Skip to content
Snippets Groups Projects
generate_DEC_IGV.py 35.9 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
#	input:
#		the family PED file
#		G2P text output for the trio		[${FAMILY_ID}.report.txt]
#		VASE output				[${SAMPLE_ID}.clean.strict.denovo.vcf]
#
#
#		individual VCF file for the trio proband	[${FAMILY_ID}-gatk-haplotype-annotated.${SAMPLE_ID}.vcf.gz]
#		G2P text output for the trio			[${FAMILY_ID}.report.txt]
#		VASE output					[${SAMPLE_ID}.clean.strict.denovo.vcf]
#
#
#	output:
#		DECIPHER formated file for the proband
#		- all G2P variants
#		- denovo variants marked as such
#
#	checks:
#		all G2P variants found in the individual VCF
#		all VASE denovo variants found in the individual VCF
#
#       Author: MH
#       last modified: SEPT 27, 2019



import sys
import os
import csv
import gzip


ASSEMBLY = 'GRCh38'
INTERGENIC = 'No'
ACCESS = 'No'


G2P_DICT = {}		# key: chr:pos:ref:alt; value: 0 (if found only in G2P); 1 (if found in VCF) - for variants found in G2P output for this CHILD_ID
G2P_DATA = {}		# key: chr:pos:ref:alt; value: (transcript,gene,GT)
VASE_DICT = {}		# key: chr:pos:ref:alt; value: 0 (if found only in VASE); 1 (if found in VCF) - for variants found in VASE output for this CHILD_ID


NUM_UNIQ_G2P_VARS = 0
NUM_UNIQ_VASE_VARS = 0


CHILD_ID = 0
CHILD_SEX = 0
DEC_CHILD_SEX = 'unknown'

MOM_ID = 0
MOM_STAT = 0	# 1 = UNAFF, 2 = AFF

DAD_ID = 0
DAD_STAT = 0	# 1 = UNAFF, 2 = AFF


ALL_CHILD_DICT = {}		# key: chr:pos:ref:alt; value: (num_ALT_reads,VAF)
ALL_MOM_DICT = {}		# key: chr:pos:ref:alt; value: irrelevant
ALL_DAD_DICT = {}		# key: chr:pos:ref:alt; value: irrelevant


CHILD_INHER_DICT = {}		# key: chr:pos:ref:alt; value: 'Paternally inherited, constitutive in father' | 'Maternally inherited, constitutive in mother' | 'Biparental' | 'De novo constitutive' | 'Unknown'

SNAP_FLANK = 25


MAP_DICT = {}			# key: family_id (aka decipher_id); value: internal (decipher) ID
TRANS_DICT = {}                 # key: transcriptID not found in DECIPHER; value: the chosen replacement transcriptID from those available in DECIPHER



def go(ped_file,in_g2p_file,in_vase_file,in_vcf,dec_dir,igv_dir,fam_igv_dir,data_source_dir,fam_id,map_dir,trans_map_file):

    # read the decipher to internal ID mapping file
    map_file = '%s/DECIPHER_INTERNAL_IDs.txt' % (map_dir)
    read_map_file(map_file)


    # read the transcript mapping file
    read_trans_map(trans_map_file)



    # read the ped file and establish CHILD_ID,CHILD_SEX,MOM_ID,DAD_ID
    read_ped(ped_file)

    if (CHILD_ID != 0) and (CHILD_SEX != 0) and (DEC_CHILD_SEX != 'unknown') and (MOM_ID != 0) and (MOM_STAT != 0) and (DAD_ID != 0) and (MOM_STAT != 0):
        print "======================================"
        print "Analyzing:"
        print "CHILD_ID = %s, CHILD_SEX = %s, DEC_CHILD_SEX = %s" % (CHILD_ID,CHILD_SEX,DEC_CHILD_SEX)
        print "MOM_ID = %s, MOM_STATUS = %s" % (MOM_ID,MOM_STAT)
        print "DAD_ID = %s, DAD_STATUS = %s" % (DAD_ID,DAD_STAT)
        print "======================================"
        sys.stdout.flush() 
    else:
        print "ERROR: problems reading the PED file = %s" % (ped_file)
        raise SystemExit       


