Skip to content
Snippets Groups Projects
Commit f8da9a86 authored by Axel Kohlmeyer's avatar Axel Kohlmeyer
Browse files

synchronize dump custom/vtk documentation with that of dump custom

parent 28bdebd3
No related branches found
No related tags found
No related merge requests found
......@@ -26,7 +26,6 @@ args = list of arguments for a particular style :l
q, mux, muy, muz, mu,
radius, diameter, omegax, omegay, omegaz,
angmomx, angmomy, angmomz, tqx, tqy, tqz,
spin, eradius, ervel, erforce,
c_ID, c_ID\[N\], f_ID, f_ID\[N\], v_name :pre
id = atom ID
......@@ -51,17 +50,18 @@ args = list of arguments for a particular style :l
angmomx,angmomy,angmomz = angular momentum of aspherical particle
tqx,tqy,tqz = torque on finite-size particles
c_ID = per-atom vector calculated by a compute with ID
c_ID\[N\] = Nth column of per-atom array calculated by a compute with ID
c_ID\[I\] = Ith column of per-atom array calculated by a compute with ID, I can include wildcard (see below)
f_ID = per-atom vector calculated by a fix with ID
f_ID\[N\] = Nth column of per-atom array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name :pre
f_ID\[I\] = Ith column of per-atom array calculated by a fix with ID, I can include wildcard (see below)
v_name = per-atom vector calculated by an atom-style variable with name
d_name = per-atom floating point vector with name, managed by fix property/atom
i_name = per-atom integer vector with name, managed by fix property/atom :pre
:ule
[Examples:]
dump dmpvtk all custom/vtk 100 dump*.myforce.vtk id type vx fx
dump dmpvtp flow custom/vtk 100 dump*.%.displace.vtp id type c_myD\[1\] c_myD\[2\] c_myD\[3\] v_ke
dump e_data all custom/vtk 100 dump*.vtu id type spin eradius fx fy fz eforce :pre
dump dmpvtp flow custom/vtk 100 dump*.%.displace.vtp id type c_myD\[1\] c_myD\[2\] c_myD\[3\] v_ke :pre
The style {custom/vtk} is similar to the "custom"_dump.html style but
uses the VTK library to write data to VTK simple legacy or XML format
......@@ -199,32 +199,38 @@ part of the {custom/vtk} style.
The {id}, {mol}, {proc}, {procp1}, {type}, {element}, {mass}, {vx},
{vy}, {vz}, {fx}, {fy}, {fz}, {q} attributes are self-explanatory.
{id} is the atom ID. {mol} is the molecule ID, included in the data
file for molecular systems. {type} is the atom type. {element} is
typically the chemical name of an element, which you must assign to
each type via the "dump_modify element"_dump_modify.html command.
More generally, it can be any string you wish to associate with an
atom type. {mass} is the atom mass. {vx}, {vy}, {vz}, {fx}, {fy},
{fz}, and {q} are components of atom velocity and force and atomic
charge.
{Id} is the atom ID. {Mol} is the molecule ID, included in the data
file for molecular systems. {Proc} is the ID of the processor (0 to
Nprocs-1) that currently owns the atom. {Procp1} is the proc ID+1,
which can be convenient in place of a {type} attribute (1 to Ntypes)
for coloring atoms in a visualization program. {Type} is the atom
type (1 to Ntypes). {Element} is typically the chemical name of an
element, which you must assign to each type via the "dump_modify
element"_dump_modify.html command. More generally, it can be any
string you wish to associated with an atom type. {Mass} is the atom
mass. {Vx}, {vy}, {vz}, {fx}, {fy}, {fz}, and {q} are components of
atom velocity and force and atomic charge.
There are several options for outputting atom coordinates. The {x},
{y}, {z} attributes are used to write atom coordinates "unscaled", in
the appropriate distance "units"_units.html (Angstroms, sigma, etc).
Additionally, you can use {xs}, {ys}, {zs} if you want to also save the
coordinates "scaled" to the box size, so that each value is 0.0 to
1.0. If the simulation box is triclinic (tilted), then all atom
coords will still be between 0.0 and 1.0. Use {xu}, {yu}, {zu} if you
want the coordinates "unwrapped" by the image flags for each atom.
Unwrapped means that if the atom has passed through a periodic
boundary one or more times, the value is printed for what the
coordinate would be if it had not been wrapped back into the periodic
box. Note that using {xu}, {yu}, {zu} means that the coordinate
values may be far outside the box bounds printed with the snapshot.
