Skip to content
Snippets Groups Projects
python-data-4-pandas-sol.ipynb 309 KiB
Newer Older
ignat's avatar
ignat committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Notebook 5 - pandas\n",
    "[pandas](http://pandas.pydata.org) provides high-level data structures and functions designed to make working with structured or tabular data fast, easy and expressive. The primary objects in pandas that we will be using are the `DataFrame`, a tabular, column-oriented data structure with both row and column labels, and the `Series`, a one-dimensional labeled array object.\n",
    "\n",
    "pandas blends the high-performance, array-computing ideas of NumPy with the flexible data manipulation capabilities of spreadsheets and relational databases. It provides sophisticated indexing functionality to make it easy to reshape, slice and perform aggregations.\n",
    "\n",
    "While pandas adopts many coding idioms from NumPy, the most significant difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n",
    "<br>\n",
    "\n",
    "## Table of Contents:\n",
    "- [Data Structures](#structures)\n",
    "    - [Series](#series)\n",
    "    - [DataFrame](#dataframe)\n",
    "- [Essential Functionality](#ess_func)\n",
    "    - [Reindexing](#reindexing)\n",
    "    - [Dropping Entries](#removing)\n",
    "    - [Indexing, Slicing and Filtering](#indexing)\n",
    "    - [Arithmetic Operations](#arithmetic)\n",
    "- [Summarizing and Computing Descriptive Statistics](#sums)\n",
    "- [Loading and storing data](#loading)\n",
    "    - [Text Format](#text) \n",
    "    - [Web Scraping](#web)\n",
    "- [Data Cleaning and preperation](#cleaning)\n",
    "    - [Handling missing data](#missing)\n",
    "    - [Data transformation](#transformation)\n",
    "\n",
    "The common pandas import statment is shown below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Common pandas import statement\n",
    "import numpy as np\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Data Structures <a name=\"structures\"></a>\n",
    "## Series <a name=\"series\"></a>\n",
    "A Series is a one-dimensional array-like object containing a sequence of values and an associated array of data labels called its index.\n",
    "\n",
    "The easiest way to make a Series is from an array of data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = pd.Series([4, 7, -5, 3])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now try printing out data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The string representation of a Series displayed interactively shows the index on the left and the values on the right. Because we didn't specify an index, the default on is simply integers 0 through N-1.\n",
    "\n",
    "You can output only the values of a Series using \n",
    "```python\n",
    "data.values\n",
    "```\n",
    "or you can get only the indices using\n",
    "```python\n",
    "data.index\n",
    "```\n",
    "Try it out below!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can specify custom indeces when intialising the Series"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "data2 = pd.Series([4, 7, -5, 3], index=[\"a\", \"b\", \"c\", \"d\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now you can use these labels to access the data similar to a normal array"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data2[\"a\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another way to think about Series is as a fixed-length ordered dictionary. Furthermore, you can actually define a Series in a similar manner to a dictionary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "cities = {\"Glasgow\" : 599650, \"Edinburgh\" : 464990, \"Abardeen\" : 196670, \"Dundee\" : 147710}\n",
    "data3 = pd.Series(cities)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Glasgow      599650\n",
       "Edinburgh    464990\n",
       "Abardeen     196670\n",
       "Dundee       147710\n",
       "dtype: int64"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can do arithmetic operations between Series similar to NumPy arrays. Even if you have 2 datasets with different data, arithmetic operations will be aligned according to their indices.\n",
    "\n",
    "Let's look at an example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "cities_uk = {\"Birmingham\" : 1092330, \"Leeds\": 751485, \"Glasgow\" : 599650,\n",
    "             \"Manchester\" : 503127, \"Edinburgh\" : 464990}\n",
    "data4 = pd.Series(cities_uk)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Abardeen            NaN\n",
       "Birmingham          NaN\n",
       "Dundee              NaN\n",
       "Edinburgh      929980.0\n",
       "Glasgow       1199300.0\n",
       "Leeds               NaN\n",
       "Manchester          NaN\n",
       "dtype: float64"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data3 + data4"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice how some of the results are NaN? Well, that is because there were no instances of those cities within both of the datasets. You can usually extract NaNs from a Series with\n",
