Skip to content
Snippets Groups Projects
process_quad.sh 41.3 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
#!/bin/bash
#SBATCH --cpus-per-task=1
#SBATCH --mem=16GB
#SBATCH --time=24:00:00
#SBATCH --job-name=process_quad
#SBATCH --output=process_quad.%A_%a.out
#SBATCH --error=process_quad.%A_%a.err



# setup PATH
export PATH=$PATH:/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin:/home/u035/u035/shared/software/bcbio/anaconda/bin
export PERL5LIB=$PERL5LIB:/home/u035/u035/shared/software/bcbio/anaconda/lib/site_perl/5.26.2


### folder structure for the downstream analysis - created by trio_setup.sh, done previously by the stanard trio-based pipeline ###
BASE=/home/u035/u035/shared/analysis/work
WORK_DIR=$BASE/${PROJECT_ID}
VCF_DIR=${WORK_DIR}/VCF
PED_DIR=${WORK_DIR}/PED
LOG_DIR=${WORK_DIR}/LOG
G2P_DIR=${WORK_DIR}/G2P
VASE_DIR=${WORK_DIR}/VASE
COV_DIR=${WORK_DIR}/COV
DEC_DIR=${WORK_DIR}/DECIPHER
IGV_DIR=${DEC_DIR}/IGV
CNV_DIR=${WORK_DIR}/CNV
BAMOUT_DIR=${WORK_DIR}/BAMOUT
SCRIPTS_DIR=/home/u035/u035/shared/scripts


# other files to be used
TARGETS=/home/u035/u035/shared/resources/G2P/DDG2P.20210706.plus15bp.merged.bed			# OK
CLINVAR=/home/u035/u035/shared/resources/G2P/DDG2P.20210706.clinvar.20210626.plus15bp.txt	# OK
BLACKLIST=/home/u035/u035/shared/resources/blacklist/current_blacklist.txt			# OK
TRANS_MAP=/home/u035/u035/shared/resources/trans_map/current_trans_map.txt			# OK


### TOOLS ###
BCFTOOLS=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/bcftools
BGZIP=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/bgzip
TABIX=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/tabix
VT=/home/u035/u035/shared/software/bcbio/anaconda/bin/vt
VASE=/home/u035/u035/shared/software/bcbio/anaconda/bin/vase
GATK4=/home/u035/u035/shared/software/bcbio/anaconda/bin/gatk							# points to ../share/gatk4-4.2.1.0-0/gatk
GATK3=/home/u035/u035/shared/software/GenomeAnalysisTK-3.8/GenomeAnalysisTK.jar
PYTHON3=/home/u035/u035/shared/software/bcbio/anaconda/bin/python3							# points to python3.6
PYTHON2=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/python2.7
VEP="/home/u035/u035/shared/software/bcbio/anaconda/bin/perl /home/u035/u035/shared/software/bcbio/anaconda/bin/vep"	# points to ../share/ensembl-vep-100.4-0/vep
REFERENCE_GENOME=/home/u035/u035/shared/software/bcbio/genomes/Hsapiens/hg38/seq/hg38.fa



echo "SOURCE_DIR = ${SOURCE_DIR}"       # the general path to the source BAM files (VCF and PED already copied)		i.e. /home/u035/u035/shared/results
echo "BATCH_ID = ${BATCH_ID}"           # the ID of the batch being processed                                   	e.g. 19650_Ansari_Morad
echo "BATCH_NUM = ${BATCH_NUM}"         # the numerical part of the BATCH_ID                                            e.g. 19650
echo "PLATE_ID = ${PLATE_ID}"           # the PCR plate ID of the batch being currently processed,              	e.g. 19285
echo "PROJECT_ID = ${PROJECT_ID}"       # this the the folder (${BASE}/${PROJECT_ID}) where the downstream analysis will be done
echo "VERSION_N = ${VERSION_N}"         # the version of the alignment and genotyping analysis
echo "FAMILY_ID = ${FAMILY_ID}"		# the family ID of this family with affected probands
echo "KID_1_ID = ${KID_1_ID}"		# the ID of the first affected proband, in the format INDI_ID
echo "KID_2_ID = ${KID_2_ID}"           # the ID of the second affected proband
echo "PAR_1_ID = ${PAR_1_ID}"           # the ID of the first unaffected parent, in the format INDI_ID
echo "PAR_2_ID = ${PAR_2_ID}"           # the ID of the second unaffected parent
echo "DECIPHER_ID = ${DECIPHER_ID}"	# the DECIPHER_ID for this family




# change to the LOG folder
cd ${LOG_DIR}



#########################################################################################################
###   check the PED file to make sure exactly 2 affected probands with exactly 2 unaffected parents   ###
#########################################################################################################

echo ""
echo ""
echo "checking the ${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped file..."

time ${PYTHON2} ${SCRIPTS_DIR}/check_quad_PED.py ${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped

# check if the PED file checks were successful (python exit code = 0), if not exit the bash script
ret=$?
if [ $ret -ne 0 ]; then
     echo "...it appears that the PED file does not corresponds to a quad family !"
     echo "ERROR: Aborting the analysis"
     exit
fi
echo ""
echo ""




##################################################################################################
##################################################################################################
###    split the quad to two trios, one for each child and process as a standard TRIO family   ###
##################################################################################################
##################################################################################################

echo ""
echo ""
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Analysing QUAD family ${FAMILY_ID} as two trios +++"
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""


# Create an array of kid ids to loop
KID_IDS=()
KID_IDS+=(${KID_1_ID})
KID_IDS+=(${KID_2_ID})


for KID_ID in ${KID_IDS[@]}; do
    echo ""
    echo "++++++++++++++++++++++++++++++++++++"
    echo "processing trio for child =  $KID_ID"
    echo "++++++++++++++++++++++++++++++++++++"
    echo ""

    #############################################################
    # generate this trio's PED file                             #
    # named: ${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ped #
    #############################################################
    quad_ped_file=${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped
    time ${PYTHON2} ${SCRIPTS_DIR}/generate_trio_PED_from_quad.py ${PED_DIR} ${quad_ped_file} ${KID_ID} ${PAR_1_ID} ${PAR_2_ID}


    #############################################################################
    # generate this trio's VCF file                                             #
    # named: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz #
    #############################################################################
    quad_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}-gatk-haplotype-annotated.vcf.gz
    trio_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz

    # tabix index the quad file just in case
    time ${TABIX} -p vcf ${quad_vcf_file}

    # extract a trio VCF for this kid
    time java -Xmx24g -jar ${GATK3} -T SelectVariants \
        -R ${REFERENCE_GENOME} \
        -V ${quad_vcf_file} \
        -sn ${KID_ID}_${FAMILY_ID} \
        -sn ${PAR_1_ID}_${FAMILY_ID} \
        -sn ${PAR_2_ID}_${FAMILY_ID} \
        -jdk_deflater \
        -jdk_inflater \
        -o ${trio_vcf_file} \
        -env


    ##################################################################################
    ###        DNU and clean the the family VCF                                    ###
    ### format: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz ###
    ##################################################################################

    echo ""
    echo ""
    echo "Performing DNU and cleaning of the ${PLATE_ID}_${FAMILY_ID}_${KID_ID}'s VCF file..."

    time ${VT} decompose -s ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.decomp.vcf.gz
    time ${VT} normalize ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.decomp.vcf.gz -r ${REFERENCE_GENOME} -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.norm.vcf.gz
    time ${VT} uniq ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.norm.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.DNU.vcf.gz

    # remove sites with AC=0
    time ${BCFTOOLS} view --min-ac=1 --no-update ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.DNU.vcf.gz > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.AC0.vcf

    # reset GT to no-call if num_ALT < num_ALT_THERSH or VAF < VAF_THRESH and GT != 0/0
    # exlude variants from the blacklist (matching on chr,pos,ref,alt)
    time ${PYTHON2} ${SCRIPTS_DIR}/filter_LQ_GT.py ${BLACKLIST} ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.AC0.vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf

    # bgzip and tabix it
    time cat ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf | ${BGZIP} > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz
    time ${TABIX} -p vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz


    # delete intermediate files - keep them for now for debugging reasons
    rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz
    rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.decomp.vcf.gz*
    rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.norm.vcf.gz*
    rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.DNU.vcf.gz*
    rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.AC0.vcf


    # to avoid bgzip pipe broken annoying, but not problematic message - skip the next step, the file will be used by G2P as IN_FILE and will be deleted last
    # rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf

    echo ""
    echo ""
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo "DNU, AC=0, num_ALT & VAF & blacklist cleaning and of the ${PLATE_ID}_${FAMILY_ID}_${KID_ID}'s VCF file: done"
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo ""
    echo ""



    ###################################################################
    ###     run G2P for this trio VCF (DD genes)                    ###
    ###     format: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf    ###
    ###################################################################

    echo "Performing G2P analysis (DD genes)for FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID}..."
    echo "Using ${TARGETS}"

