Newer
Older
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
"source": [
"var(\"a_v b_q n\") # Define symbols introduce for values of beta and q\n",
"beta_value_expr = (beta == a_v/n)\n",
"q_value_expr = (q == b_q/n)\n",
"# placeholder for the specific values of k (start with 1):\n",
"var(\"kappa\", domain=\"real\")\n",
"\n",
"assymptote_gap_condition1 = (kappa/(2*n^2) < bgmlv2_d_upperbound_terms.hyperbolic)\n",
"assymptote_gap_condition2 = (kappa/(2*n^2) < bgmlv3_d_upperbound_terms.hyperbolic)\n",
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
"assymptote_gap_condition1, assymptote_gap_condition2"
]
},
{
"cell_type": "markdown",
"id": "ce8bc94f",
"metadata": {},
"source": [
"Rearrange these two conditions into bounds for $r$:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "553bba31",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<html>\\(\\displaystyle \\left(r < \\frac{n^{2} q^{2}}{\\kappa}, r < \\frac{n^{2} {\\left(\\psi - q\\right)}^{2}}{\\kappa} + R\\right)\\)</html>"
],
"text/latex": [
"$\\displaystyle \\left(r < \\frac{n^{2} q^{2}}{\\kappa}, r < \\frac{n^{2} {\\left(\\psi - q\\right)}^{2}}{\\kappa} + R\\right)$"
],
"text/plain": [
"(r < n^2*q^2/kappa, r < n^2*(psi - q)^2/kappa + R)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r_upper_bound1 = (\n",
" assymptote_gap_condition1\n",
" * r * 2*n^2 / kappa\n",
")\n",
"\n",
"assert r_upper_bound1.lhs() == r\n",
"\n",
"r_upper_bound2 = (\n",
" assymptote_gap_condition2\n",
" * (r-R) * 2*n^2 / kappa + R\n",
")\n",
"\n",
"assert r_upper_bound2.lhs() == r\n",
"\n",
"(r_upper_bound1, r_upper_bound2)"
"cell_type": "markdown",
"id": "7f4476b5",
"metadata": {},
"source": [
"### Main Theorem 1"
"cell_type": "markdown",
"id": "f6f4b131",
"metadata": {},
"source": [
"The first main theorem is about these two upper bounds on $r$ needing to be satisfied for $\\kappa = 1$ (weakest form)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "602840cc",
"outputs": [
{
"data": {
"text/html": [
"<html>\\(\\displaystyle r < \\min\\left( n^{2} q^{2} , n^{2} {\\left(\\psi - q\\right)}^{2} + R \\right)\\)</html>"
],
"text/latex": [
"$\\displaystyle r < \\min\\left( n^{2} q^{2} , n^{2} {\\left(\\psi - q\\right)}^{2} + R \\right)$"
],
"text/plain": [
"r < \\min\\left( n^{2} q^{2} , n^{2} {\\left(\\psi - q\\right)}^{2} + R \\right)"
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
"main_theorem1 = Object()\n",
"main_theorem1.r_upper_bound1 = r_upper_bound1.subs(kappa == 1).rhs()\n",
"main_theorem1.r_upper_bound2 = r_upper_bound2.subs(kappa == 1).rhs()\n",
"r\"r < \\min\\left(\" + latex(main_theorem1.r_upper_bound1) + \",\" + latex(main_theorem1.r_upper_bound2) + r\"\\right)\""
"cell_type": "markdown",
"id": "8bf4b71c",
"metadata": {},
"source": [
"### Main Theorem 1 Corollary"
"cell_type": "markdown",
"id": "ddd87bcf",
"metadata": {},
"source": [
"$\\renewcommand\\nu\\ell$\n",
"Redefine \\nu to $\\nu$ in latex\n",
"$\\let\\originalDelta\\Delta$\n",
"$\\renewcommand\\Delta{\\originalDelta(v)}$\n",
"Redefine \\Delta in latex to be $\\Delta$"
]
},
{
"cell_type": "code",
"execution_count": 29,
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<html>\\(\\displaystyle \\frac{1}{2} \\, R + \\frac{\\Delta n^{2}}{4 \\, \\nu^{2}} + \\frac{R^{2} \\nu^{2}}{4 \\, \\Delta n^{2}}\\)</html>"
],
"text/latex": [
"$\\displaystyle \\frac{1}{2} \\, R + \\frac{\\Delta n^{2}}{4 \\, \\nu^{2}} + \\frac{R^{2} \\nu^{2}}{4 \\, \\Delta n^{2}}$"
],
"text/plain": [
"1/2*R + 1/4*Delta*n^2/nu^2 + 1/4*R^2*nu^2/(Delta*n^2)"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var(\"Delta nu\", domain=\"real\")\n",
"# Delta to represent bogomolov(v)\n",
"# nu to represent \\ell\n",
"\n",
"q_sol = solve(\n",
" main_theorem1.r_upper_bound1\n",
" == main_theorem1.r_upper_bound2\n",
" , q\n",
")[0].rhs()\n",
"\n",
"main_theorem1.corollary_r_bound = (main_theorem1.r_upper_bound1\n",
" .expand()\n",
" .subs(q==q_sol)\n",
" .subs(kappa==1)\n",
" .subs(psi**2 == Delta/nu^2)\n",
" .subs(1/psi**2 == nu^2/Delta)\n",
").expand()\n",
"\n",
"main_theorem1.corollary_r_bound"
{
"cell_type": "markdown",
"id": "6c1e0d68",
"metadata": {},
"source": [
"# Unsorted Extras"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "896d26dd",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<html>\\(\\displaystyle c = \\frac{a_{v} r}{n} + \\frac{b_{q}}{n}\\)</html>"
],
"text/latex": [
"$\\displaystyle c = \\frac{a_{v} r}{n} + \\frac{b_{q}}{n}$"
],
"text/plain": [
"c == a_v*r/n + b_q/n"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c_in_terms_of_q.subs([q_value_expr,beta_value_expr])"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "51f22f7d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<html>\\(\\displaystyle {\\left(a_{v} r + 2 \\, b_{q}\\right)} a_{v}\\)</html>"
],
"text/latex": [
"$\\displaystyle {\\left(a_{v} r + 2 \\, b_{q}\\right)} a_{v}$"
],
"text/plain": [
"(a_v*r + 2*b_q)*a_v"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"rhs_numerator = (positive_radius_condition_with_q\n",
" .rhs()\n",
" .subs([q_value_expr,beta_value_expr])\n",
" .factor()\n",
" .numerator()\n",
")\n",
"rhs_numerator"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "8148f5cd",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<html>\\(\\displaystyle d > \\frac{{\\left(a_{v} r + 2 \\, b_{q}\\right)} a_{v}}{2 \\, n^{2}}\\)</html>"
],
"text/latex": [
"$\\displaystyle d > \\frac{{\\left(a_{v} r + 2 \\, b_{q}\\right)} a_{v}}{2 \\, n^{2}}$"
],
"text/plain": [
"d > 1/2*(a_v*r + 2*b_q)*a_v/n^2"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"(positive_radius_condition_with_q\n",
" .subs([q_value_expr,beta_value_expr])\n",
" .factor())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.7",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 5
}