    "```python\n",
    "data4.isnull()\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## DataFrame <a name=\"dataframe\"></a>\n",
    "A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type. The DataFrame has both row and column index and can be thought of as a dict of Series all sharing the same index.\n",
    "\n",
    "The most common way to create a DataFrame is with dicts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = {\"cities\" : [\"Glasgow\", \"Edinburgh\", \"Abardeen\", \"Dundee\"],\n",
    "        \"population\" : [599650, 464990, 196670, 147710],\n",
    "        \"year\" : [2011, 2013, 2013, 2013]}\n",
    "frame = pd.DataFrame(data)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Try printing it out"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>cities</th>\n",
       "      <th>population</th>\n",
       "      <th>year</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Glasgow</td>\n",
       "      <td>599650</td>\n",
       "      <td>2011</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Edinburgh</td>\n",
       "      <td>464990</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Abardeen</td>\n",
       "      <td>196670</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Dundee</td>\n",
       "      <td>147710</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      cities  population  year\n",
       "0    Glasgow      599650  2011\n",
       "1  Edinburgh      464990  2013\n",
       "2   Abardeen      196670  2013\n",
       "3     Dundee      147710  2013"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Jupyter Notebooks prints it out in a nice table but the basic version of this is also just as readable!\n",
    "\n",
    "Additionally you can also specify the order of columns during initialisation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "frame2 = pd.DataFrame(data, columns=[\"year\", \"cities\", \"population\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can retrieve a particular column from a DataFrame with\n",
    "```python\n",
    "frame[\"cities\"]\n",
    "```\n",
    "The result is going to be a Series\n",
    "\n",
    "Additionally, you can retrieve a row from the dataset using\n",
    "```python\n",
    "frame[1]\n",
    "```\n",
    "Try it out below"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is also possible to add and modify the columns of a DataFrame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "frame2[\"size\"] = 100"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>year</th>\n",
       "      <th>cities</th>\n",
       "      <th>population</th>\n",
       "      <th>size</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2011</td>\n",
       "      <td>Glasgow</td>\n",
       "      <td>599650</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2013</td>\n",
       "      <td>Edinburgh</td>\n",
       "      <td>464990</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2013</td>\n",
       "      <td>Abardeen</td>\n",
       "      <td>196670</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2013</td>\n",
       "      <td>Dundee</td>\n",
       "      <td>147710</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   year     cities  population  size\n",
       "0  2011    Glasgow      599650   100\n",
       "1  2013  Edinburgh      464990   100\n",
       "2  2013   Abardeen      196670   100\n",
       "3  2013     Dundee      147710   100"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "frame2[\"size\"] = [175, 264, 65.1, 60]  # in km^2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Similar to dicts, columns can be deleted using\n",
    "```python\n",
    "del frame2[\"size\"]\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another common way of creating DataFrames is from a nested dict of dicts:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>cities</th>\n",
       "      <th>population</th>\n",
       "      <th>year</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Glasgow</td>\n",
       "      <td>599650</td>\n",
       "      <td>2011</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Edinburgh</td>\n",
       "      <td>464990</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Abardeen</td>\n",
       "      <td>196670</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Dundee</td>\n",
       "      <td>147710</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      cities  population  year\n",
       "0    Glasgow      599650  2011\n",
       "1  Edinburgh      464990  2013\n",
       "2   Abardeen      196670  2013\n",
       "3     Dundee      147710  2013"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data2 = {\"Glasgow\": {2011: 599650},\n",
    "        \"Edinburgh\": {2013:464990},\n",
    "        \"Abardeen\": {2013: 196670}}\n",
    "\n",
    "frame3 = pd.DataFrame(data)\n",