    IN_FILE=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf
    G2P_LOG_DIR=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}_LOG_DIR
    mkdir ${G2P_LOG_DIR}
    TXT_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.report.txt
    HTML_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.report.html
    VCF_KEYS='gnomADe_r2.1.1_GRCh38|gnomADg_r3.1.1_GRCh38'

    time ${VEP} \
        -i ${IN_FILE} \
        --output_file ${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}_inter_out.txt \
        --force_overwrite \
        --assembly GRCh38 \
        --fasta ${REFERENCE_GENOME} \
        --offline \
        --merged \
        --use_given_ref \
        --cache --cache_version 100 \
        --dir_cache /home/u035/u035/shared/software/bcbio/genomes/Hsapiens/hg38/vep \
        --individual all \
        --transcript_filter "gene_symbol in /home/u035/u035/shared/resources/G2P/genes_in_DDG2P.20210706.txt" \
        --dir_plugins /home/u035/u035/shared/software/bcbio/anaconda/share/ensembl-vep-100.4-0 \
        --plugin G2P,file='/home/u035/u035/shared/resources/G2P/DDG2P.20210706.csv',af_from_vcf=1,confidence_levels='confirmed&probable&both RD and IF',af_from_vcf_keys=${VCF_KEYS},log_dir=${G2P_LOG_DIR},txt_report=${TXT_OUT},html_report=${HTML_OUT}

    echo ""
    echo ""
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo "G2P analysis of FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID}: done"
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo ""



    ###################################################################
    ###     run VASE for this trio VCF (de novo)                    ###
    ###   format: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz   ###
    ###################################################################

    echo "Performing de novo analysis with VASE for FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID} ..."

    IN_FILE=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz
    OUT_FILE=${VASE_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.denovo.vcf
    PED_FILE=${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ped

    time ${VASE} \
        -i ${IN_FILE} \
        -o ${OUT_FILE} \
        --log_progress \
        --prog_interval 100000 \
        --freq 0.0001 \
        --gq 30 --dp 10 \
        --het_ab 0.3 \
        --max_alt_alleles 1 \
        --csq all \
        --biotypes all \
        --control_gq 15 --control_dp 5 \
        --control_het_ab 0.01 \
        --control_max_ref_ab 0.05 \
        --de_novo \
        --ped ${PED_FILE}



    # do some filtering on the denovo VCFs - exclude variants not on the 24 chr, as well as variants in LCR and telomere/centromere regions
    ### actually, ignore the filtering of variants in LCR and telomere/centromere regions --> more variants with  “Unknown” status may be classified as “denovo” if enough support

    cd ${VASE_DIR}

    # index the denovo VCF
    time ${GATK4} IndexFeatureFile -I ${OUT_FILE}

    # select only variants on the 24 chromosomes
    time ${GATK4} SelectVariants -R ${REFERENCE_GENOME} -V ${OUT_FILE} -O ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf -L /home/u035/u035/shared/resources/24_chr.list --exclude-non-variants

    # sort the VCF (maybe not needed?, but just in case, and it is quick)
    rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf
    grep '^#' ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf > ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf \
    && grep -v '^#' ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf | LC_ALL=C sort -t $'\t' -k1,1V -k2,2n >> ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf

    # index the sorted VCF
    time ${GATK4} IndexFeatureFile -I ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf

    # split multi-allelic sites [by -m -any]
    # left-alignment and normalization [by adding the -f]
    file=${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf
    echo "$file"
    ${BCFTOOLS} norm -f ${REFERENCE_GENOME} -m -any -Ov -o ${file/.strict.24chr.sort.denovo.vcf/.ready.denovo.vcf} $file

    # clean intermediate denovo files
    rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.denovo.vcf*
    rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf*
    rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf*

    # change back to the LOG folder
    cd ${LOG_DIR}

    echo ""
    echo ""
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo "De novo analysis of FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID}: done"
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo ""
    echo ""




    #################################################################################################################################################
    ###          run coverage for this proband (DD genes)                                                                                         ###
    ###   format: ${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}/${PROBAND_ID}_${FAMILY_ID}/${PROBAND_ID}_${FAMILY_ID}-ready.bam   ###
    #################################################################################################################################################

    echo "Performing coverage analysis for PROBAND_ID = ${KID_ID} ...."

    # make sure we are reading the data from the exact batch & plate ID & version N
    BAM_FILE=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}-ready.bam
    OUT_FILE=${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15

    time java -Xmx8g -jar ${GATK3} -T DepthOfCoverage -R ${REFERENCE_GENOME} -o ${OUT_FILE} -I ${BAM_FILE} -L ${TARGETS} \
        --omitDepthOutputAtEachBase \
        --minBaseQuality 20 \
        --minMappingQuality 20 \
        -ct 20 \
        -jdk_deflater \
        -jdk_inflater \
        --allow_potentially_misencoded_quality_scores

    echo ""
    echo ""
    echo "----------------------------------------------------------------------------------------------------"
    echo "percentage of DD exons (+/-15bp) covered at least 20x in PROBAND_ID = ${KID_ID} ..."
    cat ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.sample_summary | awk '{print $7}'
    echo "----------------------------------------------------------------------------------------------------"

    # now compute the coverage per DD exon (+/-15bp) interval, adding the number of P/LP ClinVar variants (assertion criteria provided) in each interval
    time ${PYTHON2} ${SCRIPTS_DIR}/get_cov_output.py ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.sample_interval_summary ${CLINVAR} ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.COV.txt

    echo ""
    echo ""
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo "Coverage analysis of PROBAND_ID = ${KID_ID}_${FAMILY_ID}: done    "
    echo "    Coverage file = ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.COV.txt"
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo ""
    echo ""





    #############################################################################################
    ###      generate the DECIPHER file for this proband                                      ###
    ###  ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz - the cleaned family VCF  ###
    ###  ${VASE_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.denovo.vcf - the VASE file      ###
    ###  ${TRANS_MAP} - the current transcript mapping file                                   ###
    #############################################################################################

    echo "Generating the DECIPHER file for PROBAND_ID = ${KID_ID}_${FAMILY_ID} ..."

    # first, split the family VCF to individual VCFs
    # -c1:  minimum allele count (INFO/AC) of sites to be printed
    # split multi-allelic sites (by -m -any)
    # left-alignment and normalization (by adding the -f)

    file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz
    echo "splitting $file"
    for indi in `${BCFTOOLS} query -l $file`; do
        ${BCFTOOLS} view -c1 -Oz -s $indi -o ${file/.vcf*/.$indi.rough.vcf.gz} $file
        ${BCFTOOLS} norm -f ${REFERENCE_GENOME} -m -any -Oz -o ${file/.vcf*/.$indi.vcf.gz} ${file/.vcf*/.$indi.rough.vcf.gz}
        rm ${file/.vcf*/.$indi.rough.vcf.gz}
    done

    # VASE file - already split, left-aligned and normalized

    # create the names of the needed files
    PED_FILE=${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ped
    IN_G2P_FILE=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}_LOG_DIR/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.report.txt
    IN_VASE_FILE=${VASE_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.denovo.vcf
    FAM_IGV_DIR=${IGV_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}
    FAM_BAM_DIR=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}



    ## call the python scrpit
    time ${PYTHON2} ${SCRIPTS_DIR}/generate_DEC_IGV_trio_scripts_from_quad.py \
    ${DECIPHER_ID} \
    ${TRANS_MAP} \
    ${PED_FILE} \
    ${IN_G2P_FILE} \
    ${IN_VASE_FILE} \
    ${FAM_IGV_DIR} \
    ${VCF_DIR} \
    ${PLATE_ID} \
    ${FAMILY_ID} \
    ${DEC_DIR} \
    ${FAM_BAM_DIR} \
    ${KID_ID}

    ## using the DECIPHER bulk upload file v9 --> generate the DECIPHER bulk upload file v10
    echo "...Generating v10 Decipher bulk upload file for proband = ${KID_ID}, family_id = ${FAMILY_ID} ..."
    time ${PYTHON3} ${SCRIPTS_DIR}/convert_DEC_to_v10.py ${DEC_DIR} ${KID_ID}_${FAMILY_ID}

    echo ""
    echo ""
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo "DECIPHER analysis of PROBAND_ID = ${KID_ID}_${FAMILY_ID}: done"
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo ""
    echo ""

    #rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.clean.vcf





    ##############################################################################################
    ###  for each variant in the DECIPHER upload file                                          ###
    ###  generate a IGV snapshot based on the realigned BAM used by GATK for calling variants  ###
    ###  first, generate BAMOUTs for each variant (to be stored in the BAMOUT folder)          ###
    ###  then, generate a batch script for IGV to produce the snapshots based on the BAMOUTs   ###
    ##############################################################################################

    # we have so far: FAMILY_ID and KID_ID
    echo "...Generating BAMOUT files for the ${FAMILY_ID} family, proband = ${KID_ID} ..."
    echo "...KID_ID = ${KID_ID}, PAR_1_ID = ${PAR_1_ID}, PAR_2_ID = ${PAR_2_ID} "

    # gather the trio BAM files
    kid_bam=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}-ready.bam
    par_1_bam=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${PAR_1_ID}_${FAMILY_ID}/${PAR_1_ID}_${FAMILY_ID}-ready.bam
    par_2_bam=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${PAR_2_ID}_${FAMILY_ID}/${PAR_2_ID}_${FAMILY_ID}-ready.bam

    echo "...kid_bam = ${kid_bam}..."
    echo "...par_1_bam = ${par_1_bam}..."
    echo "...par_2_bam = ${par_2_bam}..."

    # gather the variants in the DECIPHER file for which to generate bamouts
    # chr is the second column - need to add the 'chr' prefix
    # pos is the third column
    # the first line is a header line, starting with 'Internal reference number or ID'
    # file called: ${DEC_DIR}/<proband_id>_<fam_id>_DEC_FLT.csv
    # and for each run GATK to generate the bamout files
    # to be stored in ${BAMOUT_DIR}/${FAMILY_ID}

    mkdir ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}

    var_file=${DEC_DIR}/${KID_ID}_${FAMILY_ID}_DEC_FLT.csv
    echo "... reading ${var_file} to generate the bamouts..."

    grep -v '^Internal' ${var_file} |
    while IFS= read -r line
    do
      echo "$line"
      IFS=, read -ra ary <<<"$line"
      chr=${ary[1]}
      pos=${ary[2]}
      ref=${ary[4]}
      alt=${ary[5]}
      echo " --> chr = $chr, pos = $pos, ref = ${ref}, alt = ${alt}"

      # generate the bamout file
      echo "...doing the bamout"
      echo "   time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} --input ${kid_bam} --input ${par_1_bam} --input ${par_2_bam} -L chr${chr}:${pos} --interval-padding 500"
      echo "   --active-probability-threshold 0.000 -ploidy 2"
      echo "   --output ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam"

      time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} --input ${kid_bam} --input ${par_1_bam} --input ${par_2_bam} -L chr${chr}:${pos} --interval-padding 500 \
      --active-probability-threshold 0.000 -ploidy 2 \
      --output ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam
    done


    #################################################################
    # write the IGV batch file for this family based on the bamouts #
    # to be stored as /scratch/u035/u035/shared/trio_whole_exome/analysis/${PROJECT_ID}/DECIPHER/IGV/bamout_${KID_ID}_${FAMILY_ID}.snapshot.txt #
    #################################################################

    snap_file=/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/bamout_${KID_ID}_${FAMILY_ID}.snapshot.txt

    # check if previous version exist, if so - delete it
    if [ -f "${snap_file}" ]; then
        echo "previous version of ${snap_file} exist --> deleted"
        rm ${snap_file}
    fi

    # write the header for the IGV batch file
    echo "new" >> ${snap_file}
    echo "genome hg38" >> ${snap_file}
    echo "snapshotDirectory \"/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/${PLATE_ID}_${FAMILY_ID}_${KID_ID}\"" >> ${snap_file}
    echo "" >> ${snap_file}

    # now, go again over the variants in the DECIPHER file and generate one snapshot file for all the variants
    var_file=${DEC_DIR}/${KID_ID}_${FAMILY_ID}_DEC_FLT.csv
    echo "... reading ${var_file} to generate the IGV batch file using the bamouts..."

    grep -v '^Internal' ${var_file} |
    while IFS= read -r line
    do
      IFS=, read -ra ary <<<"$line"
      chr=${ary[1]}
      pos=${ary[2]}
      ref=${ary[4]}
      alt=${ary[5]}
      left=$((${pos}-25))
      right=$((${pos}+25))

      echo "new" >> ${snap_file}
      echo "load ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam" >> ${snap_file}
      echo "preference SAM.SHADE_BASE_QUALITY true" >> ${snap_file}

      echo "goto chr${chr}:${left}-${right}" >> ${snap_file}
      echo "group SAMPLE" >> ${snap_file}
      echo "sort base" >> ${snap_file}
      echo "squish" >> ${snap_file}
      echo "snapshot bamout_${KID_ID}_${FAMILY_ID}_chr${chr}_${pos}_${ref}_${alt}.png" >> ${snap_file}
      echo "" >> ${snap_file}
      echo "" >> ${snap_file}

    done

    echo "Generating of the IGV batch files based on bamouts - done!"
    echo "snap_file = ${snap_file}"

    echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
    echo "+++   Variant prioritization of trio ${FAMILY_ID} with ${KID_ID} completed   +++"
    echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"


done

echo ""
echo ""
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Analysing QUAD family ${FAMILY_ID} as two trios: DONE! +++"
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""
















#######################################################################################
#######################################################################################
###    analyze only the two affected siblings and identify shared variants in them  ###
#######################################################################################
#######################################################################################


echo ""
echo ""
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Analysing QUAD family ${FAMILY_ID} for shared variants in the two affected siblings +++"
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""


##########################################################
# generate the affacted siblings PED file                #
# named: ${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_shared.ped #
##########################################################
quad_ped_file=${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped
time ${PYTHON2} ${SCRIPTS_DIR}/generate_aff_sib_PED_from_quad.py ${PED_DIR} ${quad_ped_file} ${KID_1_ID} ${KID_2_ID}




##########################################################################
# generate the affected siblings VCF file                                #
# named: ${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz #
##########################################################################
quad_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}-gatk-haplotype-annotated.vcf.gz
shared_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz

# tabix index the quad file just in case
time ${TABIX} -p vcf ${quad_vcf_file}

# extract a VCF for these two kids
time java -Xmx24g -jar ${GATK3} -T SelectVariants \
    -R ${REFERENCE_GENOME} \
    -V ${quad_vcf_file} \
    -sn ${KID_1_ID}_${FAMILY_ID} \
    -sn ${KID_2_ID}_${FAMILY_ID} \
    -jdk_deflater \
    -jdk_inflater \
    -o ${shared_vcf_file} \
    -env





###############################################################################
###        DNU and clean the the siblings VCF                               ###
### format: ${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz ###
###############################################################################

echo ""
echo ""
echo "Performing DNU and cleaning of the ${PLATE_ID}_${FAMILY_ID}_shared's VCF file..."


time ${VT} decompose -s ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.decomp.vcf.gz
time ${VT} normalize ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.decomp.vcf.gz -r ${REFERENCE_GENOME} -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.norm.vcf.gz
time ${VT} uniq ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.norm.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.DNU.vcf.gz


# remove sites with AC=0
time ${BCFTOOLS} view --min-ac=1 --no-update ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.DNU.vcf.gz > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.AC0.vcf

# reset GT to no-call if num_ALT < num_ALT_THERSH or VAF < VAF_THRESH and GT != 0/0
# exlude variants from the blacklist (matching on chr,pos,ref,alt)
time ${PYTHON2} ${SCRIPTS_DIR}/filter_LQ_GT.py ${BLACKLIST} ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.AC0.vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf

# bgzip and tabix it
time cat ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf | ${BGZIP} > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
time ${TABIX} -p vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz

# delete intermediate files
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.decomp.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.norm.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.DNU.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.AC0.vcf


# to avoid bgzip pipe broken annoying, but not problematic message - skip the next step, the file will be used by G2P as IN_FILE and will be deleted last
# rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf


echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DNU, AC=0, num_ALT & VAF & blacklist cleaning and of the ${PLATE_ID}_${FAMILY_ID}_shared's VCF file: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""


################################################################
###     run G2P for the two affected siblings (DD genes)     ###
###     format: ${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf    ###
################################################################
echo "Performing G2P analysis (DD genes)for FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_shared..."
echo "Using ${TARGETS}"

IN_FILE=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf
G2P_LOG_DIR=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_shared_LOG_DIR
mkdir ${G2P_LOG_DIR}
TXT_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.report.txt
HTML_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.report.html
VCF_KEYS='gnomADe_r2.1.1_GRCh38|gnomADg_r3.1.1_GRCh38'

time ${VEP} \
    -i ${IN_FILE} \
    --output_file ${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_shared_inter_out.txt \
    --force_overwrite \
    --assembly GRCh38 \
    --fasta ${REFERENCE_GENOME} \
    --offline \
    --merged \
    --use_given_ref \
    --cache --cache_version 100 \
    --dir_cache /home/u035/u035/shared/software/bcbio/genomes/Hsapiens/hg38/vep \
    --individual all \
    --transcript_filter "gene_symbol in /home/u035/u035/shared/resources/G2P/genes_in_DDG2P.20210706.txt" \
    --dir_plugins /home/u035/u035/shared/software/bcbio/anaconda/share/ensembl-vep-100.4-0 \
    --plugin G2P,file='/home/u035/u035/shared/resources/G2P/DDG2P.20210706.csv',af_from_vcf=1,confidence_levels='confirmed&probable&both RD and IF',af_from_vcf_keys=${VCF_KEYS},log_dir=${G2P_LOG_DIR},txt_report=${TXT_OUT},html_report=${HTML_OUT}


echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "G2P analysis of FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_shared: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""




########################################################
###      run coverage for each proband (DD genes)    ###
###    already did it as part of the trio analysis   ###
########################################################







###################################################################################
###      for each proband generate the DECIPHER file                            ###
###  ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz - the sibling VCF  ###
###  ${TRANS_MAP} - the current transcript mapping file                         ###
###################################################################################


echo "Generating the DECIPHER file for all probands in ${FAMILY_ID} ..."


# first, split the family VCF to individual VCFs
# -c1:  minimum allele count (INFO/AC) of sites to be printed
# split multi-allelic sites (by -m -any)
# left-alignment and normalization (by adding the -f)

file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
echo "splitting $file"
for indi in `${BCFTOOLS} query -l $file`; do
    ${BCFTOOLS} view -c1 -Oz -s $indi -o ${file/.vcf*/.$indi.rough.vcf.gz} $file
    ${BCFTOOLS} norm -f ${REFERENCE_GENOME} -m -any -Oz -o ${file/.vcf*/.$indi.vcf.gz} ${file/.vcf*/.$indi.rough.vcf.gz}
    rm ${file/.vcf*/.$indi.rough.vcf.gz}
done




# create the names of the needed files
PED_FILE=${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_shared.ped
IN_G2P_FILE=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_shared_LOG_DIR/${PLATE_ID}_${FAMILY_ID}_shared.report.txt
FAM_IGV_DIR=${IGV_DIR}/${PLATE_ID}_${FAMILY_ID}_shared
FAM_BAM_DIR=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}



## call the python scrpit
time ${PYTHON2} ${SCRIPTS_DIR}/generate_DEC_IGV_aff_sib_scripts_from_quad.py \
${DECIPHER_ID} \
${TRANS_MAP} \
${PED_FILE} \
${IN_G2P_FILE} \
${FAM_IGV_DIR} \
${VCF_DIR} \
${PLATE_ID} \
${FAMILY_ID} \
${DEC_DIR} \
${FAM_BAM_DIR}





#############################################################################################################################
## using the DECIPHER bulk upload file v9 for each proband --> generate the DECIPHER bulk upload file v10 for each proband ##
#############################################################################################################################
# from the VCF, get all IDs (in the format probad_family_id), they are all affected probands (already checked at the start)
# INDI_ID is in format ${PROBAND_ID}_${FAMILY_ID}

file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
for INDI_ID in `${BCFTOOLS} query -l $file`; do
    #################################
    #####    for each proband    ####
    #################################
    echo "...Generating v10 Decipher bulk upload file for proband = ${INDI_ID} ...."
    time ${PYTHON3} ${SCRIPTS_DIR}/convert_DEC_to_v10.py ${DEC_DIR} ${INDI_ID}_shared
done

echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DECIPHER analysis of all probands in ${FAMILY_ID}: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""


#rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf





##############################################################################################
###  for each of the affected probands                                                     ###
###  for each variant in the DECIPHER upload file (only the shared variants)               ###
###  generate a IGV snapshot based on the realigned BAM used by GATK for calling variants  ###
###  first, generate BAMOUTs for each variant (to be stored in the BAMOUT folder)          ###
###  then, generate a batch script for IGV to produce the snapshots based on the BAMOUTs   ###
##############################################################################################

echo ""
echo ""
echo "Generating the BAMOUT files for the ${FAMILY_ID} family ...."


# get the ids of the affected probands to generate the part of the command line which refers to the BAM files to by analysed
file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
# INDI_ID is in format ${PROBAND_ID}_${FAMILY_ID}
aff_pro_arr=()
for INDI_ID in `${BCFTOOLS} query -l $file`; do
    aff_pro_arr+=(${INDI_ID})
done
echo "  Found ${#aff_pro_arr[@]} affected probands in ${FAMILY_ID} for which BAMOUTs to be generated"

for key in "${!aff_pro_arr[@]}"; do
  echo "    ${aff_pro_arr[$key]}";
#~#  INPUT_BAM_LINE=${INPUT_BAM_LINE}" --input ${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}/${aff_pro_arr[$key]}/${aff_pro_arr[$key]}-ready.bam"
  INPUT_BAM_LINE=${INPUT_BAM_LINE}" --input ${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${aff_pro_arr[$key]}/${aff_pro_arr[$key]}-ready.bam"

done


# now go over the shared G2P variants in the for which to generate bamouts
# the variants should be identical in the DECIPHER files for all affected individuals, pick the first individual
# chr is the second column - need to add the 'chr' prefix
# pos is the third column
# the first line is a header line, starting with 'Internal reference number or ID'
# file called: ${DEC_DIR}/<proband_id>_<fam_id>_shared_DEC_FLT.csv
# and for each run GATK to generate the bamout files
# to be stored in ${BAMOUT_DIR}/${FAMILY_ID}_shared


mkdir ${BAMOUT_DIR}/${FAMILY_ID}_shared


var_file=${DEC_DIR}/${aff_pro_arr[0]}_shared_DEC_FLT.csv
echo "... reading the shared variants in ${var_file} to generate the bamouts for each ..."


grep -v '^Internal' ${var_file} |
while IFS= read -r line
do
  echo ""
  echo ""
  echo ""
  echo "$line"
  IFS=, read -ra ary <<<"$line"
  chr=${ary[1]}
  pos=${ary[2]}
  ref=${ary[4]}
  alt=${ary[5]}
  echo " --> chr = $chr, pos = $pos, ref = ${ref}, alt = ${alt}"

  # generate the bamout file
  echo "...doing the bamout"
  echo "   time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} ${INPUT_BAM_LINE}"
  echo "   -L chr${chr}:${pos} --interval-padding 500 --active-probability-threshold 0.000 -ploidy 2"
  echo "   --output ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam"

  time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} ${INPUT_BAM_LINE} -L chr${chr}:${pos} --interval-padding 500 \
  --active-probability-threshold 0.000 -ploidy 2 \
  --output ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam

done



##############################################################################################
## write the IGV batch file for each affected individual in this family based on the bamouts #
## to be stored as /home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/bamout_${PROBAND_ID}_${FAMILY_ID}.shared.snapshot.txt #
## ${PROBAND_ID}_${FAMILY_ID} == ${aff_pro_arr[$key] #
##################################################################

for key in "${!aff_pro_arr[@]}"; do
  echo ""
  echo ""
  echo "Generating the IGV batch file for ${aff_pro_arr[$key]}";

#~#  snap_file=/scratch/u035/u035/shared/trio_whole_exome/analysis/${PROJECT_ID}/DECIPHER/IGV/bamout_${aff_pro_arr[$key]}.shared.snapshot.txt
  snap_file=/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/bamout_${aff_pro_arr[$key]}.shared.snapshot.txt


  # check if previous version exist, if so - delete it
  if [ -f "${snap_file}" ]; then
    echo "previous version of ${snap_file} exist --> deleted"
    rm ${snap_file}
  fi


  # write the header for the IGV batch file
  echo "new" >> ${snap_file}
  echo "genome hg38" >> ${snap_file}
  echo "snapshotDirectory \"/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/${PLATE_ID}_${FAMILY_ID}_shared\"" >> ${snap_file}
  echo "" >> ${snap_file}


  # now, go again over the variants in this individual's DECIPHER file and generate one snapshot file for all the variants
  var_file=${DEC_DIR}/${aff_pro_arr[$key]}_shared_DEC_FLT.csv

  echo "... reading ${var_file} to generate the IGV batch file using the bamouts..."



  grep -v '^Internal' ${var_file} |
  while IFS= read -r line
  do
    IFS=, read -ra ary <<<"$line"
    chr=${ary[1]}
    pos=${ary[2]}
    ref=${ary[4]}
    alt=${ary[5]}
    left=$((${pos}-25))
    right=$((${pos}+25))

    echo "new" >> ${snap_file}
    echo "load ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam" >> ${snap_file}
    echo "preference SAM.SHADE_BASE_QUALITY true" >> ${snap_file}

    echo "goto chr${chr}:${left}-${right}" >> ${snap_file}
    echo "group SAMPLE" >> ${snap_file}
    echo "sort base" >> ${snap_file}
    echo "squish" >> ${snap_file}
    echo "snapshot bamout_${aff_pro_arr[$key]}_shared_chr${chr}_${pos}_${ref}_${alt}.png" >> ${snap_file}
    echo "" >> ${snap_file}
    echo "" >> ${snap_file}

  done

  echo "Generating of the IGV batch file based on bamouts for ${aff_pro_arr[$key]}- done!"
  echo "snap_file = ${snap_file}"

done

echo ""
echo ""
echo ""
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++   Variant prioritization of family ${FAMILY_ID} as affected sib-pair completed   +++"
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"








echo ""
echo ""
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Analysing QUAD family ${FAMILY_ID} for shared variants in the two affected siblings: DONE! +++"
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""