Newer
Older
\section{Existing Bound on Semistabiliser Ranks}
\label{subsect:loose-bound-on-r}
The proof for the following Theorem \ref{thm:loose-bound-on-r} was hinted at in
\cite{SchmidtBenjamin2020Bsot}, but the value appears explicitly in
\cite{SchmidtGithub2020} as shown in the following Listing
\ref{fig:code:schmidt-bound}.
The latter citation is a SageMath \cite{sagemath}
library for computing certain quantities related to Bridgeland stabilities on
Picard rank 1 varieties. It also includes functions to compute pseudo-walls and
\lstinputlisting[
caption={\raggedleft snippet from \cite{SchmidtGithub2020} \texttt{stability_conditions.tilt.walls_left}},
label={fig:code:schmidt-bound}
]{schmidt-snippet}
\begin{theorem}[Bound on $r$ - Benjamin Schmidt]
\label{thm:loose-bound-on-r}
Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or
$\chern_0(v) = 0$ but $\chern_1(v) > 0$)
such that
$\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of
any solution $u$ of Problem \ref{problem:problem-statement-2} is
bounded above by:
\begin{equation*}
r \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
\end{equation*}
\end{theorem}
\begin{proof}
The Bogomolov form applied to the twisted Chern character is the same as the
untwisted one. So $0 \leq \Delta(E)$
(condition 2 from Corollary \ref{cor:num_test_prob2})
yields:
\begin{equation}
\label{eqn-bgmlv-on-E}
2\chern^\beta_0(E) \chern^\beta_2(E) \leq \chern^\beta_1(E)^2
\end{equation}
\noindent
Furthermore,
condition 5 from Corollary \ref{cor:num_test_prob2}
gives:
\begin{equation}
\label{eqn-tilt-cat-cond}
0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F)
\end{equation}
% FUTURE maybe ref this back to some definition of first tilt
\noindent
The restrictions on $\chern^{\beta_-}_0(E)$ and $\chern^{\beta_-}_2(E)$
is best seen with the following graph:
% TODO: hyperbola restriction graph (shaded)
This is where the rationality of $\beta_{-}$ comes in. If
$\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$.
Then $\chern^{\beta_-}_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$.
In particular, since $\chern_2^{\beta_-}(E) > 0$ (by using $P=(\beta_-,0)$ in
lemma \ref{lem:pseudo_wall_numerical_tests}) we must also have
$\chern^{\beta_-}_2(E) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a
bound for the rank of $E$:
\begin{align}
\chern_0(E) &= \chern^{\beta_-}_0(E) \\
&\leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(E)^2}{2} \\
&= \frac{mn^2 \chern^{\beta_-}_1(F)^2}{\gcd(m,2n^2)}
In fact Equation \ref{eqn-tilt-cat-cond} can be tightened slightly:
we cannot have equality $\chern^{\beta_{-}}_1(E) = \chern^{\beta_{-}}_1(F)$
otherwise we would have $\chern^{\beta_{-}}_1(G)=0$ for the quotient $G$.
This would imply $\mu(G)=\beta_{-}$, but since $\Theta_G$ is bounded above in the
upper-half plane by the assymptotes crossing the $\beta$-axis at 45$^\circ$ at
$\beta=\beta_{-}(v)$. So $\Theta_G$ cannot intersect $\Theta_v$ at any point
with $\alpha > 0$, so there is no point with $\nu(E)=\nu(F)=\nu(G)=0$, which would
have to hold at the top of the pseudo-wall if it were to exist.
Therefore we must have a strict inequality
$\chern^{\beta_{-}}_1(E) < \chern^{\beta_{-}}_1(F)$,
and since these are elements of $\frac{1}{n}\ZZ$, we can also conclude:
\[
n\chern^{\beta_{-}}_1(E) \leq n\chern^{\beta_{-}}_1(F) - 1
\]
which then tightens the upper bound found for $\chern_0(E)$
in Equation \ref{proof:first-bound-on-r}
to the bound in the statement of the Lemma.
\end{proof}
\begin{sagesilent}
from examples import recurring
\end{sagesilent}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-first}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=1$, $\beta_-=\sage{recurring.betaminus}$,
giving $n=\sage{recurring.n}$ and
$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilisers for $v$ are bounded above by $\sage{recurring.loose_bound}$.
However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be 25. This will be a recurring example to
illustrate the performance of later Theorems about rank bounds
\end{example}
\begin{sagesilent}
from examples import extravagant
\end{sagesilent}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-first}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=1$, $\beta_-=\sage{extravagant.betaminus}$,
giving $n=\sage{extravagant.n}$ and
$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.loose_bound}$.
However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be $\sage{extravagant.actual_rmax}$.
\end{example}
\section{Tighter Bounds}
\label{sec:refinement}
To get tighter bounds on the rank of solutions $u$ to the Problems
\ref{problem:problem-statement-1} and
\ref{problem:problem-statement-2},
we will need to consider each of the values which
$\chern_1^{\beta}(u)$ can take.
Doing this will allow us to eliminate possible values of $\chern_0(u)$ for which
each $\chern_1^{\beta}(u)$ leads to the failure of at least one of the inequalities.
As opposed to only eliminating possible values of $\chern_0(u)$ for which all
corresponding $\chern_1^{\beta}(u)$ fail one of the inequalities (which is what
was implicitly happening before).
First, let us fix a Chern character $v$ with $\Delta(v)\geq 0$,
$\chern_0(v)>0$, or $\chern_0(v)=0$ and $\chern_1(v)>0$,
and some solution $u$ to the Problem
\ref{problem:problem-statement-1} or
\ref{problem:problem-statement-2}.
Take $\beta = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem
\ref{problem:problem-statement-1}
(or $\beta = \beta_{-}$ for problem \ref{problem:problem-statement-2}).
\begin{align}
\chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2)
&& \text{where $R,C\in \ZZ$ and $D\in \frac{1}{\lcm(m,2)}\ZZ$}
\\
u \coloneqq& \:(r,c\ell,d\ell^2)
&& \text{where $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$}
\end{align}
Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in
lemma \ref{lem:num_test_prob1}
(or corollary \ref{cor:num_test_prob2})
that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$,
and so we can write:
\begin{sagesilent}
from plots_and_expressions import c_in_terms_of_q
\end{sagesilent}
\begin{equation}
\label{eqn-cintermsofm}
c=\chern_1(u) = \sage{c_in_terms_of_q}
\qquad 0 \leq q \coloneqq \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v)
\end{equation}
Furthermore, if $\beta$ is rational, $\chern_1 \in \ZZ$ so we only need to consider
$q \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)]$,
where $n$ is the denominator of $\beta$.
For the next subsections, we consider $q$ to be fixed with one of these values,
and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
\subsection{Bounds on \texorpdfstring{`$d$'}{d}-values for Solutions of Problems}
This section studies the numerical conditions that $u$ must satisfy as per
lemma \ref{lem:num_test_prob1}
(or corollary \ref{cor:num_test_prob2})
and reformulates them as bounds on $d$ from Equation \ref{eqn:u-coords}.
This is done to determine which $r$ values lead to no possible values for $d$.
\subsubsection{Size of pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}}
\label{subsect-d-bound-radiuscond}
This condition refers to condition
\ref{item:radiuscond:lem:num_test_prob1}
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
(or corollary \ref{cor:num_test_prob2}).
In the case where we are tackling problem \ref{problem:problem-statement-2}
(with $\beta = \beta_{-}$), this condition, when expressed as a bound on $d$,
amounts to:
\begin{align}
\label{eqn:radius-cond-betamin}
\chern_2^{\beta_{-}}(u) &> 0 \\
d &> \beta_{-}q + \frac{1}{2} \beta_{-}^2r
\end{align}
\begin{sagesilent}
import other_P_choice as problem1
\end{sagesilent}
In the case where we are tackling problem \ref{problem:problem-statement-1},
with some Chern character $v$ with positive rank, and some choice of point
$P=(A,B) \in \Theta_v^-$.
Then $\sage{problem1.A2_subs}$ follows from $\chern_2^P(v)=0$. Using this substitution into the
condition $\chern_2^P(u)>0$ yields:
\begin{equation}
\sage{problem1.radius_condition}
\end{equation}
\noindent
Expressing this as a bound on $d$, then yields:
\begin{equation}
\sage{problem1.radius_condition_d_bound}
\end{equation}
\subsubsection{Semistability of the Semistabilizer:
\texorpdfstring{
$\Delta(u) \geq 0$
}{
Δ(u) ≥ 0
}
}
This condition refers to condition
\ref{item:bgmlvu:lem:num_test_prob1}
(or corollary \ref{cor:num_test_prob2}).