Using {xsu}, {ysu}, {zsu} is similar to using {xu}, {yu}, {zu}, except
that the unwrapped coordinates are scaled by the box size. Atoms that
have passed through a periodic boundary will have the corresponding
coordinate increased or decreased by 1.0.
{y}, {z} attributes write atom coordinates "unscaled", in the
appropriate distance "units"_units.html (Angstroms, sigma, etc). Use
{xs}, {ys}, {zs} if you want the coordinates "scaled" to the box size,
so that each value is 0.0 to 1.0. If the simulation box is triclinic
(tilted), then all atom coords will still be between 0.0 and 1.0.
I.e. actual unscaled (x,y,z) = xs*A + ys*B + zs*C, where (A,B,C) are
the non-orthogonal vectors of the simulation box edges, as discussed
in "Section 6.12"_Section_howto.html#howto_12.
Use {xu}, {yu}, {zu} if you want the coordinates "unwrapped" by the
image flags for each atom. Unwrapped means that if the atom has
passed thru a periodic boundary one or more times, the value is
printed for what the coordinate would be if it had not been wrapped
back into the periodic box. Note that using {xu}, {yu}, {zu} means
that the coordinate values may be far outside the box bounds printed
with the snapshot. Using {xsu}, {ysu}, {zsu} is similar to using
{xu}, {yu}, {zu}, except that the unwrapped coordinates are scaled by
the box size. Atoms that have passed through a periodic boundary will
have the corresponding coordinate increased or decreased by 1.0.
The image flags can be printed directly using the {ix}, {iy}, {iz}
attributes. For periodic dimensions, they specify which image of the
......@@ -255,13 +261,7 @@ The {tqx}, {tqy}, {tqz} attributes are for finite-size particles that
can sustain a rotational torque due to interactions with other
particles.
The {spin}, {eradius}, {ervel}, and {erforce} attributes are for
particles that represent nuclei and electrons modeled with the
electronic force field (EFF). See "atom_style
electron"_atom_style.html and "pair_style eff"_pair_eff.html for more
details.
The {c_ID} and {c_ID\[N\]} attributes allow per-atom vectors or arrays
The {c_ID} and {c_ID\[I\]} attributes allow per-atom vectors or arrays
calculated by a "compute"_compute.html to be output. The ID in the
attribute should be replaced by the actual ID of the compute that has
been defined previously in the input script. See the
......@@ -275,12 +275,14 @@ command. Instead, global quantities can be output by the
"thermo_style custom"_thermo_style.html command, and local quantities
can be output by the dump local command.
If {c_ID} is used as an attribute, then the per-atom vector calculated
by the compute is printed. If {c_ID\[N\]} is used, then N must be in
the range from 1-M, which will print the Nth column of the M-length
per-atom array calculated by the compute.
If {c_ID} is used as a attribute, then the per-atom vector calculated
by the compute is printed. If {c_ID\[I\]} is used, then I must be in
the range from 1-M, which will print the Ith column of the per-atom
array with M columns calculated by the compute. See the discussion
above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.
The {f_ID} and {f_ID\[N\]} attributes allow vector or array per-atom
The {f_ID} and {f_ID\[I\]} attributes allow vector or array per-atom
quantities calculated by a "fix"_fix.html to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been
defined previously in the input script. The "fix
......@@ -291,9 +293,11 @@ any "compute"_compute.html, "fix"_fix.html, or atom-style
be written to a dump file.
If {f_ID} is used as a attribute, then the per-atom vector calculated
by the fix is printed. If {f_ID\[N\]} is used, then N must be in the
range from 1-M, which will print the Nth column of the M-length
per-atom array calculated by the fix.
by the fix is printed. If {f_ID\[I\]} is used, then I must be in the
range from 1-M, which will print the Ith column of the per-atom array
with M columns calculated by the fix. See the discussion above for
how I can be specified with a wildcard asterisk to effectively specify
multiple values.
The {v_name} attribute allows per-atom vectors calculated by a
"variable"_variable.html to be output. The name in the attribute
......@@ -306,6 +310,10 @@ invoke other computes, fixes, or variables when they are evaluated, so
this is a very general means of creating quantities to output to a
dump file.
The {d_name} and {i_name} attributes allow to output custom per atom
floating point or integer properties that are managed by
"fix property/atom"_fix_property_atom.html.
See "Section 10"_Section_modify.html of the manual for information
on how to add new compute and fix styles to LAMMPS to calculate
per-atom quantities which could then be output into dump files.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment