Skip to content
Snippets Groups Projects
process_NHS_WES_quad_full.sh 19.9 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
#!/bin/bash
#PBS -l walltime=24:00:00
#PBS -l ncpus=1,mem=16gb
#PBS -q uv2000
#PBS -N go_quad
#PBS -j oe


# setup PATH
export PATH=$PATH:/home/u035/project/software/bcbio/anaconda/envs/python2/bin:/home/u035/project/software/bcbio/anaconda/bin
export PERL5LIB=$PERL5LIB:/home/u035/project/software/bcbio/anaconda/lib/site_perl/5.26.2



### folder structure for the downstream analysis - created by NHS_WES_trio_setup.sh, done previously by the stanard trio-based pipeline ###
BASE=/scratch/u035/project/trio_whole_exome/analysis
WORK_DIR=$BASE/${PROJECT_ID}
VCF_DIR=${WORK_DIR}/VCF
PED_DIR=${WORK_DIR}/PED
LOG_DIR=${WORK_DIR}/LOG
G2P_DIR=${WORK_DIR}/G2P
VASE_DIR=${WORK_DIR}/VASE
COV_DIR=${WORK_DIR}/COV
DEC_DIR=${WORK_DIR}/DECIPHER
IGV_DIR=${DEC_DIR}/IGV
CNV_DIR=${WORK_DIR}/CNV
BAMOUT_DIR=${WORK_DIR}/BAMOUT
SCRIPTS_DIR=/home/u035/project/scripts



# other files to be used
TARGETS=/home/u035/project/resources/DDG2P.20200601.plus15bp.merged.bed			# OK
CLINVAR=/home/u035/project/resources/DDG2P.20200601.clinvar.20200520.plus15bp.txt	# OK
BLACKLIST=/home/u035/project/resources/current_blacklist.txt				# OK
TRANS_MAP=/home/u035/project/resources/current_trans_map.txt				# OK




### TOOLS ###
BCFTOOLS=/home/u035/project/software/bcbio/anaconda/envs/python2/bin/bcftools
BGZIP=/home/u035/project/software/bcbio/anaconda/envs/python2/bin/bgzip
TABIX=/home/u035/project/software/bcbio/anaconda/envs/python2/bin/tabix
VT=/home/u035/project/software/bcbio/anaconda/bin/vt
VASE=/home/u035/project/software/bcbio/anaconda/bin/vase
GATK4=/home/u035/project/software/bcbio/anaconda/bin/gatk							# points to ../share/gatk4-4.1.8.1-0/gatk
GATK3=/home/u035/project/software/GenomeAnalysisTK-3.8/GenomeAnalysisTK.jar
PYTHON3=/home/u035/project/software/bcbio/anaconda/bin/python3							# points to python3.6
PYTHON2=/home/u035/project/software/bcbio/anaconda/envs/python2/bin/python2.7
VEP="/home/u035/project/software/bcbio/anaconda/bin/perl /home/u035/project/software/bcbio/anaconda/bin/vep"	# points to ../share/ensembl-vep-100.4-0/vep
REFERENCE_GENOME=/home/u035/project/resources/hg38.fa





echo "SOURCE_DIR = ${SOURCE_DIR}"       # the general path to the source BAM files (VCF and PED already copied)		i.e. /scratch/u035/project/trio_whole_exome/analysis/output/
echo "BATCH_ID = ${BATCH_ID}"           # the ID of the batch being processed                                   	e.g. 11870_Germain_Lorna
echo "PLATE_ID = ${PLATE_ID}"           # the PCR plate ID of the batch being currently processed,              	e.g. 16862
echo "PROJECT_ID = ${PROJECT_ID}"       # this the the folder (${BASE}/${PROJECT_ID}) where the downstream analysis will be done
echo "VERSION_N = ${VERSION_N}"         # the version of the alignment and genotyping analysis
echo "FAMILY_ID = ${FAMILY_ID}"		# the family ID of this family with affected probands

echo "PRO_1_ID = ${PRO_1_ID}"		# the ID of the first affected proband
echo "PRO_2_ID = ${PRO_2_ID}"           # the ID of the second affected proband
echo "PAR_1_ID = ${PAR_1_ID}"           # the ID of the first unaffected parent
echo "PAR_2_ID = ${PAR_2_ID}"           # the ID of the second unaffected parent
 
echo "DECIPHER_ID = ${DECIPHER_ID}"	# the DECIPHER_ID for this family




# change to the LOG folder
cd ${LOG_DIR}




#########################################################################################################
###   check the PED file to make sure exactly 2 affected probands with exactly 2 unaffected parents   ###
#########################################################################################################

echo ""
echo ""
echo "checking the ${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped file..."

