Skip to content
Snippets Groups Projects
generate_DEC_IGV_solo_scripts.py 45.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#	input:
#		the family PED file				[${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped]
#		the VCF folder containing the proband VCF	[${PROJECT_ID}/VCF/  ${PLATE_ID}_${FAMILY_ID}.ready.${CHILD_ID}_${FAMILY_ID}.vcf.gz]
#		G2P text output for the trio			[${FAMILY_ID}.report.txt]
#
#
#	output:
#		DECIPHER formated file for the proband
#		- all (filtered) G2P variants
#
#	checks:
#		all G2P variants found in the individual VCF
#
#       Author: MH
#       last modified: MARCH 04, 2022



import sys
import os
import csv
import gzip
from collections import defaultdict


ASSEMBLY = 'GRCh38'
INTERGENIC = 'No'
ACCESS = 'No'


G2P_DICT = {}		# key: chr:pos:ref:alt; value: 0 (if found only in G2P); 1 (if found in VCF) - for variants found in G2P output for this CHILD_ID
G2P_DATA = {}		# key: chr:pos:ref:alt; value: (transcript,gene,GT)


NUM_UNIQ_G2P_VARS = 0


CHILD_ID = 0
CHILD_SEX = 0
DEC_CHILD_SEX = 'unknown'


ALL_CHILD_DICT = {}		# key: chr:pos:ref:alt; value: (num_ALT_reads,VAF)
CHILD_INHER_DICT = {}           # key: chr:pos:ref:alt; value: "Unknown" - all variants in a singleton are of unknown inheritance


SNAP_FLANK = 25


MAP_DICT = {}			# key: family_id (aka decipher_id); value: internal (decipher) ID
TRANS_DICT = {}			# key: transcriptID not found in DECIPHER; value: the chosen replacement transcriptID from those available in DECIPHER


FS_THRESH = float(60)
SOR_THRESH = float(3)



def go(dec_map_file,trans_map_file,ped_file,in_g2p_file,fam_igv_dir,vcf_dir,plate_id,fam_id,dec_dir,fam_bam_dir):

    # read the decipher to internal ID mapping file
    read_map_file(dec_map_file)


    # read the transcript mapping file
    read_trans_map(trans_map_file)

    # read the ped file and establish CHILD_ID,CHILD_SEX,MOM_ID,DAD_ID
    read_ped(ped_file)

    if (CHILD_ID != 0) and (CHILD_SEX != 0) and (DEC_CHILD_SEX != 'unknown'):
        print "======================================"
        print "Analyzing singleton CHILD_ID = %s, CHILD_SEX = %s, DEC_CHILD_SEX = %s" % (CHILD_ID,CHILD_SEX,DEC_CHILD_SEX)
        print "======================================"
        sys.stdout.flush()
    else:
        print "ERROR: problems reading the PED file = %s" % (ped_file)
        raise SystemExit


    # read the G2P output for this family
    read_G2P(in_g2p_file)


    # now read the proband VCFs and record all the variants
    child_vcf_file = '%s/%s_%s.ready.%s.vcf.gz' % (vcf_dir,plate_id,fam_id,CHILD_ID)
    read_all_VCF_vars(child_vcf_file,ALL_CHILD_DICT)
    print "Found %s unique VCF variants for CHILD (%s)" % (len(ALL_CHILD_DICT),CHILD_ID)
    sys.stdout.flush()

    # now go over all child variants and set the inheritance to "Unknown"
    num_child_vars_assigned = 0
    for key,v in ALL_CHILD_DICT.iteritems():
        CHILD_INHER_DICT[key] = 'Unknown'
    assigned_ratio = (float(num_child_vars_assigned)/float(len(ALL_CHILD_DICT)))*100.0
    print "%s of the %s unique VCF variants (%.2f%%) for CHILD (%s) has been assigned to parents" % (num_child_vars_assigned,len(ALL_CHILD_DICT),assigned_ratio,CHILD_ID)
    sys.stdout.flush()