    # read the G2P output for this family
    read_G2P(in_g2p_file)


    # read the VASE output for this family
    read_VASE(in_vase_file)


    # now read the individual VCFs and record all the variants
    child_vcf_file = in_vcf + '.ready.%s.vcf.gz' % (CHILD_ID)
    mom_vcf_file = in_vcf + '.ready.%s.vcf.gz' % (MOM_ID)
    dad_vcf_file = in_vcf + '.ready.%s.vcf.gz' % (DAD_ID)


    read_all_VCF_vars(child_vcf_file,ALL_CHILD_DICT)
    print "Found %s unique VCF variants for CHILD (%s)" % (len(ALL_CHILD_DICT),CHILD_ID)
    sys.stdout.flush() 

    read_all_VCF_vars(mom_vcf_file,ALL_MOM_DICT)
    print "Found %s unique VCF variants for MOM (%s)" % (len(ALL_MOM_DICT),MOM_ID)
    sys.stdout.flush()

    read_all_VCF_vars(dad_vcf_file,ALL_DAD_DICT)
    print "Found %s unique VCF variants for DAD (%s)" % (len(ALL_DAD_DICT),DAD_ID)
    sys.stdout.flush()


    # now go over all child variants and set the inheritance
    num_child_vars_assigned = 0
    for key,v in ALL_CHILD_DICT.iteritems():
        if (key in ALL_MOM_DICT) and (key in ALL_DAD_DICT):
            CHILD_INHER_DICT[key] = 'Biparental'
            num_child_vars_assigned += 1
        elif key in ALL_MOM_DICT:
            CHILD_INHER_DICT[key] = 'Maternally inherited, constitutive in mother'
            num_child_vars_assigned += 1
        elif key in ALL_DAD_DICT:
            CHILD_INHER_DICT[key] = 'Paternally inherited, constitutive in father'
            num_child_vars_assigned += 1
        else:
            CHILD_INHER_DICT[key] = 'Unknown'

    assigned_ratio = (float(num_child_vars_assigned)/float(len(ALL_CHILD_DICT)))*100.0

    print "%s of the %s unique VCF variants (%.2f%%) for CHILD (%s) has been assigned to parents" % (num_child_vars_assigned,len(ALL_CHILD_DICT),assigned_ratio,CHILD_ID)
    sys.stdout.flush()





    # now read the child VCF, check if the variant in the G2P/VASE output, if yes:
    # set the value in the dict to 1
    # print out to to output file

    in_cntr = 0
    out_cntr = 0

    child_vcf_file = in_vcf + '.ready.%s.vcf.gz' % (CHILD_ID)
    in_han = gzip.open(child_vcf_file,'r')


    # setup the DECIPHER output file
    out_dec_file = '%s/%s_DEC.csv' % (dec_dir,CHILD_ID)
    out_han = open(out_dec_file,'w')
    out_han.write('Internal reference number or ID,Chromosome,Start,Genome assembly,Reference allele,Alternate allele,Transcript,Gene name,Intergenic,Chromosomal sex,Other rearrangements/aneuploidy,Open-access consent,Age at last clinical assessment,Prenatal age in weeks,Note,Inheritance,Pathogenicity,Phenotypes,HGVS code,Genotype,Responsible contact\n')



    # setup the IGV snapshot file
    out_igv_file = '%s/%s.snapshot.txt' % (igv_dir,CHILD_ID)
    out_igv_han = open(out_igv_file,'w')
    out_igv_han.write('new\n')
    out_igv_han.write('genome hg38\n')
    out_igv_han.write('mkdir -p "%s"\n' % (fam_igv_dir))
    out_igv_han.write('new\n')
    out_igv_han.write('load %s/%s/%s-ready.bam\n' % (data_source_dir,CHILD_ID,CHILD_ID))
    out_igv_han.write('load %s/%s/%s-ready.bam\n' % (data_source_dir,MOM_ID,MOM_ID))
    out_igv_han.write('load %s/%s/%s-ready.bam\n' % (data_source_dir,DAD_ID,DAD_ID))
    out_igv_han.write('snapshotDirectory "%s"\n' % (fam_igv_dir))
    out_igv_han.write('\n')



    for line in in_han:
        if line.startswith('#'):
            continue

        in_cntr += 1

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = int(data[1])
        ref = data[3]
        alt = data[4]
#        VCF_FORMAT = data[8]
#        VCF_FORMAT_SPLIT = [y.strip() for y in VCF_FORMAT.strip().split(':')]
#        if VCF_FORMAT_SPLIT[1] != 'AD':
#            print "ERROR: AD tag not found where expected"
#            print VCF_FORMAT
#            raise SystemExit