time ${PYTHON2} ${SCRIPTS_DIR}/NHS_WES_check_PED_quad.py ${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped

# check if the PED file checks were successful (python exit code = 0), if not exit the bash script
ret=$?
if [ $ret -ne 0 ]; then
     echo "...it appears that the PED file does not corresponds to a quad family !"
     echo "ERROR: Aborting the analysis"
     exit
fi
echo ""
echo ""





########################################################################
###        DNU and clean the the family VCF   			     ###
### format: ${PLATE_ID}_${FAMILY_ID}-gatk-haplotype-annotated.vcf.gz ###
########################################################################

echo ""
echo ""
echo "Performing DNU and cleaning of the ${PLATE_ID}_${FAMILY_ID}'s VCF file..."


time ${VT} decompose -s ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}-gatk-haplotype-annotated.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.decomp.vcf.gz
time ${VT} normalize ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.decomp.vcf.gz -r ${REFERENCE_GENOME} -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.norm.vcf.gz
time ${VT} uniq ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.norm.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.DNU.vcf.gz


# remove sites with AC=0
time ${BCFTOOLS} view --min-ac=1 --no-update ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.DNU.vcf.gz > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.AC0.vcf

# reset GT to no-call if num_ALT < num_ALT_THERSH or VAF < VAF_THRESH and GT != 0/0
# exlude variants from the blacklist (matching on chr,pos,ref,alt)
time ${PYTHON2} ${SCRIPTS_DIR}/NHS_WES_filter_LQ_GT.py ${BLACKLIST} ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.AC0.vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.clean.vcf

# bgzip and tabix it
time cat ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.clean.vcf | ${BGZIP} > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.ready.vcf.gz
time ${TABIX} -p vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.ready.vcf.gz

# delete intermediate files
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}-gatk-haplotype-annotated.vcf.gz
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.decomp.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.norm.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.DNU.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.AC0.vcf


# to avoid bgzip pipe broken annoying, but not problematic message - skip the next step, the file will be used by G2P as IN_FILE and will be deleted last
# rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.clean.vcf


echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DNU, AC=0, num_ALT & VAF & blacklist cleaning and of the ${PLATE_ID}_${FAMILY_ID}'s VCF file: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""



###########################################################
###     run G2P for each family VCF (DD genes)          ###
###     format: ${PLATE_ID}_${FAMILY_ID}.clean.vcf      ###
###########################################################


echo "Performing G2P analysis (DD genes)for FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}..."
echo "Using DDG2P.01062020.csv"


IN_FILE=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.clean.vcf   
G2P_LOG_DIR=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_LOG_DIR
mkdir ${G2P_LOG_DIR}
TXT_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}.report.txt
HTML_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}.report.html
#VCF_KEYS='gnomADe|gnomADg'     # old VEP version 97
VCF_KEYS='gnomADe_GRCh38|gnomADg_r3.0_GRCh38'


time ${VEP} \
    -i ${IN_FILE} \
    --output_file ${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_inter_out.txt \
    --force_overwrite \
    --assembly GRCh38 \
    --fasta ${REFERENCE_GENOME} \
    --offline \
    --merged \
    --use_given_ref \
    --cache --cache_version 100 \
    --dir_cache /home/u035/project/software/bcbio/genomes/Hsapiens/hg38/vep \
    --individual all \
    --transcript_filter "gene_symbol in /home/u035/project/resources/genes_in_DDG2P.01062020.txt" \
    --dir_plugins /home/u035/project/software/bcbio/anaconda/share/ensembl-vep-100.4-0 \
    --plugin G2P,file='/home/u035/project/resources/DDG2P.01062020.csv',af_from_vcf=1,confidence_levels='confirmed&probable&both RD and IF',af_from_vcf_keys=${VCF_KEYS},log_dir=${G2P_LOG_DIR},txt_report=${TXT_OUT},html_report=${HTML_OUT}


echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "G2P analysis of FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""




#################################################################################################################################################
###          run coverage for each proband (DD genes)                                                                                         ###
###   format: ${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}/${PROBAND_ID}_${FAMILY_ID}/${PROBAND_ID}_${FAMILY_ID}-ready.bam   ###
#################################################################################################################################################


# from the VCF, get all IDs (in the format probad_family_id), they are all affected probands (already checked at the start)

file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.ready.vcf.gz

# INDI_ID is in format ${PROBAND_ID}_${FAMILY_ID}

for INDI_ID in `${BCFTOOLS} query -l $file`; do

    #################################
    #####    for each proband    ####
    #################################

    echo "Performing coverage analysis for PROBAND_ID = ${INDI_ID} ...."

    # make sure we are reading the data from the exact batch & plate ID
    BAM_FILE=${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}/${INDI_ID}/${INDI_ID}-ready.bam
    OUT_FILE=${COV_DIR}/${INDI_ID}.DD15


    time java -Xmx8g -jar ${GATK3} -T DepthOfCoverage -R ${REFERENCE_GENOME} -o ${OUT_FILE} -I ${BAM_FILE} -L ${TARGETS} \
        --omitDepthOutputAtEachBase \
        --minBaseQuality 20 \
        --minMappingQuality 20 \
        -ct 20 \
        -jdk_deflater \
        -jdk_inflater \
        --allow_potentially_misencoded_quality_scores

    echo ""
    echo ""
    echo "----------------------------------------------------------------------------------------------------"
    echo "percentage of DD exons (+/-15bp) covered at least 20x in PROBAND_ID = ${INDI_ID} ..."
    cat ${COV_DIR}/${INDI_ID}.DD15.sample_summary | awk '{print $7}'
    echo "----------------------------------------------------------------------------------------------------"

    # now compute the coverage per DD exon (+/-15bp) interval, adding the number of P/LP ClinVar variants (assertion criteria provided) in each interval
    time ${PYTHON2} ${SCRIPTS_DIR}/NHS_WES_generate_coverage_result_file.py ${COV_DIR}/${INDI_ID}.DD15.sample_interval_summary ${CLINVAR} ${COV_DIR}/${INDI_ID}.DD15.COV.txt

    echo ""
    echo ""
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo "Coverage analysis of PROBAND_ID = ${INDI_ID}: done    "
    echo "    Coverage file = ${COV_DIR}/${INDI_ID}.DD15.COV.txt"
    echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
    echo ""
    echo ""

done


..............................


###################################################################################
###      for each proband generate the DECIPHER file                            ###
###  ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.ready.vcf.gz - the cleaned family VCF  ###
###  ${TRANS_MAP} - the current transcript mapping file                         ###
###################################################################################


echo "Generating the DECIPHER file for all probands in ${FAMILY_ID} ..."


# first, split the family VCF to individual VCFs
# -c1:  minimum allele count (INFO/AC) of sites to be printed
# split multi-allelic sites (by -m -any)
# left-alignment and normalization (by adding the -f)

file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.ready.vcf.gz
echo "splitting $file"
for indi in `${BCFTOOLS} query -l $file`; do
    ${BCFTOOLS} view -c1 -Oz -s $indi -o ${file/.vcf*/.$indi.rough.vcf.gz} $file
    ${BCFTOOLS} norm -f ${REFERENCE_GENOME} -m -any -Oz -o ${file/.vcf*/.$indi.vcf.gz} ${file/.vcf*/.$indi.rough.vcf.gz}
    rm ${file/.vcf*/.$indi.rough.vcf.gz}
done



# create the names of the needed files
PED_FILE=${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped
IN_G2P_FILE=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_LOG_DIR/${PLATE_ID}_${FAMILY_ID}.report.txt
FAM_IGV_DIR=${IGV_DIR}/${PLATE_ID}_${FAMILY_ID}
FAM_BAM_DIR=${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}


## call the python scrpit
time ${PYTHON2} ${SCRIPTS_DIR}/NHS_WES_generate_DEC_IGV_aff_probands.py \
${DECIPHER_ID} \
${TRANS_MAP} \
${PED_FILE} \
${IN_G2P_FILE} \
${FAM_IGV_DIR} \
${VCF_DIR} \
${PLATE_ID} \
${FAMILY_ID} \
${DEC_DIR} \
${FAM_BAM_DIR}



#############################################################################################################################
## using the DECIPHER bulk upload file v9 for each proband --> generate the DECIPHER bulk upload file v10 for each proband ##
#############################################################################################################################
# from the VCF, get all IDs (in the format probad_family_id), they are all affected probands (already checked at the start)
# INDI_ID is in format ${PROBAND_ID}_${FAMILY_ID}

file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.ready.vcf.gz
for INDI_ID in `${BCFTOOLS} query -l $file`; do
    #################################
    #####    for each proband    ####
    #################################
    echo "...Generating v10 Decipher bulk upload file for proband = ${INDI_ID} ...."
    time ${PYTHON3} ${SCRIPTS_DIR}/convert_DEC_to_v10.py ${DEC_DIR} ${INDI_ID}
done


echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DECIPHER analysis of all probands in ${FAMILY_ID}: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""


rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.clean.vcf




##############################################################################################
###  for each of the affected probands                                                     ###
###  for each variant in the DECIPHER upload file (only the shared variants)               ###
###  generate a IGV snapshot based on the realigned BAM used by GATK for calling variants  ###
###  first, generate BAMOUTs for each variant (to be stored in the BAMOUT folder)          ###
###  then, generate a batch script for IGV to produce the snapshots based on the BAMOUTs   ###
##############################################################################################

echo ""
echo ""
echo "Generating the BAMOUT files for the ${FAMILY_ID} family ...."


# get the ids of the affected probands to generate the part of the command line which refers to the BAM files to by analysed

#++++++++++++++++
#arr=() 	Create an empty array
#arr+=(4) 	Append value(s)
#${arr[2]} 	Retrieve third element
#${arr[@]} 	Retrieve all elements
#${!arr[@]} 	Retrieve array indices
#${#arr[@]} 	Calculate array size

#for key in "${!ary[@]}"; do echo "$key ${ary[$key]}"; done

#https://opensource.com/article/18/5/you-dont-know-bash-intro-bash-arrays

# https://unix.stackexchange.com/questions/105517/concatenating-string-variable-inside-a-for-loop-in-the-bash-shell/105522

#VAR=""
#for ELEMENT in 'Hydrogen' 'Helium' 'Lithium' 'Beryllium'; do
#  VAR+="${ELEMENT} "
#done

#echo "$VAR"

#https://linuxize.com/post/bash-concatenate-strings/
#+++++++++++++++++++++++


file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.ready.vcf.gz
# INDI_ID is in format ${PROBAND_ID}_${FAMILY_ID}
aff_pro_arr=()
for INDI_ID in `${BCFTOOLS} query -l $file`; do
    aff_pro_arr+=(${INDI_ID})
done
echo "  Found ${#aff_pro_arr[@]} affected probands in ${FAMILY_ID} for which BAMOUTs to be generated"

for key in "${!aff_pro_arr[@]}"; do 
  echo "    ${aff_pro_arr[$key]}"; 
  INPUT_BAM_LINE=${INPUT_BAM_LINE}" --input ${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}/${aff_pro_arr[$key]}/${aff_pro_arr[$key]}-ready.bam "
done

#echo ${INPUT_BAM_LINE}
   



# now go over the shared G2P variants in the for which to generate bamouts
# the variants should be identical in the DECIPHER files for all affected individuals, pick the first individual
# chr is the second column - need to add the 'chr' prefix
# pos is the third column
# the first line is a header line, starting with 'Internal reference number or ID'
# file called: ${DEC_DIR}/<proband_id>_<fam_id>_DEC_FLT.csv
# and for each run GATK to generate the bamout files
# to be stored in ${BAMOUT_DIR}/${FAMILY_ID}

mkdir ${BAMOUT_DIR}/${FAMILY_ID}

var_file=${DEC_DIR}/${aff_pro_arr[0]}_DEC_FLT.csv
echo "... reading the shared variants in ${var_file} to generate the bamouts for each ..."