    # setup the DECIPHER output file
    out_dec_file = '%s/%s_DEC_FLT.csv' % (dec_dir,CHILD_ID)		################################
    out_han = open(out_dec_file,'w')
    out_han.write('Internal reference number or ID,Chromosome,Start,Genome assembly,Reference allele,Alternate allele,Transcript,Gene name,Intergenic,Chromosomal sex,Other rearrangements/aneuploidy,Open-access consent,Age at last clinical assessment,Prenatal age in weeks,Note,Inheritance,Pathogenicity,Phenotypes,HGVS code,Genotype,Responsible contact\n')


    # setup the IGV snapshot file
    out_igv_file = '%s/IGV/%s.solo.snapshot.FLT.txt' % (dec_dir,CHILD_ID)	#################################
    out_igv_han = open(out_igv_file,'w')
    out_igv_han.write('new\n')
    out_igv_han.write('genome hg38\n')
    out_igv_han.write('mkdir -p "%s"\n' % (fam_igv_dir))
    out_igv_han.write('new\n')

    child_bam = '%s/%s/%s-ready.bam' % (fam_bam_dir,CHILD_ID,CHILD_ID)
    out_igv_han.write('load %s\n' % (child_bam))

    out_igv_han.write('snapshotDirectory "%s"\n' % (fam_igv_dir))
    out_igv_han.write('\n')


    # now read the child VCF, check if the variant in the G2P output, if yes:
    # set the value in the dict to 1
    # print out to to output file

    in_cntr = 0
    out_cntr = 0

    child_vcf_file = '%s/%s_%s.ready.%s.vcf.gz' % (vcf_dir,plate_id,fam_id,CHILD_ID)
    in_han = gzip.open(child_vcf_file,'r')

    for line in in_han:
        if line.startswith('#'):
            continue

        in_cntr += 1

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = int(data[1])
        ref = data[3]
        alt = data[4]

        # extract FS and SOR
        FS = ''
        SOR = ''
        infos = [y.strip() for y in data[7].strip().split(';')]
        for info in infos:
            if info.startswith('FS='):
                tag,FS = info.split('=')
                FS = float(FS)
            elif info.startswith('SOR='):
                tag,SOR = info.split('=')
                SOR = float(SOR)

        VCF_VAR = data[9]

        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)
        inher_stat = CHILD_INHER_DICT[key]




        ##############################################################
        # different processing depending on being a SNP, INS, or DEL #
        ##############################################################

        if len(ref) == len(alt):			# SNP
            if len(ref) != 1:
                print "ERROR: MNPs are not supported!"
                print line
                raise SystemExit

            key_to_match = '%s:%s:%s:%s' % (chr,pos,ref,alt)
            if key_to_match in G2P_DICT:
                G2P_DICT[key_to_match] = 1
                trans = G2P_DATA[key_to_match][0]
                gene = G2P_DATA[key_to_match][1]
                GT = G2P_DATA[key_to_match][2]

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit

                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':			# a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':		# a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit

                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene)
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:				# if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
                out_cntr += 1
                out_han.write(to_write)

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK

                # check if above FS/SOR_THRESH to include in the snapshot name
                if (FS == '') or (SOR == ''):
                    flag = 'NA'
                elif (FS >= FS_THRESH) and (SOR >= SOR_THRESH):
                    flag = 'FS_%.1f_SOR_%.1f' % (FS,SOR)
                else:
                    flag = 'OK'
                i_name = '%s_%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt,flag)

                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('squish\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')



        elif len(ref) > len(alt):			# DEL
            if len(alt) != 1:
                print "ERROR with a deletion"
                print line
                raise SystemExit

            G2P_key_to_match = '%s:%s:%s:-' % (chr,pos+1,ref[1:])
            if G2P_key_to_match in G2P_DICT:
                G2P_DICT[G2P_key_to_match] = 1
                trans = G2P_DATA[G2P_key_to_match][0]
                gene = G2P_DATA[G2P_key_to_match][1]
                GT = G2P_DATA[G2P_key_to_match][2]

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit
                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':                 # a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':               # a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit

                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene)
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:                         # if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
                out_cntr += 1
                out_han.write(to_write)

