Skip to content
Snippets Groups Projects
python-data-3-numpy.ipynb 37.2 KiB
Newer Older
ignat's avatar
ignat committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Notebook 3 - NumPy\n",
    "[NumPy](http://numpy.org) short for Numerical Python, has long been a cornerstone of numerical computin on Python. It provides the data structures, algorithms and the glue needed for most scientific applications involving numerical data in Python. NumPy contains, among other thigs:\n",
    "* A fast and efficient multidimensional array object `ndarray`.\n",
    "* Mathematical functions for performing element-wise computations with arrays or mathematical operations between arrays.\n",
    "* Tools for reading and manipulating large array data to disk and working with memory-mapped files.\n",
    "* Linear algebra, random number generation and Fourier transform capabilities.\n",
    "\n",
    "For the rest of the course, whenever array is mentioned it refers to the NumPy ndarray.\n",
    "<br>\n",
    "\n",
    "## Table of contents\n",
    "- [The ndarray](#ndarray)\n",
    "    - [Creating arrays](#creating)\n",
    "    - [Data Types](#data)\n",
    "    - [Arithmetic Operations](#arithmetic)\n",
    "    - [Indexing and Slicing](#indexing)\n",
    "    - [Transposing and Swapping Sxis](#transposing)\n",
    "- [Universal Functinos](#universal)\n",
    "- [Other useful operations](#other)\n",
    "- [File IO](#file)\n",
    "- [Liear algebra](#linear)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# The ndarray <a name=\"ndarray\"></a>\n",
    "The N-dimensional array object, or ndarray, is a fast, flexible container for large datasets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the equivalent operations between scalar elements.\n",
    "\n",
    "Here is a quick example of its capabilities:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "# create a 2x3 array of random values\n",
    "data = np.random.randn(2,3)\n",
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data * 10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data + data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Every array has a shape, a tuple indicating the size of each dimnesion and a dtype. You can obtain these via the respectable methods:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# number of dimensions of the array\n",
    "data.ndim"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# the size of the array\n",
    "data.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# the type of values store in the array\n",
    "data.dtype"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Creating arrays <a name=\"creating\"></a>\n",
    "The easiest and quickest way to create an array is from a normal Python list."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = [1.2, 5.2, 5, 7.8, 0.3]\n",
    "arr = np.array(data)\n",
    "\n",
    "arr"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is also possible to create multidimensional arrays in a similar fashion. An example would be:\n",
    "```python\n",
    "data = [[1.2, 5.2, 5, 7.8, 0.3],\n",
    "        [4.1, 7.2, 4.8, 0.1, 7.7]]\n",
    "```\n",
    "Try creating an multidimensional array below and verify its number of dimensions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also create an array filled with zeros"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "np.zeros(10)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Again, it is also possible to create a multidimensional array by passing a tuple as an argument"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "np.zeros((4,6))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another option is to use the `empty()` function which creates an array filled with garbage values. It is used in a similar way to `zeros()`.\n",
    "\n",
    "Try using it below and see what it creates!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "NumPy also has an equeleveant to the built-in Python function `range()`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "np.arange(10)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here are most of the possible ways of creating an array"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "| Function | Description |\n",
    "|----|:--|\n",
    "| array  | Convert input data to an ndarray either by inferring a dtype<br>or explicitly specifying a dtype; copies the input data by default. |\n",
    "| asarray | Convert input to ndarray, but do not copy if the input is already an ndarray. |\n",
    "| arange | Similar to the built-in `range` function but returns an ndarray. |\n",
    "| ones | Produces an array of all 1s with the given shape and dtype. |\n",
    "| ones_like | Similar to `ones` but takes another array and produces a ones array<br>of the same shape and dtype |\n",
    "| zeros, zeros_like | Similar to `ones` but produces an array of 0s. |\n",
    "| empty, emtpy_like | Create new array by allocating memory but without populating any values. |\n",
    "| full, full_like | Produce an array of a given shape and dtype with all values set to the indicated \"fill value\". |\n",
    "| eye | Create a square NxN identity matrix (1s on the diagonal and 0s elsewhere). |"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data Types <a name=\"data\"></a>\n",
    "The data type or `dtype` is a special object containing the information the array needs to interpret a chunk ot memory. We can specify it during the creation of an array "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "arr = np.array([1, 2, 3], dtype=np.float64)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "arr.dtype"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "dtypes are a source of NumPy's flexibility. Here is a table of all of them.\n",
    "There is no need to remember all of dtypes.\n",
    "\n",
    "| Type | Type code | Description |\n",
    "|----|---|---|\n",
    "| int8, uint8 | i1, u1 | Signed and unsigned 8bit integer |\n",
    "| int16, uint16 | i2, u2 | Signed and unsigned 16bit integer |\n",
    "| int32, uint32 | i4, u4 | Signed and unsigned 32bit integer |\n",
    "| int64, uint64 | i8, u8 | Signed and unsigned 64bit integer |\n",
    "| float16 | f2 | Half-precision floating point |\n",
    "| float32 | f4 or f | Standard single-precision floating point |\n",
    "| float64 | f8 or d | Standard double-precision floating point |\n",
    "| float128 | f16 or g | Extended-precision floating point |\n",
    "| complex64<br>complex128<br>complex256 | c8, c16, c32 | Complex numbers represented by two 32, 64 or 128 floats, respectively |\n",
    "| bool | ? | Boolean type storing True or False |\n",
    "| object | O | Python object type, a value can be any Python object |\n",
    "| string_ | S | Fixed-length ASCII string type.<br>For example use `S10` to create a string dtype with length 10 |\n",
    "| unicode_ | U | Fixed-length Unicode type |\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Similar to normal Python, you can cast(convert) an array from one dtype to another using the `astype` method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "arr = np.array([1, 2, 3])\n",
    "arr.dtype"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "float_arr = arr.astype(np.float64)\n",
    "float_arr.dtype"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The normal limitations to casting apply here as well. You can try creating a `float64` array and then converting it to an `int64` array below "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 1\n",
    "Create a 5x5 identity matrix. Then convert it to float64 dtype. At the end confirm its properties using the appropriate attributes."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Arithmetic operations <a name=\"arithmetic\"></a>\n",
    "You have already gotten a taste of this in the examples above but let's try to extend that.\n",
    "\n",
    "Arrays are important because they enable you to express batch operations on data without having to write for loops - this is called **vectorisation**.\n",
    "\n",
    "Any arithmetic operations between equal-size arrays applies the operation element-wise:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A = np.array([[1, 2, 3], [4, 5, 6]])\n",
    "A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A * A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A - A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Arithmetic operations with scalars propogate the scalar argument to each element in the array:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A * 5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A ** 0.5"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Comparisons between arrays of the same size yield boolean arrays:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "B = np.array([[1, 7, 4],[4, 12, 2]])\n",
    "B"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A > B"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Arithmetic operations with differently sized arrays is called **broadcasting** but will not be covered in this course due to the limited time."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 2\n",
    "Generate a vector of size 10 with values ranging from 0 to 1, both included."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Indexing and slicing <a name=\"indexing\"></a>\n",
    "NumPy offers many options for indexing and slicing. Coincidentally, they are very similar to Python.\n",
    "\n",
    "Let's see how this is done in 1D:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A = np.arange(10)\n",
    "A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A[5]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A[5:8]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A[5:8] = 0\n",
    "A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Important:** Unlike vanila Python, NumPy array slices are views on the original array. This means that the data is not copied, and any modifications to teh ciew will be reflected in the source array."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A_slice = A[5:8]\n",
    "A_slice"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A_slice[:] = [12, 17, 24]\n",
    "A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here we used the [:] operator which assings to all values in the array.\n",
    "Let's now have a look at higher dimensional arrays:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
    "C"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have 2 dimensions, we need to input 2 indeces to get a specific element of the array. Alternatively, if we input only one index, then we obtain the whole row of the array:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C[2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C[2][1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C[2, 1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is a picture to better explain indexing in 2D:\n",
    "<img src=\"https://www.safaribooksonline.com/library/view/python-for-data/9781449323592/httpatomoreillycomsourceoreillyimages1346880.png\" alt=\"Drawing\" style=\"width: 300px;\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The same concepts and techniques are extended into multidimensional arrays:\n",
    "if you omit later indeices, the returned object will be a lower dimensional ndarray consisting of all data along the higher dimensions."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now let's look into **slicing**. You already saw above that slicing in 1D is done the same way as in standard Python data structures. So how do we do that in 2D? Well, it is fairly intuative:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
    "C"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C[:2]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This can be read as *select the first 2 columns of C*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C[1, :2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C[:, :1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is some visual aid for what happened above:\n",
    "<img src=\"https://www.safaribooksonline.com/library/view/python-for-data/9781449323592/httpatomoreillycomsourceoreillyimages1346882.png\" alt=\"Drawing\" style=\"width: 350px;\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is also possible to index arrays via booleans.\n",
    "\n",
    "Say we have an 1D array of 0s and 1s and then a 2D array of randomly generated data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fruits = np.array([\"banana\", \"orange\", \"mango\", \"banana\", \"tomato\", \"passionfruit\", \"cherry\"])\n",
    "fruits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.random.randn(7,4)\n",
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fruits == \"banana\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data[fruits == \"banana\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Powerful right? The only caveat is that the boolean array must be of the same length as the array axis it's indexing. Caution must be taken here as the boolean selection will not fail even if the boolean array is not the correct length!\n",
    "\n",
    "You can also mix and match boolean arrays but there is one small difference compared to Python - the typical boolean operators (`and` and `or`) do not work instead you must use `&`(and) and `|`(or)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mask = (fruits == \"banana\") | (fruits == \"cherry\")\n",
    "data[mask]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 3\n",
    "Create a 5x5 matrix of random values. Square all positive values of the matrix and set all else to 0. Attempt to do this in place - ie. without copying the matrix"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 4\n",
    "Create a 2D array with 1s on the border and 0s inside"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Transposing Arrays and Swapping Axes <a name=\"transposing\"></a>\n",
    "We can use the method `reshape()` to convert the data from one shape into another. Later we can use the `T` attribute to obtain the transpose of the array."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A = np.arange(15)\n",
    "A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "B = A.reshape((3,5))\n",
    "B"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "B.T"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also reshape 3D arrays but how would `T` work then? Luckily, we can use the `tranpose()` method which allows us to chose the axes we want to swap:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A = np.arange(16)\n",
    "C = A.reshape((2, 2, 4))\n",
    "C"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "C.transpose((1, 0, 2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 5\n",
    "Create a 8x8 matrix with a checkboard pattern of 1s and 0s\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Plotting\n",
    "You can easily plot and show images in Python via the package `matplotlib` which can be used to plot an array. \n",
    "\n",
    "First we have to set up our environment. Read and run the code below to do just that:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "\n",
    "# Import NumPy and matplotlib\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Set a greyscale colourmap (we want white for 0 and black for 1)\n",
    "plt.set_cmap('Greys')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can create an array of values and plot in a canvas. The easiest way to do this is to pick values between 0 and 1 and plot grayscale images where 1 corresponds to black and 0 corresponds to white. Let's see how we can do this by creating an array of 0s:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "canvas = np.zeros((100,50))\n",
    "plt.imshow(canvas, interpolation=\"none\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "All is white right? let's add some black to it!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "canvas[50, 25] = 1\n",
    "plt.imshow(canvas, interpolation=\"none\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 6\n",
    "Use the canvas template above and create an image where the top right and bottom left pixels are set to black.\n",
    "\n",
    "*Note: Remember to first reset your canvas to only 0s*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "plt.imshow(canvas, interpolation=\"none\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 7\n",
    "Draw a horizontal and verticle line across the canvas"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "plt.imshow(canvas, interpolation=\"none\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise 8\n",
    "Make the top left corner of the image black.\n",
    "\n",
    "*Extra challenge: do this wihtout using numbers for indexing*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "plt.imshow(canvas, interpolation=\"none\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Universal Functions <a name=\"universal\"></a>\n",
    "or *ufunc* are functions that perform element-wise operations on data in ndarrays. You can think of them as fast vectorised wrappers for simply funcitons. Here is an example of `sqrt` and `exp`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "A = np.arange(10)\n",
    "A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "np.sqrt(A)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "np.exp(A)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Other universal functions take 2 arrays as input. These are called *binary* functions.\n",
    "\n",
    "For example `maximum()` selects the biggest values from two input arrays"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "x = np.random.randn(10)\n",
    "y = np.random.randn(10)\n",
    "np.maximum(x, y)"