        VCF_VAR = data[9]
#        VCF_VAR_SPLIT = [z.strip() for z in VCF_VAR.strip().split(':')]
#        num_REF,num_ALT = [int(w.strip()) for w in VCF_VAR_SPLIT[1].strip().split(',')]  

#        if num_REF+num_ALT == 0:	# the result of spliting the family VCF to indivudual VCFs, non-variants are not excluded by bcftools
#            continue  
#        VAF = float(num_ALT)/float(num_REF+num_ALT)


        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)
        inher_stat = CHILD_INHER_DICT[key]



        ##############################################################
        # different processing depending on being a SNP, INS, or DEL #
        ##############################################################
         
        if len(ref) == len(alt):			# SNP
            if len(ref) != 1:
                print "ERROR: MNPs are not supported!"
                print line
                raise SystemExit

            key_to_match = '%s:%s:%s:%s' % (chr,pos,ref,alt)
            is_denovo = False
            if key_to_match in VASE_DICT:
                VASE_DICT[key_to_match] = 1
                is_denovo = True
            if key_to_match in G2P_DICT:
                G2P_DICT[key_to_match] = 1
                trans = G2P_DATA[key_to_match][0]
                gene = G2P_DATA[key_to_match][1]
                GT = G2P_DATA[key_to_match][2]

                if is_denovo:
                    if inher_stat == 'Unknown': 
                        inher_stat = 'De novo constitutive'
                    else:
                        print "ERROR: %s is both VASE denovo and %s from VCF" % (key,inher_stat)
                        raise SystemExit 

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit

                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':			# a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':		# a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit  

                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene) 
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:                         # if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)

#                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,%s,,,,%s,\n" % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,%s,,,,%s,\n" % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)

                out_cntr += 1
                out_han.write(to_write)
###                print to_write[:-1]

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK
                i_name = '%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt)
                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('collapse\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')


            

        elif len(ref) > len(alt):			# DEL
            if len(alt) != 1:
                print "ERROR with a deletion"
                print line
                raise SystemExit 

            G2P_key_to_match = '%s:%s:%s:-' % (chr,pos+1,ref[1:])
            VASE_key_to_match = '%s:%s:%s:%s' % (chr,pos,ref,alt)
            is_denovo = False
            if VASE_key_to_match in VASE_DICT:
                VASE_DICT[VASE_key_to_match] = 1
                is_denovo = True 
            if G2P_key_to_match in G2P_DICT:
                G2P_DICT[G2P_key_to_match] = 1
                trans = G2P_DATA[G2P_key_to_match][0]
                gene = G2P_DATA[G2P_key_to_match][1]
                GT = G2P_DATA[G2P_key_to_match][2]

                if is_denovo:
                    if inher_stat == 'Unknown':
                        inher_stat = 'De novo constitutive'
                    else:
                        print "ERROR: %s is both VASE denovo and %s from VCF" % (key,inher_stat)
                        raise SystemExit

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit
                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':                 # a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':               # a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit

                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene)
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:                         # if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)

#                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,%s,,,,%s,\n" % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,%s,,,,%s,\n" % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)

                out_cntr += 1
                out_han.write(to_write)
###                print to_write[:-1]

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK
                i_name = '%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt)
                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('collapse\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')



        elif len(ref) < len(alt):                       # INS
            if len(ref) != 1:
                print "ERROR with an insertion"
                print line
                raise SystemExit

            G2P_key_to_match = '%s:%s:-:%s' % (chr,pos+1,alt[1:])
            VASE_key_to_match = '%s:%s:%s:%s' % (chr,pos,ref,alt)
            is_denovo = False
            if VASE_key_to_match in VASE_DICT:
                VASE_DICT[VASE_key_to_match] = 1
                is_denovo = True
            if G2P_key_to_match in G2P_DICT:
                G2P_DICT[G2P_key_to_match] = 1
                trans = G2P_DATA[G2P_key_to_match][0]
                gene = G2P_DATA[G2P_key_to_match][1]
                GT = G2P_DATA[G2P_key_to_match][2]

                if is_denovo:
                    if inher_stat == 'Unknown':
                        inher_stat = 'De novo constitutive'
                    else:
                        print "ERROR: %s is both VASE denovo and %s from VCF" % (key,inher_stat)
                        raise SystemExit

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit
                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':                 # a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':               # a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit


                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene)
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:                         # if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)

#                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,%s,,,,%s,\n" % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
#                to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,%s,,,,%s,\n" % (CHILD_ID,chr[3:],pos,ASSEMBLY,ref,alt,trans,gene,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)

                out_cntr += 1
                out_han.write(to_write)
###                print to_write[:-1]