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK

                # check if above FS/SOR_THRESH to include in the snapshot name
                if (FS == '') or (SOR == ''):
                    flag = 'NA'
                elif (FS >= FS_THRESH) and (SOR >= SOR_THRESH):
                    flag = 'FS_%.1f_SOR_%.1f' % (FS,SOR)
                else:
                    flag = 'OK'
                i_name = '%s_%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt,flag)

                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('squish\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')



        elif len(ref) < len(alt):                       # INS
            if len(ref) != 1:
                print "ERROR with an insertion"
                print line
                raise SystemExit

            G2P_key_to_match = '%s:%s:-:%s' % (chr,pos+1,alt[1:])
            if G2P_key_to_match in G2P_DICT:
                G2P_DICT[G2P_key_to_match] = 1
                trans = G2P_DATA[G2P_key_to_match][0]
                gene = G2P_DATA[G2P_key_to_match][1]
                GT = G2P_DATA[G2P_key_to_match][2]

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit
                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':                 # a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':               # a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit


                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene)
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:                         # if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
                out_cntr += 1
                out_han.write(to_write)

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK

                # check if above FS/SOR_THRESH to include in the snapshot name
                if (FS == '') or (SOR == ''):
                    flag = 'NA'
                elif (FS >= FS_THRESH) and (SOR >= SOR_THRESH):
                    flag = 'FS_%.1f_SOR_%.1f' % (FS,SOR)
                else:
                    flag = 'OK'
                i_name = '%s_%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt,flag)

                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('squish\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')


        else:
            print "Cannot establish the type of this VCF variant"
            print line
            raise SystemExit

    in_han.close()
    out_han.close()
    out_igv_han.close()






    ### check if all G2P and VASE variants were found/matched in the proband's VCF
    found_all_G2P = True
    for k,v in G2P_DICT.iteritems():
        if int(v) == 0:
            print k
            found_all_G2P = False
            break

    if found_all_G2P:
        print "OK: Found all %s G2P variants in the proband's VCF file" % (len(G2P_DICT))
    else:
        print "ERROR: Could not find all G2P variants in the probands VCF file"
        raise SystemExit


    ### check if all G2P variants are written out
    if out_cntr == NUM_UNIQ_G2P_VARS:
        print "OK: All G2P vars are recorded in the output DECIPHER file"
    else:
        print "ERROR: *NOT* all G2P vars are recorded in the G2P VCF file"

    print "Wrote %s variants in outfile = %s" % (out_cntr,out_dec_file)
    print "The batch snapshot file = %s" % (out_igv_file)
    sys.stdout.flush()










def read_all_VCF_vars(in_vcf_file,THIS_DICT):

    in_han = gzip.open(in_vcf_file,'r')
    for line in in_han:
        if line.startswith('#'):
            continue

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = int(data[1])
        ref = data[3]
        alt = data[4]


        # did the splitting and normalizing - should not have multiallelic variants
        if alt.find(',') != -1:
            print "ERROR: found multiallelic variant"
            print line
            raiseSystemExit

        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)
        if key not in THIS_DICT:
            THIS_DICT[key] = 1
        else:
            print "ERROR: duplicate key = %s in %s" % (key,in_vcf_file)
            raise SystemExit

    in_han.close()















def read_G2P(in_file):

    global NUM_UNIQ_G2P_VARS

    known_OBS_states = ['monoallelic_autosomal','biallelic_autosomal','monoallelic_X_hem','monoallelic_X_het']

    # first, read the G2P variants on canonical transcripts for the singleton
    CHILD_DICT = defaultdict(dict)	# 1st level key: OBS state; 2nd level key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]

        # get the individual_id
        sam_id = data[0]

        # ignore variants not on canonical transcripts
        is_canon = data[3]
        if is_canon != 'is_canonical':
            continue

        # split the variants based on the gene's OBS model of inheritance
        inher_model = data[4]
        aaa,OBS_state = inher_model.split('=')

        if OBS_state not in known_OBS_states:
            print "ERROR: unknown OBS state = %s in %s" % (OBS_state,in_file)
            raise SystemExit