    "frame3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is a table of different ways of initialising a DataFrame for your reference\n",
    "\n",
    "| Type | Notes |\n",
    "| --- | --- |\n",
    "| 2D ndarray | A matrix of data; passing optional row and column labels |\n",
    "| dict of arrays, lists, or tuples | Each sequence becomes a column in the DataFrame; all sequences must be the same length |\n",
    "| dict of Series | Each value becomes a column; indexes from each Series are unioned together to<br>form the result's row index if not explicit index is passed |\n",
    "| dict of dicts | Each inner dict becomes a column; keys are unioned to form the row<br>index as in the \"dict of Series\" case |\n",
    "| List of dicts or Series | Each item becomes a row in the DataFrame; union of dict keys or<br>Series indices becomes the DataFrame's column labels |\n",
    "| List of lists or tuples | Treated as the \"2D ndarray\" case |"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Essential Functionality <a name=\"ess_func\"></a>\n",
    "In this section, we will go through the fundamental mechanics of interacting with the data contained in a Series or DaraFrame."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Reindexing <a name=\"reindexing\"></a>\n",
    "With pandas it is easy to restructure the order of your columns and rows using the `reindex` function. Let's have a look at an example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    1\n",
       "b    2\n",
       "c    3\n",
       "d    4\n",
       "e    5\n",
       "dtype: int64"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# first define a new Series\n",
    "s = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])\n",
    "s"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "d    4\n",
       "b    2\n",
       "a    1\n",
       "c    3\n",
       "e    5\n",
       "dtype: int64"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Now you can reshuffle the indices\n",
    "s = s.reindex(['d', 'b', 'a', 'c', 'e'])\n",
    "s"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Easy as that! This can also be extended for DataFrames, where you can reorder both the columns and indices at the same time!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Edinburgh</th>\n",
       "      <th>Glasgow</th>\n",
       "      <th>Aberdeen</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Edinburgh  Glasgow  Aberdeen\n",
       "a          0        1         2\n",
       "b          3        4         5\n",
       "c          6        7         8"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# first define a new Dataframe\n",
    "data = np.reshape(np.arange(9), (3,3))\n",
    "df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
    "                  columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Now we can restructure it with reindex\n",
    "df = df.reindex(index=[\"a\", \"d\", \"c\", \"b\"],\n",
    "          columns=[\"Aberdeen\", \"Glasgow\", \"Edinburgh\", \"Dundee\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice something interesting? We can actually add new indices and columns using the `reindex` method. This results in the new slots in our table to be filled in with `NaN` values."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Removing columns/indices <a name=\"removing\"></a>\n",
    "Similar to above, it is easy to remove entries. This is done with the `drop()` method and can be applied to both columns and indices:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Edinburgh</th>\n",
       "      <th>Glasgow</th>\n",
       "      <th>Aberdeen</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Edinburgh  Glasgow  Aberdeen\n",
       "a          0        1         2\n",
       "c          6        7         8"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# define new DataFrame\n",
    "data = np.reshape(np.arange(9), (3,3))\n",
    "df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
    "                  columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
    "\n",
    "df.drop(\"b\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Glasgow</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Glasgow\n",
       "a        1\n",
       "b        4\n",
       "c        7"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# You can also drop from a column\n",
    "df.drop([\"Aberdeen\", \"Edinburgh\"], axis=\"columns\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Indexing, slicing and filtering <a name=\"indexing\"></a>\n",
    "\n",
    "### Indexing\n",
    "\n",
    "Series indexing works analogously to NumPy array indexing (i.e. `data[...]`). You can also use the Series' index values instead of only integers:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0\n",
       "b    1\n",
       "c    2\n",
       "d    3\n",
       "dtype: int64"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s = pd.Series(np.arange(4), index=['a', 'b', 'c', 'd'])\n",
    "s"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [