Newer
Older
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{amsmath}
\title{Bridgeland Stabilities and Finding Walls}
\subtitle{}
\author{Luke Naylor}
\date{March 2023}
\newcommand\RR{\mathbb{R}}
\newcommand\CC{\mathbb{C}}
\newcommand\centralcharge{\mathcal{Z}}
\newcommand\coh{\operatorname{Coh}}
\newcommand\rank{\operatorname{rk}}
\newcommand\degree{\operatorname{deg}}
\newcommand\realpart{\mathfrak{Re}}
\newcommand\imagpart{\mathfrak{Im}}
\newcommand\Torsion{\mathcal{T}}
\newcommand\Free{\mathcal{F}}
\newcommand\firsttilt[1]{\mathcal{B}^{#1}}
\newcommand\derived{\mathcal{D}}
from sagetexscripts import *
\end{sagesilent}
\section{Transitioning to Stab on Triangulated Categories}
\begin{frame}{Central Charge for Mumford Stability}
\begin{align*}
&\centralcharge \colon \coh(X) \to \CC \\
&\centralcharge (E) = - \degree(E) + i \rank(E)
\begin{columns}[T] % align columns
\begin{column}{.48\linewidth}
\[
\centralcharge (E) = r(E) e^{i\pi \varphi(E)}
\]
\begin{center}
\begin{large}
$\varphi$ called "phase"
\end{large}
\end{center}
\end{column}%
%\hfill%
\begin{column}{.48\linewidth}
\[
\mu(E) =
\frac{
- \realpart(\centralcharge(E))
}{
\imagpart(\centralcharge(E))
}
\quad
\]
\begin{center}
\begin{large}
(allow for $+\infty$)
\end{large}
\end{center}
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\begin{frame}{Extending Central Charge to $D^b(X)$}
\[
E^\bullet = [\cdots \to * \to * \to * \to \cdots] \in D^b(X)
\]
\begin{align*}
\rank(E^\bullet) &= \sum (-1)^i \rank(\cohom^i(E)) \\
\degree(E^\bullet) &= \sum (-1)^i \degree(\cohom^i(E))
\end{align*}
\vfill
\begin{columns}[t,onlytextwidth]
\begin{column}{.5\linewidth}
In particular, for shifts:
\begin{itemize}
\item $\rank(E[1]) = - \rank(E)$
\item $\degree(E[1]) = - \degree(E)$
\end{itemize}
\end{column}
\begin{column}{.49\linewidth}
For $\centralcharge$:
\begin{itemize}
\item $\centralcharge(E[1]) = - \centralcharge(E)$
\item $\centralcharge(E[2]) = \centralcharge(E)$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{columns}[t,onlytextwidth] % align columns
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig2.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig3.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig4.plot()}
}
\end{column}%
\end{columns}
\vfill
\begin{itemize}
\item $\centralcharge(E[2]) = \centralcharge(E)$
\item But $\phi(E[n]) = \phi(E) + n$
\item Stability decided among $E \in D^b(X) \colon \phi(E) \in (0, \pi] =
\coh(X)$ \\
\begin{frame}{Benefits of this Generalization}
\begin{itemize}
\item Can take different slicings (and heart)
\item Tweak $\centralcharge$ \quad $\to$ \quad m.b. tweak slicing
\item No ``strong'' Bridgeland stabilities with $\coh(X)$ as heart for dim>1
\item Gieseker stability (a polynomial stability) can be constructed as a
limit of Bridgeland stabilities
\section{Moving to Picard Rank 1 Surfaces}
\begin{frame}{Moving to Surfaces}
\begin{itemize}
\item $\centralcharge(\bigO_x) = 0$ for Mumford stability
\\ ignores extra term in Chern character:
$(r, d \ell, \chi)$
\item Classically, Gieseker stability used
\\ \qquad slope comparison $\to$ lexicographic comparison
\end{itemize}
\end{frame}
\begin{frame}{New Central Charges for Surfaces}
Explicitly constructed for K3 - Bridgeland (2003)
\vfill
\begin{tcolorbox}[title=Picard Rank 1 with polarization $L$]
\begin{align*}
\centralcharge_{\alpha, \beta}(E) &:=
- \left<
&\text{where}\:\:\ell := c_1(L),\:
\alpha\in\RR^{>0},\beta\in\RR
\\ &= - \chern_{\mathrm{top}}(\exp( \alpha \ell + \beta \ell i)^{-1} \otimes E)
&\text{($\leftarrow$ abuse)}
\end{align*}
\end{tcolorbox}
\vfill
$\exp(a) = \left(1, a, \frac12 a^2\right)$ defined formally,
in particular: $\exp(n \ell) = L^{\otimes n}$
\vfill
{
\color{gray}
For Mumford stability on Curves:
\begin{align*}
\centralcharge(E) &= -\chern_1(E) + \chern_0(E) i
\\ &= - \left<\exp(-i), E\right>
\end{align*}
}
\end{frame}
\begin{sagesilent}
v = generic_chern_char(2, "v")
Z = stability.Tilt().central_charge(v).expand()
nu = stability.Tilt().slope(v)
\end{sagesilent}
\begin{frame}{Explicit Formulae for New Central Charge}
\begin{align*}
\centralcharge_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{Z} \\
\nu_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{nu} \\
\end{align*}
\vfill
\begin{center}
Denominator /
$\imagpart(\centralcharge_{\alpha, \beta}) > 0 \iff \beta < \frac{v_1}{v_0} = \mu$
\\ $\to$ other $E\in\coh(X)$ cannot be in heart
\end{center}
\end{frame}
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\begin{frame}{New Heart - Tilting}
Role of $\coh(X)$ as heart of $\derived^b(X)$ replaced:
\vfill
\begin{tcolorbox}[title=First Tilt of $\coh(X)$]
\begin{align*}
\firsttilt\beta :=
\left\{
E \in \derived^b(X) \colon \quad
\cohom^{0}(E) \in \Torsion_\beta, \quad
\cohom^{-1}(E) \in \Free_\beta, \quad
\cohom^i(E) = 0 \:\: \text{o.w.}
\right\}
\end{align*}
where $\beta \in \RR$ and:
\begin{align*}
\Torsion_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) > \beta \quad \text{whenever} \: E \twoheadrightarrow G \not=0,E
\:\right\}
\\
\Free_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) \leq \beta \quad \text{whenever} \: 0 \not= G \hookrightarrow E
\:\right\}
\end{align*}
\end{tcolorbox}
\vfill
\begin{itemize}
\item $\Torsion_\beta \subset \firsttilt\beta$ includes Mumford semistable
$E \in Coh(X)$ s.t. $\mu(E) \geq \beta$
\item As $\beta \to - \infty$, \: $\firsttilt\beta \rightsquigarrow \coh(X)$
\begin{itemize}
\item $\Torsion_\beta \rightsquigarrow \coh(X)$
\item $\Free_\beta \rightsquigarrow 0$
\end{itemize}
{\color{gray}
\item $\hom(T, F) = 0$ for $T \in \Torsion_\beta, F \in \Free_\beta$
makes this a torsion theory
}
\end{itemize}
\end{frame}