        # get the gene name in format ENSG00000165899(C12orf64,OTOGL) or gene-MYT1L(MYT1L)
        gene_name = data[1]

        # get the transcript name in format ENST00000238647 or gene-MYT1L(MYT1L)
        transcript = data[2]


        # this is a list of variants (n>=1) on a canonical transcript in a gene being considered under any OBS state
        var_list = [y.strip() for y in data[6].split(';')]
        for v in var_list:
            v_details = [z.strip() for z in v.split(':')]
            chr = v_details[0]
            start = int(v_details[1])
            end = int(v_details[2])
            ref = v_details[3]
            alt = v_details[4]
            GT = v_details[5]
            second_key = '%s:%s:%s:%s:%s' % (chr,start,end,ref,alt)


            if sam_id == CHILD_ID:
                # check for duplication
                if OBS_state not in CHILD_DICT:
                    CHILD_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                elif second_key not in CHILD_DICT[OBS_state]:
                    CHILD_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                else:		# already recorded this variant
                     		# if we have refseq recorded and this is ensembl --> replace
                    if not CHILD_DICT[OBS_state][second_key][1].startswith('ENSG'):		# recorded is refseq
                        if gene_name.startswith('ENSG'):					# this is ensembl
                            CHILD_DICT[OBS_state][second_key] = (GT,gene_name,transcript) 	# replace
                        else:									# this is refseq again, ignore
                            pass
                    else:									# recorded is ensembl, ignore
                        pass

            else:
                print "ERROR: cannot identify the person for this variant"
                print line
                raise SystemExit

    in_han.close()


    ### print out the number of unique G2P variants in CHILD ###
    child_mono = 0
    child_bi = 0
    child_hem = 0
    child_het = 0

    if 'monoallelic_autosomal' in CHILD_DICT:
        child_mono = len(CHILD_DICT['monoallelic_autosomal'])
    if 'biallelic_autosomal' in CHILD_DICT:
        child_bi = len(CHILD_DICT['biallelic_autosomal'])
    if 'monoallelic_X_hem' in CHILD_DICT:
        child_hem = len(CHILD_DICT['monoallelic_X_hem'])
    if 'monoallelic_X_het' in CHILD_DICT:
        child_het = len(CHILD_DICT['monoallelic_X_het'])

    print "CHILD (%s): number of unique G2P variants on canon transcript in the following OBS states" % (CHILD_ID)
    print "    monoallelic_autosomal: %s" % (child_mono)
    print "    biallelic_autosomal: %s" % (child_bi)
    print "    monoallelic_X_hem: %s" % (child_hem)
    print "    monoallelic_X_het: %s" % (child_het)




    ######################################################################################################
    ####    Dominant filtering                                                                        ####
    ####    if the gene has been considered under the dominant model (OBS == monoallelic_autosomal)   ####
    ####    exclude child variants seen in UNAFFECTED mother/father, regardless of GT                 ####
    ######################################################################################################


    print ""
    print "===   monoallelic autosomal (DOMINANT) filtering   ==="


    for key in CHILD_DICT['monoallelic_autosomal']:	# this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

        CHILD_GT = CHILD_DICT['monoallelic_autosomal'][key][0]
        CHILD_GENE = CHILD_DICT['monoallelic_autosomal'][key][1]
        CHILD_TRANS = CHILD_DICT['monoallelic_autosomal'][key][2]

#        if (key in MOM_DICT['monoallelic_autosomal']) and (MOM_STAT == "UNAFFECTED"):
#            MOM_GT = MOM_DICT['monoallelic_autosomal'][key][0]
#            print "***[DOMINANT model]*** Excluded CHILD var %s in gene = %s, CHILD_GT = %s, MOM_GT = %s, MOM_STAT = %s" % (key,CHILD_GENE,CHILD_GT,MOM_GT,MOM_STAT)
#            continue
#
#        if (key in DAD_DICT['monoallelic_autosomal']) and (DAD_STAT == "UNAFFECTED"):
#            DAD_GT = DAD_DICT['monoallelic_autosomal'][key][0]
#            print "***[DOMINANT model]*** Excluded CHILD var %s in gene = %s, CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s" % (key,CHILD_GENE,CHILD_GT,DAD_GT,DAD_STAT)
#            continue


