Newer
Older
Although the general form of this bound is quite complicated, it does simplify a
lot when $m$ is small.
\begin{sagesilent}
from plots_and_expressions import main_theorem2_corollary
\end{sagesilent}
\begin{corollary}[Bound on $r$ \#3 on $\PP^2$ and Principally polarized abelian surfaces]
\label{cor:rmax_with_eps1}
Suppose we are working over $\PP^2$ or a principally polarized abelian surface
(or any other surfaces with $m=1$ or $2$).
Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$
rational and expressed in lowest terms.
Then the ranks $r$ of the pseudo-semistabilisers $u$ for $v$ with,
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
which are solutions to problem \ref{problem:problem-statement-2},
$\chern_1^\beta(u) = q = \frac{b_q}{n}$
are bounded above by the following expression:
\begin{align*}
\min
\left(
\sage{main_theorem2_corollary.r_upper_bound1}, \:\:
\sage{main_theorem2_corollary.r_upper_bound2}
\right)
\end{align*}
Where $R = \chern_0(v)$ and $k_{v,q}$ is the least
$k\in\ZZ_{>0}$ satisfying
\begin{equation*}
k \equiv -\aa\bb
\pmod{n}
\end{equation*}
\noindent
Furthermore, if $\aa \not= 0$ then
$r \equiv \aa^{-1}b_q \pmod{n}$.
\end{corollary}
\begin{proof}
This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can
drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-third}
Just like in examples \ref{exmpl:recurring-first} and
\ref{exmpl:recurring-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
%% TODO transcode notebook code
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
from examples import bound_comparisons
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 3*4+1 }
\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\ \hline
Thm \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\
Thm \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\end{tabular}
\vspace{1em}
\noindent
It's worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1}
reach, but do not exceed the actual maximum rank 25 of the
pseudo-semistabilisers of $v$ in this case.
As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r}
was 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-third}
Just like in examples \ref{exmpl:extravagant-first} and
\ref{exmpl:extravagant-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
This example was chosen because the $n$ value is moderatly large, giving more
possible values for $k_{v,q}$, in dfn/Lemma \ref{lemdfn:epsilon_q}. This allows
for a larger possible difference between the bounds given by Theorems
\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 12 }
\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\ \hline
Thm \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\
Thm \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\end{tabular}
\vspace{1em}
\noindent
However the reduction in the overall bound on $r$ is not as drastic, since all
possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
cyclically as we consider successive possible values for $q$.
And for each $q$ where $k_{v,q}=1$, both Theorems give the same bound.
Calculating the maximums over all values of $q$ yields
$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and
$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}.
\end{example}
\egroup % end scope where beta redefined to beta_{-}