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK
                i_name = '%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt)
                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('collapse\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')


        else:
            print "Cannot establish the type of this VCF variant"
            print line
            raise SystemExit 

    in_han.close()
    out_han.close()
    out_igv_han.close()








    ### check if all G2P and VASE variants were found/matched in the proband's VCF
    found_all_G2P = True
    found_all_VASE = True

    for k,v in G2P_DICT.iteritems():
        if int(v) == 0:
            print k 
            found_all_G2P = False
            break

    for k,v in VASE_DICT.iteritems():
        if int(v) == 0:
            print k
            found_all_VASE = False
            break   

    if found_all_G2P:
        print "OK: Found all %s G2P variants in the proband's VCF file" % (len(G2P_DICT))
    else:
        print "ERROR: Could not find all G2P variants in the probands VCF file"
        raise SystemExit

    if found_all_VASE:
        print "OK: Found all %s VASE variants in the proband's VCF file" % (len(VASE_DICT))
    else:
        print "ERROR: Could not find all VASE variants in the probands VCF file"
        raise SystemExit

    ### check if all G2P variants are written out - does not work at the moment, since we are excluding some G2P vars based on num_ALT_reads, VAF
    if out_cntr == NUM_UNIQ_G2P_VARS:
        print "OK: All G2P vars are recorded in the output DECIPHER file"
    else:
        print "ERROR: *NOT* all G2P vars are recorded in the G2P VCF file"


    print "Wrote %s variants in outfile = %s" % (out_cntr,out_dec_file)
    print "The batch snapshot file = %s" % (out_igv_file)
    sys.stdout.flush()








#########################################################################


 

def read_all_VCF_vars(in_vcf_file,THIS_DICT):

    in_han = gzip.open(in_vcf_file,'r')
    for line in in_han:
        if line.startswith('#'):
            continue

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = int(data[1])
        ref = data[3]
        alt = data[4]


        # did the splitting and normalizing - should not have multiallelic variants
        if alt.find(',') != -1:
            print "ERROR: found multiallelic variant"
            print line
            raiseSystemExit

        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)  
        if key not in THIS_DICT:
            THIS_DICT[key] = 1
        else:
            print "ERROR: duplicate key = %s in %s" % (key,in_vcf_file)
            raise SystemExit

    in_han.close()   







def read_VASE(in_file):

    global NUM_UNIQ_VASE_VARS

    in_han = open(in_file,'r')
    for line in in_han:
        # ignore header lines
        if line.startswith('#'):
            continue

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = data[1]
        ref = data[3]
        alt = data[4] 

        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)

        if key not in VASE_DICT:
            VASE_DICT[key] = 0
        else:
            print "ERROR: duplicate VASE variant key = %s" % (key)
            raise SystemExit

    in_han.close()
    NUM_UNIQ_VASE_VARS = len(VASE_DICT)
    print "Found %s unique VASE denovo variants for CHILD (%s)" % (NUM_UNIQ_VASE_VARS,CHILD_ID)
    sys.stdout.flush()





def read_G2P(in_file):

    global NUM_UNIQ_G2P_VARS

    # first, read the G2P variants on canonical transcripts for each of the parents in genes considered under the OBS=monoallelic scenario
    MOM_DICT = {}	# key: chr:start:end:ref:alt ; value: ZYG
    DAD_DICT = {}       # key: chr:start:end:ref:alt ; value: ZYG

    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]

        # ignore variants in the child
        sam_id = data[0]
        if sam_id == CHILD_ID:
            continue
        
        # ignore variants not on canonical transcripts
        is_canon = data[3]
        if is_canon != 'is_canonical':
            continue
        
        # select only variants in genes being considered under the dominant model
        inher_model = data[4]
        if inher_model != 'OBS=monoallelic':
            continue

