Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Notebook 3 - NumPy\n",
"[NumPy](http://numpy.org) short for Numerical Python, has long been a cornerstone of numerical computing on Python. It provides the data structures, algorithms and the glue needed for most scientific applications involving numerical data in Python. All computation is done in vectorised form - using vectors of several values at once instead of singular values at a time. NumPy contains, among other thigs:\n",
"* A fast and efficient multidimensional array object `ndarray`.\n",
"* Mathematical functions for performing element-wise computations with arrays or mathematical operations between arrays.\n",
"* Tools for reading and manipulating large array data to disk and working with memory-mapped files.\n",
"* Linear algebra, random number generation and Fourier transform capabilities.\n",
"\n",
"For the rest of the course, whenever array is mentioned it refers to the NumPy ndarray.\n",
"<br>\n",
"\n",
"## Table of contents\n",
"- [The ndarray](#ndarray)\n",
" - [Creating arrays](#creating)\n",
" - [Data Types](#data)\n",
" - [Arithmetic Operations](#arithmetic)\n",
" - [Indexing and Slicing](#indexing)\n",
" - [Transposing and Swapping Axis](#transposing)\n",
"- [Universal Functinos](#universal)\n",
"- [Other useful operations](#other)\n",
"- [File IO](#file)\n",
"- [Liear algebra](#linear)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Why NumPy?\n",
"Is the first question that anybody asks when they find out about it. \n",
"\n",
"Some people might say: *I don't care about speed, I want to spend my time researching how to cure cancer, not optimise coputer code!*\n",
"\n",
"That's perfectly reasonable, but are you willing to wait a lot longer for your experiment to finish? I definitely don't want to do that. Let's see how much faster NumPy really is!\n",
"\n",
"to show that we'll be using the magic command `%timeit` which you can read more about [here](https://ipython.readthedocs.io/en/stable/interactive/magics.html) and don't worry about the details now, they will clear up later.\n",
"\n",
"Let's have a look at generating a vector of 10M random values and then summing them all up using the Python way and using the NumPy way!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"x = np.random.randn(10000000) # generate random numbers\n",
"\n",
"print(\"Running normal python sum()\")\n",
"%timeit sum(x)\n",
"\n",
"print(\"Running numpy sum()\")\n",
"%timeit np.sum(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**WOW** that was a difference of more than a **100 times** and that was just for a single summing operation. Imagine if you had several of those running all the time!\n",
"\n",
"Are you onboard with Numpy then? Let's proceed..."
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The ndarray <a name=\"ndarray\"></a>\n",
"The ndarray is a backbone on Numpy. It's a fast and flexible container for N-dimensional array objects, usually used for large datasets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the equivalent operations between scalar elements.\n",
"\n",
"Here is a quick example of its capabilities:"
]
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"\n",
"# create a 2x3 array of random values\n",
"data = np.random.randn(2,3)\n",
"data"
]
},
{
"cell_type": "code",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Every array has a shape, a tuple indicating the size of each dimnesion and a dtype. You can obtain these via the respective methods:"
"source": [
"# number of dimensions of the array\n",
"data.ndim"
]
},
{
"cell_type": "code",
"source": [
"# the size of the array\n",
"data.shape"
]
},
{
"cell_type": "code",
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"source": [
"# the type of values store in the array\n",
"data.dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating arrays <a name=\"creating\"></a>\n",
"The easiest and quickest way to create an array is from a normal Python list."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = [1.2, 5.2, 5, 7.8, 0.3]\n",
"arr = np.array(data)\n",
"\n",
"arr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is also possible to create multidimensional arrays in a similar fashion. An example would be:\n",
"```python\n",
"data = [[1.2, 5.2, 5, 7.8, 0.3],\n",
" [4.1, 7.2, 4.8, 0.1, 7.7]]\n",
"```\n",
"Try creating an multidimensional array below and verify its number of dimensions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ident = [[1, 0], [0, 1]]\n",
"idarray = np.array(ident)\n",
"\n",
"idarray.ndim"
]
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also create an array filled with zeros"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.zeros(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Again, it is also possible to create a multidimensional array by passing a tuple as an argument"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.zeros((4,6))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another option is to use the `empty()` function which creates an array filled with garbage values. It is used in a similar way to `zeros()`.\n",
"\n",
"Try using it below and see what it creates!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.empty((10, 10))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"NumPy also has an equivalent to the built-in Python function `range()`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here are most of the possible ways of creating an array"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"| Function | Description |\n",
"|----|:--|\n",
"| array | Convert input data to an ndarray either by inferring a dtype<br>or explicitly specifying a dtype; copies the input data by default. |\n",
"| asarray | Convert input to ndarray, but do not copy if the input is already an ndarray. |\n",
"| arange | Similar to the built-in `range` function but returns an ndarray. |\n",
"| ones | Produces an array of all 1s with the given shape and dtype. |\n",
"| ones_like | Similar to `ones` but takes another array and produces a ones array<br>of the same shape and dtype |\n",
"| zeros, zeros_like | Similar to `ones` but produces an array of 0s. |\n",
"| empty, emtpy_like | Create new array by allocating memory but without populating any values. |\n",
"| full, full_like | Produce an array of a given shape and dtype with all values set to the indicated \"fill value\". |\n",
"| eye | Create a square NxN identity matrix (1s on the diagonal and 0s elsewhere). |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Types <a name=\"data\"></a>\n",
"The data type or `dtype` is a special object containing the information the array needs to interpret a chunk of memory. We can specify it during the creation of an array "
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arr = np.array([1, 2, 3], dtype=np.float64)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arr.dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"dtypes are a source of NumPy's flexibility. Here is a table of all of them.\n",
"There is no need to remember all of dtypes.\n",
"\n",
"| Type | Type code | Description |\n",
"|----|---|---|\n",
"| int8, uint8 | i1, u1 | Signed and unsigned 8bit integer |\n",
"| int16, uint16 | i2, u2 | Signed and unsigned 16bit integer |\n",
"| int32, uint32 | i4, u4 | Signed and unsigned 32bit integer |\n",
"| int64, uint64 | i8, u8 | Signed and unsigned 64bit integer |\n",
"| float16 | f2 | Half-precision floating point |\n",
"| float32 | f4 or f | Standard single-precision floating point |\n",
"| float64 | f8 or d | Standard double-precision floating point |\n",
"| float128 | f16 or g | Extended-precision floating point |\n",
"| complex64<br>complex128<br>complex256 | c8, c16, c32 | Complex numbers represented by two 32, 64 or 128 floats, respectively |\n",
"| bool | ? | Boolean type storing True or False |\n",
"| object | O | Python object type, a value can be any Python object |\n",
"| string_ | S | Fixed-length ASCII string type.<br>For example use `S10` to create a string dtype with length 10 |\n",
"| unicode_ | U | Fixed-length Unicode type |\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similar to normal Python, you can cast(convert) an array from one dtype to another using the `astype` method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arr = np.array([1, 2, 3])\n",
"arr.dtype"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"float_arr = arr.astype(np.float64)\n",
"float_arr.dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The normal limitations to casting apply here as well. You can try creating a `float64` array and then converting it to an `int64` array below "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 1\n",
"Create a 5x5 [identity matrix](https://en.wikipedia.org/wiki/Identity_matrix). Then convert it to float64 dtype. At the end confirm its properties using the appropriate attributes."
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Arithmetic operations <a name=\"arithmetic\"></a>\n",
"You have already gotten a taste of this in the examples above but let's try to extend that.\n",
"\n",
"Arrays are important because they enable you to express batch operations on data without having to write for loops - this is called **vectorisation**.\n",
"\n",
"Any arithmetic operations between equal-size arrays applies the operation element-wise:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = np.array([[1, 2, 3], [4, 5, 6]])\n",
"A"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A * A"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A - A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Arithmetic operations with scalars propogate the scalar argument to each element in the array:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A * 5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A ** 0.5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Comparisons between arrays of the same size yield boolean arrays:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"B = np.array([[1, 7, 4],[4, 12, 2]])\n",
"B"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A > B"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Arithmetic operations with differently sized arrays is called **broadcasting** but will not be covered in this course due to the limited time."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 2\n",
"Generate a vector of size 10 with values ranging from 0 to 1, both included."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Indexing and slicing <a name=\"indexing\"></a>\n",
"NumPy offers many options for indexing and slicing. Coincidentally, they are very similar to Python.\n",
"\n",
"Let's see how this is done in 1D:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = np.arange(10)\n",
"A"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A[5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A[5:8]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A[5:8] = 0\n",
"A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Important:** Unlike vanilla Python, NumPy array slices are views on the original array. This means that the data is not copied, and any modifications to the view will be reflected in the source array."
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A_slice = A[5:8]\n",
"A_slice"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A_slice[:] = [12, 17, 24]\n",
"A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we used the [:] operator which assings to all values in the array.\n",
"Let's now have a look at higher dimensional arrays:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
"C"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have 2 dimensions, we need to input 2 indices to get a specific element of the array. Alternatively, if we input only one index, then we obtain the whole row of the array:"
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C[2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C[2][1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C[2, 1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a picture to better explain indexing in 2D:\n",
"<img src=\"img/ndarray.png\" alt=\"drawing\" width=\"300\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The same concepts and techniques are extended into multidimensional arrays:\n",
"if you omit later indices, the returned object will be a lower dimensional ndarray consisting of all data along the higher dimensions."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's look into **slicing**. You already saw above that slicing in 1D is done the same way as in standard Python data structures. So how do we do that in 2D? Well, it is fairly intuitive:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
"C"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C[:2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This can be read as *select the first 2 rows of C*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C[1, :2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C[:, :1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is some visual aid for what happened above:\n",
"<img src=\"img/indexing.png\" alt=\"drawing\" width=\"400\"/>"
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is also possible to index arrays via booleans.\n",
"\n",
"Say we have an 1D array of 0s and 1s and then a 2D array of randomly generated data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fruits = np.array([\"banana\", \"orange\", \"mango\", \"banana\", \"tomato\", \"passionfruit\", \"cherry\"])\n",
"fruits"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = np.random.randn(7,4)\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fruits == \"banana\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data[fruits == \"banana\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Powerful right? The only caveat is that the boolean array must be of the same length as the array axis it's indexing. Caution must be taken here as the boolean selection will not fail even if the boolean array is not the correct length!\n",
"\n",
"You can also mix and match boolean arrays but there is one small difference compared to Python - the typical boolean operators (`and` and `or`) do not work instead you must use `&`(and) and `|`(or)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mask = (fruits == \"banana\") | (fruits == \"cherry\")\n",
"data[mask]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 3\n",
"Create a 5x5 matrix of random values. Square all positive values of the matrix and set all else to 0. Attempt to do this in place - ie. without copying the matrix"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 4\n",
"Create a 2D array with 1s on the border and 0s inside"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transposing Arrays and Swapping Axes <a name=\"transposing\"></a>\n",
"We can use the method `reshape()` to convert the data from one shape into another. Later we can use the `T` attribute to obtain the transpose of the array."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = np.arange(15)\n",
"A"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"B = A.reshape((3,5))\n",
"B"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"B.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also reshape 3D arrays but how would `T` work then? Luckily, we can use the `tranpose()` method which allows us to chose the axes we want to swap:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = np.arange(16)\n",
"C = A.reshape((2, 2, 4))\n",
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C.transpose((1, 0, 2))\n",
"C.shape"
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plotting\n",
"You can easily plot and show images in Python via the package `matplotlib` which can be used to plot an array. \n",
"\n",
"First we have to set up our environment. Read and run the code below to do just that:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"# Import NumPy and matplotlib\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Set a greyscale colourmap (we want white for 0 and black for 1)\n",
"plt.set_cmap('Greys')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can create an array of values and plot in a canvas. The easiest way to do this is to pick values between 0 and 1 and plot grayscale images where 1 corresponds to black and 0 corresponds to white. Let's see how we can do this by creating an array of 0s:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"canvas = np.zeros((100,50))\n",
"plt.imshow(canvas, interpolation=\"none\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All is white right? let's add some black to it!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"canvas[50, 25] = 1\n",
"plt.imshow(canvas, interpolation=\"none\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 5\n",
"Use the canvas template above and create an image where the top right and bottom left pixels are set to black.\n",
"\n",
"*Note: Remember to first reset your canvas to only 0s*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 6\n",
"Draw a horizontal and verticle line across the canvas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 7\n",
"Make the top left corner of the image black.\n",
"\n",
"*Extra challenge: do this wihtout using numbers for indexing*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Universal Functions <a name=\"universal\"></a>\n",
"or *ufunc* are functions that perform element-wise operations on data in ndarrays. You can think of them as fast vectorised wrappers for simply functions. Here is an example of `sqrt` and `exp`:"
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = np.arange(10)\n",
"A"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.sqrt(A)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},