        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
        chr,start,end,ref,alt = key.split(":")
        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
            if len(ref) < len(alt):                                 # an INS
                orig_start = start
                orig_ref = ref
                orig_alt = alt
                start = orig_start
                ref = '-'
                alt = orig_alt[len(orig_ref):]
                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
            else:                                                   # a DEL
                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                print line
                raise SystemExit

        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

        # record the data for CHILD G2P variants (for OBS=monoallelic)

        if new_key not in G2P_DICT:
            G2P_DICT[new_key] = 0
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass

        # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
        if new_key not in G2P_DATA:
            G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass


    NUM_UNIQ_G2P_VARS = len(G2P_DICT)
    print "Found %s unique G2P variants in CHILD (%s) after considering MONOALLELIC genes" % (NUM_UNIQ_G2P_VARS,CHILD_ID)
    sys.stdout.flush()

    print ""





    ##############################################################################################################
    ####    Recessive filtering                                                                               ####
    ####    under the recessive model (OBS == biallelic_autosomal) - consider ALL variants per gene           ####
    ####    must all be HET in CHILD, GT in parent does not matter                                            ####
    ####    all of them must *clearly* come from only one of the parents (maternally/paternally + biparental) ####
    ####    and this parent must be unaffected                                                                ####
    ####    if all these: then exclude all child variants in this gene                                        ####
    ##############################################################################################################


    print ""
    print "===   biallelic autosomal (RECESSIVE) filtering   ==="


    GENE_KEY_GT = defaultdict(dict)		# for child - 1st level key: gene_name; 2nd level key: chr:start:end:ref:alt; value: (GT,trans)

    # process all variants in biallelic genes in child
    for key in CHILD_DICT['biallelic_autosomal']:		# this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)
        b_GT = CHILD_DICT['biallelic_autosomal'][key][0]
        b_gene = CHILD_DICT['biallelic_autosomal'][key][1]
        b_trans = CHILD_DICT['biallelic_autosomal'][key][2]
        GENE_KEY_GT[b_gene][key] = (b_GT,b_trans)

    # iterate over genes in GENE_KEY_GT
    for g in GENE_KEY_GT: 			# this is the biallelic gene name
#        all_HET = True
#
#        # iterate over variants in this gene
#        for kx in GENE_KEY_GT[g]:		# this the second key: chr:start:end:ref:alt
#            if GENE_KEY_GT[g][kx][0] == 'HOM':     # there is a HOM variant in the child - NO filtering
#                all_HET = False
#                break
#
#        if all_HET:				# for this gene
#        # all variants in this gene in the CHILD are HET, check if all come from a single unaffected parent
#        # if yes, filter out and write a message to the log file
#        # if not, to be added to G2P_DICT and G2P_DATA for further processing
#
#            all_from_one_parent = True
#
#            # iterate again over the variants in this gene
#            VAR_SOURCE_LIST = {}		# key: chr:start:end:ref:alt in child; value: (NONE) or (MOM or DAD or BOTH and the parent is UNAFFECTED)
#
#            for ky in GENE_KEY_GT[g]:		# this the second key: chr:start:end:ref:alt
#
#                this_var_status = 'NONE'
#
#                if ((ky in MOM_DICT['biallelic_autosomal']) or (ky in MOM_DICT['monoallelic_autosomal'])) and (MOM_STAT == "UNAFFECTED"):
#                    this_var_status = 'MOM'
#                if ((ky in DAD_DICT['biallelic_autosomal']) or (ky in DAD_DICT['monoallelic_autosomal'])) and (DAD_STAT == "UNAFFECTED"):
#                    if this_var_status == 'NONE':
#                        this_var_status = 'DAD'
#                    elif this_var_status == 'MOM':
#                        this_var_status = 'BOTH'
#
#                VAR_SOURCE_LIST[ky] = this_var_status
#
#            # have collected the parent source for all variants in this gene
#            tot_num_vars = len(VAR_SOURCE_LIST)
#            num_mom = 0
#            num_dad = 0
#            num_none = 0
#            for kt,v in VAR_SOURCE_LIST.iteritems():
#                if v == 'NONE':
#                    num_none += 1
#                elif v == 'MOM':
#                    num_mom += 1
#                elif v == 'DAD':
#                    num_dad += 1
#                elif v == 'BOTH':
#                    num_mom += 1
#                    num_dad += 1
#                else:
#                    print "ERROR: cannot understand the source parent = %s" % (v)
#                    raise SystemExit
#
#            if num_none > 0:
#                all_from_one_parent = False
#            elif num_mom < tot_num_vars and num_dad < tot_num_vars:
#                all_from_one_parent = False
#
#            # if all variants in the child in this gene are found in single unaffected parent - filter out
#            if all_from_one_parent:
#                for kz in GENE_KEY_GT[g]:
#                    print "***[RECESSIVE model]*** Excluded CHILD HET var %s in gene = %s, found in = %s, PARENT_STAT = UNAFFECTED" % (kz,g,VAR_SOURCE_LIST[kz])
#                continue
#
#        # end processing all HET variants in the proband - if all from single unaffected parent they have been excluded, message to the log written
#        # and gone to evaluating the next biallelic gene in the child
#

