPmBsc6RUDzHfORf2wRJ/oA7za2LYgDnjeOfeOtyWF7KfAc8EG7Dbg2lDfMGqHV4qISMtEc9eNiIi0gIJeRMTnFPQiIj6noBcR8TkFvYiIzynoRUR8TkEvIuJzCnoREZ/7P7qH1NyKeJykAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "plt.plot(x, x**3)"
   "execution_count": 12,
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7fccab5fb128>]"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VPW9//HXJ/tGEkLCFgiLgAqigBFxV6AuaOveal2o2tL2altvvb21iz/tbe311ra2drHFpWq17kutQiu4FFxAARHEsETCEhJIQiBkT2bm+/vjHDBCNCHJZDLD+/l4zGPOfOecOZ/TPnzn8J3vfL/mnENERGJXXKQLEBGR8FLQi4jEOAW9iEiMU9CLiMQ4Bb2ISIxT0IuIxDgFvYhIjFPQi4jEOAW9iEiMS4h0AQC5ublu5MiRkS5DRCSqLF++vMo5l9fRfn0i6EeOHMmyZcsiXYaISFQxs82d2U9dNyIiMU5BLyIS4xT0IiIxTkEvIhLjFPQiIjFOQS8iEuMU9CIiMU5BLyISIb9ZuJ63iqvCfh4FvYhIBFTXt/DbVzawbPOusJ9LQS8iEgFvFFfhHJwyNjfs51LQi4hEwOL1lWSlJnL0sOywn0tBLyLSy5xzLN5QxcljcomPs7CfT0EvItLLiivq2L6nqVe6baATQW9mKWb2jpm9b2ZrzOwnfvuDZlZiZiv9xyS/3czsbjMrNrNVZjYl3BchIhJNFm3wRtqc3EtB35lpipuB6c65OjNLBN4ws/n+e99zzj293/7nAGP9x/HAPf6ziIgAi9ZXMjovnWH903rlfB3e0TtPnf8y0X+4zzjkfOBh/7glQLaZDel+qSIi0a+pNcjSkp2cOrbD9UJ6TKf66M0s3sxWAhXAAufcUv+t2/3umbvMLNlvywe2tjm81G/b/zPnmNkyM1tWWVnZjUsQEYkeyzfvoqk1xKnjeqfbBjoZ9M65oHNuEjAMmGpmRwE/AI4AjgNygO/7u7f3FfIB/wJwzs11zhU65wrz8nrvL5uISCQt2lBJYrxx/KgBvXbOgxp145zbDbwOnO2cK/e7Z5qBvwBT/d1KgeFtDhsGlPVArSIiUW/R+iqOHdGf9OTeW8m1M6Nu8sws299OBWYCa/f2u5uZARcAH/iHvABc7Y++mQbUOOfKw1K9iEgUqahtoqh8D6f0Yv88dG7UzRDgITOLx/vD8KRz7kUze9XM8vC6alYC3/D3nwfMAoqBBuCani9bRCT6vOlPYHbauD4W9M65VcDkdtqnf8r+Dri++6WJiMSWxeuryElPYvyQzF49r34ZKyLSC5xzLPKnPYjrhWkP2lLQi4j0gqLyWqrqmntt2oO2FPQiIr1g8Qbv90Kn9nL/PCjoRUR6xeINVRw+qB+DMlN6/dwKehGRMGtsCfLOpuqIdNuAgl5EJOze+qiKlkCI0w6PzCwACnoRkTBbWLSDjOSEXp32oC0FvYhIGIVCjleKKjhtXB5JCZGJXAW9iEgYrd5WQ0VtMzOOHBixGhT0IiJhtLBoB3EGZxyuoBcRiUkLiyooHJlD//SkiNWgoBcRCZPSXQ0Ule9hZgS7bUBBLyISNq+urQBg5pGDIlqHgl5EJEwWfLiD0bnpjM7LiGgdCnoRkTCobWplycadzBwf2bt5UNCLiITF4g1VtAYdM46IbP88KOhFRMJi4Yc7yE5L5NgR/SNdioJeRKSnBYIhXltXwfTDB5IQH/mY7czi4Clm9o6ZvW9ma8zsJ377KDNbamYbzOwJM0vy25P918X++yPDewkiIn3Lii272dXQyowIj7bZqzN/apqB6c65Y4BJwNlmNg34P+Au59xYYBdwnb//dcAu59wY4C5/PxGRQ8bCoh0kxhunjovMtMT76zDonafOf5noPxwwHXjab38IuMDfPt9/jf/+DDPr3QUSRUQiaGHRDqaNHkC/lMRIlwJ0so/ezOLNbCVQASwAPgJ2O+cC/i6lQL6/nQ9sBfDfrwEOmJvTzOaY2TIzW1ZZWdm9qxAR6SM2VtaxsbI+4j+SaqtTQe+cCzrnJgHDgKnAke3t5j+3d/fuDmhwbq5zrtA5V5iXF5nJ+EVEetr8D7YD9Inx83sd1NfBzrndwOvANCDbzBL8t4YBZf52KTAcwH8/C6juiWJFRPq6eavLmVyQTX52aqRL2aczo27yzCzb304FZgJFwGvAJf5us4G/+9sv+K/x33/VOXfAHb2ISKwpqapnTdkezp04JNKlfEJCx7swBHjIzOLx/jA86Zx70cw+BB43s58B7wH3+/vfD/zVzIrx7uQvC0PdIiJ9zrzV5QDMiragd86tAia3074Rr79+//Ym4NIeqU5EJIq8uKqcKQXZDO1D3TagX8aKiPSIjZV1FJXv4dyjh0a6lAMo6EVEesDH3TaDI1zJgRT0IiI94MVV5RSO6M+QrL7VbQMKehGRbvuoso6122v73JeweynoRUS6ad6qvjnaZi8FvYhIN720upzjRvZncFZKpEtpl4JeRKQbiitqWbu9ts/9SKotBb2ISDe8tGo7ZnCOgl5EJDa9tLqM40bkMCizb3bbgIJeRKTLNuyoZf2OOs49uu/ezYOCXkSky/7xfpnXbXNU3/uRVFsKehGRLgiFHM++t42Tx+QysA9324CCXkSkS97ZVE3prkYunjIs0qV0SEEvItIFzywvJSM5gbMm9O1uG1DQi4gctIaWAPNWlzNr4mBSk+IjXU6HFPQiIgfp5TU7qG8JclEUdNuAgl5E5KA9s6KUYf1TmToyJ9KldIqCXkTkIJTXNPJGcRUXTRlGXJxFupxO6czi4MPN7DUzKzKzNWb2Hb/9NjPbZmYr/cesNsf8wMyKzWydmZ0VzgsQEelNz723Defgosn5kS6l0zqzOHgAuMk5t8LM+gHLzWyB/95dzrlftt3ZzMbjLQg+ARgKLDSzcc65YE8WLiLS25xzPLtiG4Uj+jMyNz3S5XRah3f0zrly59wKf7sWKAI+60/Z+cDjzrlm51wJUEw7i4iLiESbVaU1FFfUcfGx0fEl7F4H1UdvZiOBycBSv+kGM1tlZg+YWX+/LR/Y2uawUj77D4OISFR4ZkUpSQlxfX5um/11OujNLAN4BrjRObcHuAc4DJgElAO/2rtrO4e7dj5vjpktM7NllZWVB124iEhvagmEeOH9Ms4cP4jMlMRIl3NQOhX0ZpaIF/KPOueeBXDO7XDOBZ1zIeBePu6eKQWGtzl8GFC2/2c65+Y65wqdc4V5eXnduQYRkbB7dW0Fuxtao67bBjo36saA+4Ei59yv27S3/bfLhcAH/vYLwGVmlmxmo4CxwDs9V7KISO97atlW8volc8qY3EiXctA6M+rmJOAqYLWZrfTbfghcbmaT8LplNgFfB3DOrTGzJ4EP8UbsXK8RNyISzUp3NfDqugpuOGMMCfHR9/OjDoPeOfcG7fe7z/uMY24Hbu9GXSIifcZj72zBgMumFkS6lC6Jvj9NIiK9qCUQ4ol3tzL9iIHkZ6dGupwuUdCLiHyGlz/cTlVdC1dMGxHpUrpMQS8i8hkeWbKZ4TmpnDY2ekcHKuhFRD5FcUUtSzZW8+WpI6JmArP2KOhFRD7FI0u2kBhvXFoYfWPn21LQi4i0o7ElyDMrSjnnqCHkZiRHupxuUdCLiLTjH++XUdsU4Moo/hJ2LwW9iEg7Hlm6mXGDMjhuZP+Od+7jFPQiIvtZVbqbVaU1XHH8CLxZYKKbgl5EZD+PLtlCamI8F06JjRnWFfQiIm1U1TXz3MptXDglP+qmI/40CnoRkTYefnszrcEQ1508KtKl9BgFvYiIr7ElyF/f3sTMIwdxWF5GpMvpMQp6ERHf0ytK2dXQytdOGR3pUnqUgl5EBAiGHA+8UcIxw7NjYkhlWwp6ERFgYdEOSqrqmXPK6JgYUtmWgl5EBLh30UaG9U/lrAmDIl1Kj1PQi8ghb8WWXSzbvIvrTh7Vu0sF7toMoVDYT9OZxcGHm9lrZlZkZmvM7Dt+e46ZLTCzDf5zf7/dzOxuMys2s1VmNiXcFyEi0h33Ld5IZkoCXywc3nsnrSqGe6fDyz8O+6k686crANzknDsSmAZcb2bjgZuBV5xzY4FX/NcA5wBj/ccc4J4er1pEpIds3lnPPz/YzpXTRpCe3OEy2j2jZhv89QJvu/DasJ+uw6B3zpU751b427VAEZAPnA885O/2EOBXzfnAw86zBMg2syE9XrmISA944I0S4uOM2SeO7J0T1u/0Qr6pBq56FnLHhP2UB9UZZWYjgcnAUmCQc64cvD8GwEB/t3xga5vDSv02EZE+paqumSeWbeX8SfkMykwJ/wmba+HRi2H3Frj8cRhyTPjPyUEEvZllAM8ANzrn9nzWru20uXY+b46ZLTOzZZWVlZ0tQ0Skx8xdtJGWQIj/OP2w8J+stQkeuxzKV8GlD8HIk8J/Tl+ngt7MEvFC/lHn3LN+8469XTL+c4XfXgq0/UZjGFC2/2c65+Y65wqdc4V5edG76K6IRKequmYefnsTF0zKZ3S4pzsIBuCZ62DTYrjwT3D42eE93346M+rGgPuBIufcr9u89QIw29+eDfy9TfvV/uibaUDN3i4eEZG+Yu/d/A3Tw9xHHgrC89+AtS/COb+Ao78Y3vO1ozNfMZ8EXAWsNrOVftsPgTuAJ83sOmALcKn/3jxgFlAMNADX9GjFIiLd1Gt3887BizfC6qdgxv+D478evnN9hg6D3jn3Bu33uwPMaGd/B1zfzbpERMKmV+7mnYN/3gwrHoZTvwen3BS+c3VAv4wVkUPK3rv588N5N+8cLLwNlv4JTrgBzvhReM7TSQp6ETmk9Mrd/KI74c3feD+GOvNnEOFJ0hT0InLIaHs3H7aFRd74Dbx2OxzzZZj1q4iHPCjoReQQEva7+Td/CwtvhaMugfN/D3F9I2L7RhUiImFWUdvEX9/eHL67+TfvhgX/D466GC78M8TF9/w5ukhBLyKHhLsWbKA1GOI7M8b2/Ie/9TtYcIsf8nMhvpcmR+skBb2IxLz1O2p54t0tXDltBCNz03v2w9/6vTfV8IQL+2TIg4JeRA4Bd8xfS3pyAt/u6bv5t34HL/8Ixl8AF93XJ0MeFPQiEuPeKq7i1bUVXH/GGHLSk3rugxfd+fGd/MV9N+Shc1MgiIhEpVDIcfu8IvKzU/lKT80375w3fHLRnXD0ZXD+H/p0yIPu6EUkhj2/chtryvbwvbMOJyWxB0bBOOeNrFl0J0y5Gi74Y58PedAdvYjEqKbWIL/81zom5mfxhWOGdv8DnYP534d3/gzHfc2bibKPjJPvSHRUKSJykP7y5ibKapr44awjiYvr5q9TQ0H4x7e9kD/hBph1Z9SEPOiOXkRi0M66Zv74WjEzjxzICYcN6N6HBVrguTmw5jk45b9g+o/7xLQGB0NBLyIx5475a2lsDXLzOUd074NaGuDJq6B4IXzup3DSt3umwF6moBeRmPLupmqeWl7KN047jDED+3X9g5pq4G9fgi1L4PN3w7GzOz6mj1LQi0jMaA2G+PFzHzA0K4Vvz+jGxGV1lfDIRVBRBJc8AEdd1HNFRoCCXkRixkNvbWLdjlr+fNWxpCV1Md52bYJHLoaabXD54zB2Zo/WGAmdWRz8ATOrMLMP2rTdZmbbzGyl/5jV5r0fmFmxma0zs7PCVbiISFvlNY3ctWA9M44YyJnjB3XtQ7avhvvPhPpKuPr5mAh56NzwygeBs9tpv8s5N8l/zAMws/HAZcAE/5g/mlnfmatTRGLWT1/8kEDIcdsXJmBdGRVTsgj+MgviEuDaf0HBtJ4vMkI6DHrn3CKgupOfdz7wuHOu2TlXAhQDU7tRn4hIh15fV8G81dv51vQxDM9JO/gPWPOc112TORSuexkGHtnzRUZQd0b832Bmq/yunf5+Wz6wtc0+pX6biEhYNLUGufWFNYzOS+drp44++A