Newer
Older
And $r$ satisfies $\aa r + \bb \equiv 0 \pmod{n}$,
then we have:
\begin{equation}
\label{eqn:epsilon_q_lemma_prop}
d - \frac{(\aa r + 2\bb)\aa}{2n^2}
\geq \epsilon_{v,q} \geq \epsilon_v > 0
\end{equation}
\noindent
Where $\epsilon_{v,q}$ is defined as follows:
\begin{equation*}
\epsilon_{v,q} \coloneqq
\frac{k_{q}}{\lcm(m,2n^2)}
\end{equation*}
with $k_{v,q}$ being the least $k\in\ZZ_{>0}$ satisfying
\begin{equation*}
k \equiv -\aa\bb \frac{m}{\gcd(m,2n^2)}
\mod{\gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn\aa}{\gcd(m,2n^2)}
\end{lemmadfn}
The quantity $m$ is determined by the variety, whereas $a_v$ and $n$ are determined by the Chern
character $v$ for which we are trying to find pseudo-semistabilisers.
So the $\gcd$ expression we are taking the modulus with respect to is considered
constant in the context of the problem we are solving for
(i.e. Problem \ref{problem:problem-statement-2}).
However $b_q$ depends on the choice of $q$, that is the value of
$\chern_1^{\beta_{-}(v)}(u)$ for which we are searching for solutions $u$, hence
why $k_{v,q}$ is denoted to depend on $q$ on top of $v$ and the context of the problem.
\begin{proof}
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
Consider the following sequence of logical implications.
The one-way implication follows from
$\aa r + \bb \equiv 0 \pmod{n}$,
and the final logical equivalence is just a simplification of the expressions.
\begin{align}
\frac{ x }{ \lcm(m,2) }
- \frac{
(\aa r+2\bb)\aa
}{
2n^2
}
= \frac{ k }{ \lcm(m,2n^2) }
\quad \text{for some } x \in \ZZ
\span \span \span \span \span
\label{eqn:finding_better_eps_problem}
\\ \nonumber
\\ \Leftrightarrow& &
- (\aa r+2\bb)\aa
\frac{\lcm(m,2n^2)}{2n^2}
& \equiv k & &
\nonumber
\\ &&&
\mod \frac{\lcm(m,2n^2)}{\lcm(m,2)}
\span \span \span
\nonumber
\\ \Rightarrow& &
- \bb\aa
\frac{\lcm(m,2n^2)}{2n^2}
& \equiv k & &
\nonumber
\\ &&&
\mod \gcd\left(
\frac{\lcm(m,2n^2)}{\lcm(m,2)},
\frac{n \aa \lcm(m,2n^2)}{2n^2}
\right)
\span \span \span
\nonumber
\\ \Leftrightarrow& &
- \bb\aa
\frac{m}{\gcd(m,2n^2)}
& \equiv k & &
\label{eqn:better_eps_problem_k_mod_n}
\\ &&&
\mod \gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn \aa}{\gcd(m,2n^2)}
\right)
\span \span \span
\nonumber
\end{align}
In our situation, we want to find the least $k>0$ satisfying
Equation \eqref{eqn:finding_better_eps_problem}.
Since such a $k$ must also satisfy Equation \eqref{eqn:better_eps_problem_k_mod_n},
we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
(a computation only depending on $q$ and $\beta$, but not $r$).
We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation
\eqref{eqn:finding_better_eps_problem}, giving the first inequality in Equation
\eqref{eqn:epsilon_q_lemma_prop}.
Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
\end{proof}
\begin{sagesilent}
from plots_and_expressions import main_theorem2
\begin{theorem}[Third bound on $r$ for Problem \ref{problem:problem-statement-2}]
\label{thm:rmax_with_eps1}
Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
$m\coloneqq\ell^2$.
Let $v$ be a fixed Chern character on this surface with positive rank
(or rank 0 and $c_1(v)>0$), and $\Delta(v)\geq 0$.
Then the ranks of the pseudo-semistabilisers $u$ for $v$,
which are solutions to Problem \ref{problem:problem-statement-2},
with $\chern_1^{\beta_{-}(v)}(u) = q$
\begin{align*}
\min
\left(
\sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2.r_upper_bound2.subs(betamin_subs)}
where $k_{v,q}$ is defined as in Definition/Lemma \ref{lemdfn:epsilon_q},
and $R = \chern_0(v)$
\end{theorem}
\begin{proof}
Following the same proof as Theorem \ref{thm:rmax_with_uniform_eps},
$\epsilon_{v,q} = \frac{k_{v,q}}{\lcm(m, 2n^2)}$ can be used instead of
$\epsilon_{v} = \frac{1}{\lcm(m, 2n^2)}$ as it satisfies the same required
property, as per Definition/Lemma \ref{lemdfn:epsilon_q}.
Although the general form of this bound is quite complicated, it does simplify a
lot when $m$ is small.
\begin{sagesilent}
from plots_and_expressions import main_theorem2_corollary
\begin{corollary}[Third bound on $r$ on $\PP^2$ and principally polarised abelian surfaces]
\label{cor:rmax_with_eps1}
Suppose we are working over $\PP^2$ or a principally polarised abelian surface
(or any other surfaces with $m=\ell^2=1$ or $2$).
Let $v$ be a fixed Chern character, with $\beta_{-}\coloneqq\beta_{-}(v)=\frac{a_v}{n}$
rational and expressed in lowest terms.
Then the ranks $r$ of the pseudo-semistabilisers $u$ for $v$ with,
which are solutions to Problem \ref{problem:problem-statement-2},
$\chern_1^{\beta_{-}}(u) = q = \frac{b_q}{n}$
are bounded above by the following expression:
\begin{align*}
\min
\left(
\sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)}
where $R = \chern_0(v)$ and $k_{v,q}$ is the least
$k\in\ZZ_{>0}$ satisfying
k \equiv -\aa\bb
\pmod{n}
}$.
\end{corollary}
\begin{proof}
This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can
drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
\label{exmpl:recurring-third}
Just like in Examples \ref{exmpl:recurring-first} and
\ref{exmpl:recurring-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
%% TODO transcode notebook code
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows:
\begin{sagesilent}
from examples import bound_comparisons
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 3*4+1 }
\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
$q=\chern_1^{\beta_{-}}(u)$
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\ \hline
Theorem \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\
Theorem \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\end{tabular}
\vspace{1em}
\noindent
It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1}
reach, but do not exceed, the actual maximum rank 25 of the
pseudo-semistabilisers of $v$ in this case.
As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r}
was 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
\label{exmpl:extravagant-third}
Just like in examples \ref{exmpl:extravagant-first} and
\ref{exmpl:extravagant-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
This example was chosen because the $n$ value is moderatly large, giving more
possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows
for a larger possible difference between the bounds given by Theorems
\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 12 }
\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
& $\cdots$
\\ \hline
Theorem \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
& $\cdots$
\\
Theorem \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
& $\cdots$
\end{tabular}
\vspace{1em}
\noindent
However the reduction in the overall bound on $r$ is not as drastic, since all
possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
cyclically as we consider successive possible values for $q$.
And for each $q$ where $k_{v,q}=1$, both theorems give the same bound.
Calculating the maximums over all values of $q$ yields
$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and
$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}.