#        # if here
#        # - either not all CHILD variants in this gene are not HET, or
#        # - not all of them can be traced to a single unaffected parent
#        # --> add to be processed
#
        # here we are at gene level, must iterate over all variants in this gene
        # iterate over variants in this gene
        for kkk in GENE_KEY_GT[g]:                # this the second key: chr:start:end:ref:alt

            CHILD_GT = CHILD_DICT['biallelic_autosomal'][kkk][0]
            CHILD_GENE = CHILD_DICT['biallelic_autosomal'][kkk][1]
            CHILD_TRANS = CHILD_DICT['biallelic_autosomal'][kkk][2]

            # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
            chr,start,end,ref,alt = kkk.split(":")
            if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
                if len(ref) < len(alt):                                 # an INS
                    orig_start = start
                    orig_ref = ref
                    orig_alt = alt
                    start = orig_start
                    ref = '-'
                    alt = orig_alt[len(orig_ref):]
                    print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
                else:                                                   # a DEL
                    print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                    print line
                    raise SystemExit

            new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

            # record the data for CHILD G2P variants (for OBS=biallelic)
            if new_key not in G2P_DICT:
                G2P_DICT[new_key] = 0
            else:
                # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
                # raise SystemExit
                # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
                pass

            # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
            if new_key not in G2P_DATA:
                G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
            else:
                # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
                # raise SystemExit
                # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
                pass

    NUM_UNIQ_G2P_VARS = len(G2P_DICT)
    print "Found %s unique G2P variants in CHILD (%s) after considering MONOALLELIC and BIALLELIC genes" % (NUM_UNIQ_G2P_VARS,CHILD_ID)
    sys.stdout.flush()
    print ""









    ####################################################################################################################
    ####    X-linked filtering                                                                                      ####
#.#    ####    under the x-linked model (OBS == hemizygous or x-linked dominant, but NOT x-linked over-dominance)      ####
    ####    under the chrX model (OBS == monoallelic_X_hem or monoallelic_X_het)                                    ####
    ####    exclude child HET variants if seen as HOM in UNAFFECTED father                                          ####
    ####													    ####
    ####    Note 18/01/2022    									    		    ####
    ####    This is a temporary solution, since x-linked dominant and x-linked over-dominance -> monoallelic_X_het  ####
    ####    and we should filter x-linked dominant and monoallelic_X_hem, but not x-linked over-dominance           ####
    ####    the code below treats x-linked over-dominance as the others (i.e. filters, while it should not)         ####
    ####    Issue flagged to G2P plug-in team, awaiting their fix						    ####
    ####    for now manually scan the output of G2P for the proband (both for boys and girls)                       ####
    ####        to check if any variant has been called in PCDH19 and EFNB1                                         ####
    ####    also for all the variants filtered out from monoallelic_X_het we will print in the log the gene name    ####
    ####################################################################################################################


    print ""
    print "===   X-linked filtering   ==="

    #######################################
    ### process monoallelic_X_hem genes ###
    #######################################

    for key in CHILD_DICT['monoallelic_X_hem']:       # this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

        CHILD_GT = CHILD_DICT['monoallelic_X_hem'][key][0]
        CHILD_GENE = CHILD_DICT['monoallelic_X_hem'][key][1]
        CHILD_TRANS = CHILD_DICT['monoallelic_X_hem'][key][2]