9YOheeugaGToFr5kPWsJ4vMsK6GvT3AIcBk4By4Fd+e3v/XnLtfYCZzTGzZWa2rLKysotliMih7nevbmDzzgZ+ev5RJCccRE9xKAT/+hHM/x4cfo7XJ5+WE75CI6hLQe+c2+GcCzrnQsC9fNw9UwoMb7PrMKDsUz5jrnOu0DlXmJeX15UyROQQt3Lrbu55/SO+WDiMk8bkdv7A1kZ4aja8/Xtv3povPQKJqeErNMK6FPRmNqTNywuBvSNyXgAuM7NkMxsFjAXe6V6JIiIHamoNctOTKxmcmcKPzxvf+QPrKuGhz0PRP+Csn/vz1sT2mJEOB5qa2WPA6UCumZUCtwKnm9kkvG6ZTcDXAZxza8zsSeBDIABc75wLhqd0ETmU/erldXxUWc9fr5tKZkpi5w6q2gCPXgK12+GLD8P4L4S3yD6iw6B3zl3eTvP9n7H/7cDt3SlKROSzLNtUzX1vlPDl4ws4ZWwnu35LFnvz1lg8zH4Rhh8X3iL7kOiZZ1NEBGhoCfBfT71PfnYqP5zVyWGQyx+Ev14A6Xnw1QWHVMiDpkAQkSjzi3+uY9POBh772jQykjuIsGAAFtwCS/4Ih82AS/8CKVm9U2gfoqAXkajx1kdVPPjWJr5y4siO55lvqoGnr4PiBXD8N+HMn0XFsn/hcGhetYhEnZ11zfznEysZlZvOf599eAc7fwSPfxl2FsN5d0Hhtb1TZB+loBeRPi8Ucnz3yffZVd/K/bOP++yZKYsXwtPXgsXBlc/C6NN6r9A+Sl/GikifN3fxRv69vpJbzjuSo/I/pY/dOXjjLnj0UsgaDnNeV8j7dEcvIn3a8s3V3PmvdcyaOJgrp41of6eWevj79d7kZBMuhPP/AEnpvVtoH6agF5E+a1d9C9/623vkZ6dyx8VHtz/9cHUJPHEl7FgDM2+Dk26MusW7w01BLyJ9knOO7z39PpV1zTzzzRPb//Xruvnw3Ne97SuejpmFQnqagl5E+qT7FpewsKiCWz8/nqOHZX/yzWAAXrsd3vg1DDnGm86g/8iI1BkNFPQi0ucsWl/J/84v4uwJg/nKiSM/+WZdJTxzrbci1JTZcM4vIDElInVGCwW9iPQpGyvruOFvKxg3qB+/+uIxn+yX37IEnvoKNO6C8/8Ik6+IWJ3RREEvIn1GTWMrX31oGQnxcdx7dSHpe6c4CIXgzbvg1dshuwC+uhAGT4xssVFEQS8ifUIgGOJbj73HluoGHv3q8R+v/VpXAc/OgY2vwYSL4PO/hZTMyBYbZRT0ItIn3DF/rdc3f9FEjh/tz2Pz0WteyDfv8QJ+ymwNnewCBb2IRNxTy7Zy3xslzD5hBJdPLYBgK7z+v7D415A7zlvPddCESJcZtRT0IhJR/15fyQ+eXc1JYwZwy3njvQnJnvkqlK2ASVfCrF/oV67dpKAXkYhZuXU333xkOWMH9eOeK6aQ8P6jMP/7EJ8Ilz7oTWcg3dbhpGZm9oCZVZjZB23acsxsgZlt8J/7++1mZnebWbGZrTKzKeEsXkSiV3FFHdf85R0GZCTx8GVjyHzhOnjhBsifAt98SyHfgzoze+WDwNn7td0MvOKcGwu84r8GOAcY6z/mAPf0TJkiEkvKaxqZ/cA7xMcZT89oIO+RM7zpDD73P3D1C5CVH+kSY0qHQe+cWwRU79d8PvCQv/0QcEGb9oedZwmQbWZDeqpYEYl+uxtamP3AO7Q27uHlMc8y6B9XQEq2Nzb+pO9AnGZP72ld7aMf5JwrB3DOlZvZQL89H9jaZr9Sv6286yWKSKyobw5w3UPLyNu5jBeyHiBl7TYv3E//oaYxCKOe/jK2vQGurt0dzebgde9QUFDQw2WISF9T1xzg6w8s4tyyuVybMB+SRsGX/gkF0yJdWszratDvMLMh/t38EKDCby8FhrfZbxhQ1t4HOOfmAnMBCgsL2/1jICKxoa45wJ1/upefV/+aEfEVcNxXvf54DZvsFV3tDHsBmO1vzwb+3qb9an/0zTSgZm8Xj4gcmmp37+St31zJT3bdTG5GCsx+Ec79lUK+F3V4R29mjwGnA7lmVgrcCtwBPGlm1wFbgEv93ecBs4BioAG4Jgw1i0iUaPjgJVqe/RYzgtVsHHcNoy/9OSSlRbqsQ06HQe+cu/xT3prRzr4OuL67RYlIlKvdTstL3ydt7fOUhoaxfsYTnHDaWZGu6pClX8aKSM8JhWD5XwgtvA2aG7g7eAlHXHorZx6tAReRpKAXkZ6x/QN48UYofZcVNpFb3XX8aPbnOXFMbqQrO+Qp6EWke5r2wL//D5bcQ2tSFrdxAy/Hn86DX5vKhKFZka5OUNCLSFc5B6uehAW3QF0FpaMu4eINZ5KWPZBnr5368cIhEnEKehE5eNtXw7zvwZa3cUOn8OL4X/KdxfFMzM/iga8cx4CM5EhXKG0o6EWk8+p3wus/h2UPQEo2ref+hh9vmsQTi8qYeeQg7r58EmlJipW+Rv+PiEjHAi3wzlz49y+gpQ4Kr6Oy8Ca+/sxGVmwp49vTx3DjzHHExWmZv75IQS8in845WDcPXv4xVG+Ew2bAWT/n/ebBfP3+5dQ0tvLHK6Ywa6Imqe3LFPQi0r5ty2HBrbBpMeQeDlc8jRszk6eWlfLjv79NXkYyz3zzRMYPzYx0pdIBBb2IfFL1Rnjlf2DNc5A2AM65EwqvoS5g/OiJlfx9ZRknHjaA310+WV+6RgkFvYh46iph0S+8L1rjk+DU/4YTvwUpmawureFbj61gS3UDN31uHP9xxhji1R8fNRT0Ioe6xl3w1u9hyT0QaIIpV8PpN0O/wTjneOCNEu6YX0RuRjKPzzmBqaNyIl2xHCQFvcihqrkWlv4J3vodNNXAhIvgjB9C7lgAttc0cfOzq3h9XSUzjxzEnZccTf/0pAgXLV2hoBc51LTUw7v3w5u/gYadcPgsL+AHTwTAOcdTy0v56YsfEgg6fvKFCVx9wgjM1FUTrRT0IoeK5lp49z7vDr5hJ4w+A6bfAsOO3bfL9pomfvDsKl5bV8nUUTncecnRjBigBUKinYJeJNY11Xg/dnr7D15//JiZ3hetBcfv2yUUcjy1fCs/e6mIQNBx2+fHc/UJI/UDqBihoBeJVXUVXh/8O/dBcw2MO9sL+DZ38ABrymq45fkPWLFlt+7iY5SCXiTWVJd43TPvPQLBFjjyPDjlJhg6+RO71TS2cteC9Tz89ib6pyXxy0uP4aLJ+bqLj0HdCnoz2wTUAkEg4JwrNLMc4AlgJLAJ+KJzblf3yhSRDm1bAW//3vuhU1wCHHMZnPjtfaNo9gqFHM++t4075hdRXd/CVdNG8N0zDycrNTFChUu49cQd/RnOuao2r28GXnHO3WFmN/uvv98D5xGR/YWC3lw0b/8BtrwNSf3ghBtg2n9A5oHzzyzeUMn/zlvLh+V7mFyQzYPXTOWofC0OEuvC0XVzPnC6v/0Q8DoKepGe1bQHVv4Nlt4DuzZBVgGc9XOYfBWkHDj3zJqyGu6Yv5bFG6oY1j+V3142ic8fPVTdNIeI7ga9A142Mwf82Tk3FxjknCsHcM6Vm9nA7hYpIr6KtfDuvfD+4950wcOPh5k/gSPOg/gD/3Muqarn7lc28PzKbWSlJnLLeeO5cloByQnxESheIqW7QX+Sc67MD/MFZra2swea2RxgDkBBgVaIF/lUwYDXPfPuvVCyyJuH5qiL4bivHTCCZq+PKuv4w6vFPL9yG4nxcXzjtMP4xmmHqR/+ENWtoHfOlfnPFWb2HDAV2GFmQ/y7+SFAxaccOxeYC1BYWOi6U4dITNq1Gd77qzd6prYcsobDjFu9uWjSc9s9ZMOOWn73ajH/WFVGSkI81508ijmnHkZeP80yeSjrctCbWToQ55yr9bfPBP4HeAGYDdzhP/+9JwoVOSQEW2HdfFjxEBS/4rWN/Ryc+ytvHHzcgV0uzjmWllRz3+ISXlm7g9TEeOacOpqvnTKaXE0jLHTvjn4Q8Jw//0UC8Dfn3D/N7F3gSTO7DtgCXNr9MkVi3I413perq56A+krIzIfTvg+Tr4Ts4e0e0hoMMW91OfctLmH1thr6pyVywxljuOakUeRo8jFpo8tB75zbCBzTTvtOYEZ3ihI5JNTvhA+ehpWPQvn7EJcIh58Nk670pilo58tVgIo9TTy5bCuPLt1CeU0To/PS+fmFE7lwcj6pSfqSVQ6kX8aK9KaWeq9rZvVTULwQQgEYMslbxWniJZDW/lzvoZDjrY928ujSzSz4cAeBkOOkMQO4/cKjOH3cQA2TlM+koBcJt0ALbHzdC/e1L0Frvdc1c8L1cPSXYNCETz102+5Gnn9vG08u28rmnQ30T0vk2pNHcfnUAkblaj4a6RwFvUg47A33D5+HtS96M0imZMPRl8LEL0LBCRAX1+6hdc0B5q8u59kV21hSshPnYOqoHL77uXGcNWEwKYnqnpGDo6AX6SmtjfDRa1D0D1j3khfuyVlwxCwYfwEcNh0S2v+StKk1yOvrKnhp9XYWfLidptYQIwek8Z8zx3Hh5HyG56T18sVILFHQi3RHQzWs/5d31/7Rq9DasF+4nwEJ7Q9xbGwJ8tq6Cl5aXc5raytoaAmSk57ExVOGcdGUYUwpyNaqTtIjFPQiB8M5qFzrhfuGl2HLEnBB6DcUJn0ZjjgXRpz8qXfu5TWNvLq2gleKKnizuIrmQIjcjCQunJzPuROHMHVUDgnx7XfpiHSVgl6kI811sOkNKF4A61+Gmi1e+6CJcPKNXrgPmdxun3trMMTKrbtZvL6SV9ZWsKZsDwDDc1K5fGoBZ04YxPGjBhCvUTMSRgp6kf2FQlC+0uuK+eg12LoUQq2QmA6jT4dTb4Ixn4Os/AMOdc6xsaqeNzZUsXhDFUs27qSuOUCcwZSC/nz/7COYeeRAxgzMULeM9BoFvcje7piSxVDyb9j8pre2KsDgo71hkGNmeDNF7tff7pyjuKKOJSXVLN24k3dKqqmobQa8u/YvTBrKKWNyOfGwXLLSNKGYRIaCXg49oSBUfAib34Ytb3ndMvWV3nvZBV5XzKjTYPQZkJH3iUMbWgK8v7WG97buYsXm3azYsovq+hYABmUmM230AI4fncPJY3K17qr0GQp6iX0t9VD2Hmx9x1uFactSb7Fs8H64NPoMGHUqjDoF+o/cd1hrMMRtoYlJAAAJgUlEQVS6bTV8sK2GVdtqeH/rbtZuryUY8iZbHZ2bzhmHD+T4UTkcPzqHgpw0dcdIn6Sgl9gSCsHOYihb4QV76bvehGEu6L2fOw4mXAAjTvR+tJRdAGbUNrWybnstRWs3UbS9ljXbaijaXktLIARAv5QEJuZn8c3TDmPKiGwmD+9Pf00cJlFCQS/RKxSCXSXehGBlK6BspfdoqfXeT+oH+VPglO/CsKkwrJCGhEw+qqhnQ0UtG5bWsWHHctbt2MPW6sZ9H5uZksD4oZl85cSRHJWfxdH5WRTkpGk+GYlaCnqJDi313hemO9ZA+SrYvhp2fOAtpwfeqkuDJ8IxXyI4eBKVmRNYFxxKyc5GSqrq2bi4no2VK9m2++NAT4w3Rg5I55hh2Vx2XAFHDunHEYMzGZKVoi4YiSkKeulbWhu9rpfKdV6wVxR54b5rE94SxeCSMgjkTWD3mIspSxlHcdxI3m8eSsnuVrZ82MC2NxsJhMqBcgAykhMYlZvOsSP686XjhjN2YAZjB/VjxIA0EvXjJDkEKOil94VCUFsGOz/yQr16I1Sth6r1uF2bMT/QQxZPbdoItqeMZlPedIpC+SxrGsryPZk0fvTJj+yfVkVBThoT87M47+ghFOSkMSo3g1G56eRmJOkOXQ5pCnoJj5Z62L0Vdm8mVF1CS+VGAjtLiNu9ieTaLcQHm/bt2mzJlMUNpdjl82HgWNaH8il2Q9nkBtPcmEScwcB+KQzOSmHo0BSuHJ9KfnYq+f3TGNY/lfz+qWSmaIy6yKdR0EunBUOOuqYANXV1NFRtpWXXNoK7S3F7ykmoKyO5oYyMxjKyWraTEardd1wcEHTJbHUDKXUD2eSmU+KGsMkNpiZ1OKGMIeRmpjKwXwqDMpM5rl8y52WmMDAzhaHZKeRlJGv+F5FuCFvQm9nZwG+BeOA+59wd4TqXtM85R0