grep -v '^Internal' ${var_file} |
while IFS= read -r line
do
  echo ""
  echo ""
  echo ""
  echo "$line"
  IFS=, read -ra ary <<<"$line"
#  for key in "${!ary[@]}"; do echo "$key ${ary[$key]}"; done
  chr=${ary[1]}
  pos=${ary[2]}
  ref=${ary[4]}
  alt=${ary[5]}
  echo " --> chr = $chr, pos = $pos, ref = ${ref}, alt = ${alt}"

  # generate the bamout file
  echo "...doing the bamout"
  echo "   time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME}" ${INPUT_BAM_LINE}" -L chr${chr}:${pos} --interval-padding 500 --active-probability-threshold 0.000 -ploidy 2 --output ${BAMOUT_DIR}/${FAMILY_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam"

  time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} ${INPUT_BAM_LINE} -L chr${chr}:${pos} --interval-padding 500 \
  --active-probability-threshold 0.000 -ploidy 2 \
  --output ${BAMOUT_DIR}/${FAMILY_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam

done





##############################################################################################
## write the IGV batch file for each affected individual in this family based on the bamouts #
## to be stored as /scratch/u035/project/trio_whole_exome/analysis/${PROJECT_ID}/DECIPHER/IGV/bamout_${PROBAND_ID}_${FAMILY_ID}.snapshot.txt #
## ${PROBAND_ID}_${FAMILY_ID} == ${aff_pro_arr[$key] #
##################################################################

for key in "${!aff_pro_arr[@]}"; do
  echo ""
  echo "" 
  echo "Generating the IGV batch file for ${aff_pro_arr[$key]}";

  snap_file=/scratch/u035/project/trio_whole_exome/analysis/${PROJECT_ID}/DECIPHER/IGV/bamout_${aff_pro_arr[$key]}.snapshot.txt

  # check if previous version exist, if so - delete it
  if [ -f "${snap_file}" ]; then
    echo "previous version of ${snap_file} exist --> deleted"
    rm ${snap_file}
  fi

  # write the header for the IGV batch file
  echo "new" >> ${snap_file}
  echo "genome hg38" >> ${snap_file}
  echo "snapshotDirectory \"/scratch/u035/project/trio_whole_exome/analysis/${PROJECT_ID}/DECIPHER/IGV/${PLATE_ID}_${FAMILY_ID}\"" >> ${snap_file}
  echo "" >> ${snap_file}


  # now, go again over the variants in this individual's DECIPHER file and generate one snapshot file for all the variants
  var_file=${DEC_DIR}/${aff_pro_arr[$key]}_DEC_FLT.csv
  echo "... reading ${var_file} to generate the IGV batch file using the bamouts..."

  grep -v '^Internal' ${var_file} |
  while IFS= read -r line
  do
    IFS=, read -ra ary <<<"$line"
    chr=${ary[1]}
    pos=${ary[2]}
    ref=${ary[4]}
    alt=${ary[5]}
    left=$((${pos}-25))
    right=$((${pos}+25))

    echo "new" >> ${snap_file}
    echo "load ${BAMOUT_DIR}/${FAMILY_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam" >> ${snap_file}
    echo "preference SAM.SHADE_BASE_QUALITY true" >> ${snap_file}

    echo "goto chr${chr}:${left}-${right}" >> ${snap_file}
    echo "group SAMPLE" >> ${snap_file}
    echo "sort base" >> ${snap_file}
    echo "squish" >> ${snap_file}
    echo "snapshot bamout_${aff_pro_arr[$key]}_${FAMILY_ID}_chr${chr}_${pos}_${ref}_${alt}.png" >> ${snap_file}
    echo "" >> ${snap_file}
    echo "" >> ${snap_file}

  done

  echo "Generating of the IGV batch file based on bamouts for ${aff_pro_arr[$key]}- done!"
  echo "snap_file = ${snap_file}"

done

echo ""
echo ""
echo ""
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++   Variant prioritization of family ${FAMILY_ID} completed   +++"
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"