#        if CHILD_GT == 'HOM':							# do NOT filter HOM variants in proband (i.e., hemizygous in boy or HOM in girl)
#            pass
#        else:
#            if (key in DAD_DICT['monoallelic_X_hem']) and (DAD_STAT == "UNAFFECTED"):
#                DAD_GT = DAD_DICT['monoallelic_X_hem'][key][0]
#                if DAD_GT == 'HOM':						# i.e., hemizygous variant in unaffected father
#                    print "***[monoallelic_X_hem]*** Excluded CHILD var %s in gene = %s, CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s" % (key,CHILD_GENE,CHILD_GT,DAD_GT,DAD_STAT)
#                    continue
#
        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
        chr,start,end,ref,alt = key.split(":")
        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
            if len(ref) < len(alt):                                 # an INS
                orig_start = start
                orig_ref = ref
                orig_alt = alt
                start = orig_start
                ref = '-'
                alt = orig_alt[len(orig_ref):]
                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
            else:                                                   # a DEL
                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                print line
                raise SystemExit

        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

        # record the data for CHILD G2P variants (for OBS=monoallelic_X_hem)
        if new_key not in G2P_DICT:
            G2P_DICT[new_key] = 0
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass

        # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
        if new_key not in G2P_DATA:
            G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass



    #######################################
    ### process monoallelic_X_het genes ###
    #######################################

    for key in CHILD_DICT['monoallelic_X_het']:       # this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

        CHILD_GT = CHILD_DICT['monoallelic_X_het'][key][0]
        CHILD_GENE = CHILD_DICT['monoallelic_X_het'][key][1]
        CHILD_TRANS = CHILD_DICT['monoallelic_X_het'][key][2]

#        if CHILD_GT == 'HOM':                                                   # do NOT filter HOM variants (i.e., hemizygous in boy or HOM in girl)
#            pass
#        else:
#            if (key in DAD_DICT['monoallelic_X_het']) and (DAD_STAT == "UNAFFECTED"):
#                DAD_GT = DAD_DICT['monoallelic_X_het'][key][0]
#                if DAD_GT == 'HOM':                                             # i.e., x-linked dominant variant in unnafected father
#                    print "***[monoallelic_X_het]*** Excluded CHILD var %s in gene = %s, CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s" % (key,CHILD_GENE,CHILD_GT,DAD_GT,DAD_STAT)
#                    continue
#
        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
        chr,start,end,ref,alt = key.split(":")
        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
            if len(ref) < len(alt):                                 # an INS
                orig_start = start
                orig_ref = ref
                orig_alt = alt
                start = orig_start
                ref = '-'
                alt = orig_alt[len(orig_ref):]
                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
            else:                                                   # a DEL
                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                print line
                raise SystemExit

        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

        # record the data for CHILD G2P variants (for OBS=monoallelic_X_het)
        if new_key not in G2P_DICT:
            G2P_DICT[new_key] = 0
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass

        # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
        if new_key not in G2P_DATA:
            G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass



##.#    ########################################################################
##.#    ### process x-linked over-dominance  genes - no filtering to be done ###
##.#    ########################################################################
#
##.#    for key in CHILD_DICT['x-linked over-dominance']:       # this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)
#
##.#        CHILD_GT = CHILD_DICT['x-linked over-dominance'][key][0]
##.#        CHILD_GENE = CHILD_DICT['x-linked over-dominance'][key][1]
##.#        CHILD_TRANS = CHILD_DICT['x-linked over-dominance'][key][2]
#
##.#        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
##.#        chr,start,end,ref,alt = key.split(":")
##.#        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
##.#            if len(ref) < len(alt):                                 # an INS
##.#                orig_start = start
##.#                orig_ref = ref
##.#                orig_alt = alt
##.#                start = orig_start
##.#                ref = '-'
##.#                alt = orig_alt[len(orig_ref):]
##.#                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
##.#            else:                                                   # a DEL
##.#                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
##.#                print line
##.#                raise SystemExit
#
##.#        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)
#
##.#        # record the data for CHILD G2P variants (for OBS=x-linked over-dominance)