        # this is a list of variants (n>=1) on a canonical transcript in a gene being considered under the dominant model
        # and seen in one of the parents
        var_list = [y.strip() for y in data[6].split(';')]
        for v in var_list:
            v_details = [z.strip() for z in v.split(':')]
            chr = v_details[0]
            start = int(v_details[1])
            end = int(v_details[2])
            ref = v_details[3]
            alt = v_details[4]
            GT = v_details[5]
            key = '%s:%s:%s:%s:%s' % (chr,start,end,ref,alt)

            if sam_id == MOM_ID:
                if key not in MOM_DICT:
                    MOM_DICT[key] = GT
                else:
                    print "ERROR: a duplicate variant in dominant gene for MOM"
                    print line
                    raise SystemExit

            elif sam_id == DAD_ID:
                if key not in DAD_DICT:
                    DAD_DICT[key] = GT
                else:
                    print "ERROR: a duplicate variant in dominant gene for DAD"
                    print line
                    raise SystemExit
            else:
                print "ERROR: cannot identify the person for this variant"
                print line
                raise SystemExit   

    in_han.close()
    print "Found %s unique G2P variants in MOM (%s) on canon transcript in genes being considered under the DOM model" % (len(MOM_DICT),MOM_ID)
    print "Found %s unique G2P variants in DAD (%s) on canon transcript in genes being considered under the DOM model" % (len(DAD_DICT),DAD_ID)
    sys.stdout.flush()





    # now, read the file again to collect child variants: under any inheritance model
    # if the gene is being considered under the dominant model, exclude variants seen in UNAFFECTED mother/father

    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]

        # ignore variants in other memebers of the trio 
        sam_id = data[0]
        if sam_id != CHILD_ID:
            continue

        # ignore variants not on canonical transcripts
        is_canon = data[3]
        if is_canon != 'is_canonical':
            continue  

        inher_model = data[4]
        gene = data[1] 
        transcript = data[2] 

        var_list = [y.strip() for y in data[6].split(';')]
        for v in var_list:
            v_details = [z.strip() for z in v.split(':')]
            chr = v_details[0]
            start = int(v_details[1])
            end = int(v_details[2])
            ref = v_details[3]
            alt = v_details[4]
            GT = v_details[5]

            if inher_model == 'OBS=monoallelic':
                key = '%s:%s:%s:%s:%s' % (chr,start,end,ref,alt)
                if (key in MOM_DICT) and (MOM_STAT == "UNAFFECTED"):
                    MOM_GT = MOM_DICT[key]
                    print "***[DOM model]*** Excluded CHILD var %s CHILD_GT = %s, MOM_GT = %s, MOM_STAT = %s" % (key,GT,MOM_GT,MOM_STAT)
                    continue

#                    if GT == 'HET' and (MOM_GT == 'HET' or MOM_GT == 'HOM'):
#                        print "***Excluded CHILD var %s CHILD_GT = %s, MOM_GT = %s, MOM_STAT = %s [DOM model]" % (key,GT,MOM_GT,MOM_STAT)
#                        continue
#                    else:
#                        pass

                if (key in DAD_DICT) and (DAD_STAT == "UNAFFECTED"):
                    DAD_GT = DAD_DICT[key]
                    print "***[DOM model]*** Excluded CHILD var %s CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s" % (key,GT,DAD_GT,DAD_STAT)
                    continue

#                    if GT == 'HET' and (DAD_GT == 'HET' or DAD_GT == 'HOM'):
#                        print "***Excluded CHILD var %s CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s [DOM model]" % (key,GT,DAD_GT,DAD_STAT)
#                        continue
#                    else:
#                        pass


            # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
            if len(ref) > 1 and len(alt) > 1:				# an INDEL - not normalized
                if len(ref) < len(alt):					# an INS
                    orig_start = start
                    orig_ref = ref
                    orig_alt = alt 
                    start = orig_start
                    ref = '-'
                    alt = orig_alt[len(orig_ref):]
                    print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)  
                else:							# a DEL
                    print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                    print line
                    raise SystemExit 

            
            # record the data for CHILD G2P variants (both DOM and REC model)
            key = '%s:%s:%s:%s' % (chr,start,ref,alt)
            
            if key not in G2P_DICT:
                G2P_DICT[key] = 0
            else:
                # print "ERROR: duplicate G2P variant key = %s" % (key)
                # raise SystemExit
                # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
                pass

            # and record the required data (transcript,gene,GT) in G2P_DATA
            if key not in G2P_DATA:
                G2P_DATA[key] = (transcript,gene,GT)
            else:
                # print "ERROR: duplicate G2P variant key = %s" % (key)
                # raise SystemExit
                # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
                pass
                          
    in_han.close()
    NUM_UNIQ_G2P_VARS = len(G2P_DICT)
    print "Found %s unique G2P variants for CHILD (%s) after DOM model filtering" % (NUM_UNIQ_G2P_VARS,CHILD_ID)
    sys.stdout.flush()





def read_ped(in_file):

    global CHILD_ID
    global CHILD_SEX
    global DEC_CHILD_SEX
    global MOM_ID
    global MOM_STAT 
    global DAD_ID
    global DAD_STAT

    CHILD_ID = 0
    CHILD_SEX = 0
    MOM_ID = 0
    MOM_STAT = 0
    DAD_ID = 0
    DAD_STAT = 0

    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]
        if data[2] != '0' and data[3] != '0':			# this is the child in the trio
            if CHILD_ID == 0:
                CHILD_ID = data[1]
            else:						# seen another child
                print "ERROR: already have seen a child (possibly a quad) - cannot handle at the moment"  
                raise SystemExit

            if DAD_ID == 0: 
                DAD_ID = data[2] 
            else:
                if data[2] != DAD_ID:
                    print "ERROR: DAD_ID mismatch - from child line dad_id = %s, from dad line dad_id = %s" % (data[2],DAD_ID)
                    raise SystemExit   
            if MOM_ID == 0:
                MOM_ID = data[3]
            else:
                if data[3] != MOM_ID:
                    print "ERROR: MOM_ID mismatch - from child line mom_id = %s, from mom line mom_id = %s" % (data[3],MOM_ID)
                    raise SystemExit

            CHILD_SEX = int(data[4])
            if CHILD_SEX == 1:		# boy
                DEC_CHILD_SEX = '46XY'
            elif CHILD_SEX == 2:	# girl
                DEC_CHILD_SEX = '46XX'
            else:
                print "ERROR: proband sex unknown"
                print line
                raise SystemExit

            if int(data[5]) != 2:
                print "ERROR: child not affected"
                print line
                raise SystemExit  


        elif int(data[2]) == 0 and int(data[3]) == 0:		# this is a parent record
            if int(data[4]) == 1:				# this is the dad
                if int(data[5]) == 1:
                    DAD_STAT = "UNAFFECTED"
                elif int(data[5]) == 2:
                    DAD_STAT = "AFFECTED" 
                else:  
                    print "ERROR: cannot establish the dad's status"
                    print line 
                    raise SystemExit

                if DAD_ID == 0:
                    DAD_ID = data[1]
                else:
                    if data[1] != DAD_ID:
                        print "ERROR: DAD_ID mismatch - from dad line dad_id = %s, from child line dad_id = %s" % (data[1],DAD_ID)
                        raise SystemExit
                
            if int(data[4]) == 2:                               # this is the mom
                if int(data[5]) == 1:
                    MOM_STAT = "UNAFFECTED"
                elif int(data[5]) == 2:
                    MOM_STAT = "AFFECTED"
                else:
                    print "ERROR: cannot establish mom's status"
                    print line
                    raise SystemExit

                if MOM_ID == 0:
                    MOM_ID = data[1]
                else:
                    if data[1] != MOM_ID:
                        print "ERROR: MOM_ID mismatch - from mom line mom_id = %s, from child line mom_id = %s" % (data[1],MOM_ID)
                        raise SystemExit
        else:
            print "ERROR: problematic PED line"
            print line
            raise SystemExit 






def read_map_file(in_file):
    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]
        dec_id = data[0]
        int_id = data[1]
        if dec_id not in MAP_DICT:
            MAP_DICT[dec_id] = int_id
        else:
            print "ERROR: duplicate DECIPHER/family ID = %s" % (dec_id)
            raise SystemExit
    in_han.close()  



def read_trans_map(in_file):
    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]
        old_trans_id = data[0]
        new_trans_id = data[1]
        if old_trans_id not in TRANS_DICT:
            TRANS_DICT[old_trans_id] = new_trans_id
        else:
            print "ERROR: duplicate old transcript ID = %s" % (old_trans_id)
            raise SystemExit
    in_han.close()






if __name__ == '__main__':
    if len(sys.argv) == 12:
        go(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5],sys.argv[6],sys.argv[7],sys.argv[8],sys.argv[9],sys.argv[10],sys.argv[11])
    else:
        print "Suggested use: time python /home/u035/u035/shared/scripts/generate_DEC_IGV.py \
        2820-gatk-haplotype-annotated.2820_2820.vcf.gz \
        ../output_dd/2820_log_dir/2820.report.txt \
        /scratch/u035/u035/shared/analysis/wes_pilot/VASE/08042019/output/2820_2820.strict.denovo.vcf \
        2820_2820 \
        2820_2820.DEC.txt \
        DECIPHER_DIR \
        IGV_DIR \
        FAM_IGV_DIR \
        SOURCE_DIR  \
        fam_id \
        map_dir \
        trans_map_file"
        raise SystemExit