swRGNLkIaWIA0tARpagtQ3e9t1zQHqm4PUNwdoaGyE+kqsoYq4xioSm3aS0lxNaks1/QI7yQ5Wk+N2MdB2U2B1B5yr3iVTRh6b4/KoTjyZPcmDaUwdSkvmcFz2SFKzB5GTkUxOehInZyRzgb+tOV5Ewi8sQW9m8cAfgM8BpcC7ZvaCc+7DcJyvr3LOEQw5WoNe4LbufQQcLcEgzYEQLXsfwU9uN7eGaA54+zQHQjS3Bmna+9waoikQpMnfbmwN0twSINjaTFxrLfEttSQG6kkK1JLuGsi0erKoJ6vNczZ1jLJa+lNHf6slw5ravYZWEqlNHEBDai5NyWPYnpbHtrRBuMyhJGbnk5QzjLTc4WRm5TAmKYGx6gsX6XPCdUc/FSj2FxDHzB4Hzgd6NOi3Vjfw9sadhEKOoHPec8gRdOxrC4bcJ94P7G0Pfvx+INTmvX3PIQJBP6j9161BRyAY2hfeAX+fVv85EAgQCgYgFMAFA7hQKwkuSDxBEixIEgES/UcSAZIsQBKtJNPqvaaVFGshhRaS9223kk4zubSQEddMRlwLadZCmjWTQSNpNJHqGklxjSQQ/Ph/HAP267Z2xBFIyiSQnIlLycGljiIuLYe4jAGEMnKJSx8AGQMhPc97pA0gMSWLHDPaX8lURKJBuII+H9ja5nUpcHxPn6Rs+YtMXnzbAe17R22022ZGnL9tQJw5zH/fjH3bcfseIb/dEU8II0Sc89sJEU+QOOc97xPnP3qAi0+GxBRITMeS0iAx1ZtFMSkPkjK8R3IGJKV72ylZkNwPkjMhJdPbTsmG1GwsqR+JcXH757+IxLhwBX17/37/RPqa2RxgDkBBQUGXTnLMYcMJ7ZjiBbHfZeCFsu1rMz753KaAj0s1a/Pst8XFt2mP8z843m+P+/gRFw9xCf57Cd6c5HGJ/nYCxO99TvIfid5zXKI3E2JCsvd633OKF+YJKZCQgn3KuqIiIp0VrqAvBYa3eT0MKGu7g3NuLjAXoLCw8MBb8E5IGX0CjD6hqzWKiBwSwnW7+C4w1sxGmVkScBnwQpjOJSIinyEsd/TOuYCZ3QD8C2945QPOuTXhOJeIiHy2sI2jd87NA+aF6/NFRKRz9E2fiEiMU9CLiMQ4Bb2ISIxT0IuIxDgFvYhIjDPnuvRbpZ4twqwS2NzFw3OBqh4sJ9J0PX1XLF0LxNb1xNK1QOevZ4RzLq+jnfpE0HeHmS1zzhVGuo6eouvpu2LpWiC2rieWrgV6/nrUdSMiEuMU9CIiMS4Wgn5upAvoYbqeviuWrgVi63pi6Vqgh68n6vvoRUTks8XCHb2IiHyGqA56MzvbzNaZWbGZ3RzperrDzB4wswoz+yDStXSXmQ03s9fMrMjM1pjZdyJdU3eYWYqZvWNm7/vX85NI19RdZhZvZu+Z2YuRrqW7zGyTma02s5VmtizS9XSXmWWb2dNmttb/b6jbi25EbdeNvwD5etosQA5cHq0LkJvZqUAd8LBz7qhI19MdZjYEGOKcW2Fm/YDlwAVR/P+NAenOuTozSwTeAL7jnFsS4dK6zMy+CxQCmc658yJdT3eY2Sag0DkXE+PozewhYLFz7j5/PY8059zu7nxmNN/R71uA3DnXAuxdgDwqOecWAdWRrqMnOOfKnXMr/O1aoAhvHeGo5Dx1/stE/xGdd0iAmQ0DzgXui3Qt8klmlgmcCtwP4Jxr6W7IQ3QHfXsLkEdtmMQqMxsJTAaWRraS7vG7OlYCFcAC51w0X89vgP8GQpEupIc44GUzW+6vRR3NRgOVwF/8rrX7zCy9ux8azUHf4QLkEllmlgE8A9zonNsT6Xq6wzkXdM5Nwlv/eKqZRWX3mpmdB1Q455ZHupYedJJzbgpwDnC93w0arRKAKcA9zrnJQD3Q7e8foznoO1yAXCLH78t+BnjUOfdspOvpKf4/o18Hzo5wKV11EvAFv1/7cWC6mT0S2ZK6xzlX5j9XAM/hdetGq1KgtM2/GJ/GC/5uieag1wLkfZT/5eX9QJFz7teRrqe7zCzPzLL97VRgJrA2slV1jXPuB865Yc65kXj/zbzqnLsywmV1mZml+1/443dxnAlE7cg159x2YKuZHe43zQC6PYghbGvGhlusLUBuZo8BpwO5ZlYK3Oqcuz+yVXXZScBVwGq/Xxvgh/46wtFoCPCQP9IrDnjSORf1wxJjxCDgOe/eggTgb865f0a2pG77FvCofwO7Ebimux8YtcMrRUSkc6K560ZERDpBQS8iEuMU9CIiMU5BLyIS4xT0IiIxTkEvIhLjFPQiIjFOQS8iEuP+P011DRFuJ4QTAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "plt.plot(x, np.exp(x))\n",
    "plt.plot(x, x**3)"
   "cell_type": "markdown",
   "source": [
    "It's good practice to end the creation of a new plot with `plt.show`, so that if code is transferred to a non-Jupyter environment we will not have uncleared figures interfering with each other. You can also use `plt.clf` to clear the current figure (this may be preferable, since in a regular python script, `plt.show` creates a pop-up window displaying the figure, and the rest of the script will not execute until this window has been closed).\n",
    "\n",
    "We've seen that by default, matplotlib builds up a figure by updating an object called the \"current figure\". But can we also access other, previously created figures to update them. We can even create more complicated figures which may cintain several sub-plots side by side. This involves creating and referncing figure objects, and axes objects. This is not much harder than we've been doing already, but since it goes a little beyond the basic matplotlib functionality, it will be covered in an extension notebook.\n",
    "\n",
    "Another way to enhance our plotting capabilities is through the [seaborn](https://seaborn.pydata.org/) package. Matplotlib, with its style of building up plots in a piecewise manner, gives us lots of control over our visuals - but it can alos be tedious to use, especially for routine tasks. Seaborn is based on matplotlib, but wraps up lots of convenient functionality in an easy to use way. Its visual style is also a little different to matplotlib. It is closely related to another package known as Pandas, which will be introduced in Notebook 5."
   ]
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1