\noindent
Expressing $\Delta(u)\geq 0$ in terms of $q$ as defined in eqn \ref{eqn-cintermsofm}
we get the following:
\begin{sagesilent}
from plots_and_expressions import bgmlv2_with_q
\end{sagesilent}
\begin{equation}
\sage{bgmlv2_with_q}
\end{equation}
\noindent
This can be rearranged to express a bound on $d$ as follows
(recall from condition \ref{item:rankpos:lem:num_test_prob1}
in Lemma \ref{lem:num_test_prob1} or corollary
\ref{cor:num_test_prob2} that $r>0$):
\begin{sagesilent}
from plots_and_expressions import bgmlv2_d_ineq
\end{sagesilent}
\begin{equation}
\label{eqn-bgmlv2_d_upperbound}
\sage{bgmlv2_d_ineq}
\end{equation}
\begin{sagesilent}
from plots_and_expressions import bgmlv2_d_upperbound_terms
\end{sagesilent}
Viewing Equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term
of $r$ again, there is a constant term
$\sage{bgmlv2_d_upperbound_terms.const}$,
a linear term
$\sage{bgmlv2_d_upperbound_terms.linear}$,
and a hyperbolic term
$\sage{bgmlv2_d_upperbound_terms.hyperbolic}$.
Notice that in the context of problem \ref{problem:problem-statement-2}
($\beta = \beta_{-}$),
the constant and linear terms match up with the ones
for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}.
\subsubsection{Semistability of the Quotient:
\texorpdfstring{
$\Delta(v-u) \geq 0$
}{
Δ(v-u) ≥ 0
}
}
\label{subsect-d-bound-bgmlv3}
This condition refers to condition
\ref{item:bgmlvv-u:lem:num_test_prob1}
(or corollary \ref{cor:num_test_prob2}).
Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on
$d$ yields:
\begin{sagesilent}
from plots_and_expressions import bgmlv3_d_upperbound_terms
\end{sagesilent}
\begin{equation*}
\label{eqn-bgmlv3_d_upperbound}
d \leq
\sage{bgmlv3_d_upperbound_terms.linear}
+ \sage{bgmlv3_d_upperbound_terms.const}
+ \sage{bgmlv3_d_upperbound_terms.hyperbolic}
\qquad
\text{where }r>R
\end{equation*}
\noindent
For $r=R$, $\Delta(v-u)\geq 0$ is always true, and for $r<R$ it gives a lower
bound on $d$, but it is weaker than the one given by the lower bound in
subsubsection \ref{subsect-d-bound-radiuscond}.
Viewing the right hand side of Equation \ref{eqn-bgmlv3_d_upperbound}
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
as a function of $r$, the linear and constant terms almost match up with the
ones in the previous section, up to the
$\chern_2^{\beta}(v)$ term.
However, when specializing to problem \ref{problem:problem-statement-2} again
(with $\beta = \beta_{-}$), then we have $\chern^{\beta}_2(v) = 0$.
And so in this context, the linear and constant terms do match up with the
previous subsubsections.
\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem
\texorpdfstring{\ref{problem:problem-statement-2}}{2}}
\label{subsubsect:all-bounds-on-d-prob2}
%% RECAP ON INEQUALITIES TOGETHER
%%%% RATIONAL BETA MINUS
As mentioned in passing, when specializing to solutions $u$ of problem
\ref{problem:problem-statement-2}, the bounds on
$d=\chern_2(u)$ induced by conditions
\ref{item:bgmlvu:lem:num_test_prob2},
\ref{item:bgmlvv-u:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob1}
from corollary \ref{cor:num_test_prob2} have the same constant and linear
terms in $r$, but different hyperbolic terms.
These give bounds with the same assymptotes when we take $r\to\infty$
(for any fixed $q=\chern_1^{\beta_{-}}(u)$).
% redefine \beta (especially coming from rendered SageMath expressions)
% to be \beta_{-} for the rest of this subsubsection
\bgroup
\let\originalbeta\beta
\renewcommand\beta{{\originalbeta_{-}}}
\begin{align}
d &>&
\frac{1}{2}\beta^2 r
&+ \beta q,
\phantom{+}& % to keep terms aligned
&\qquad\text{when\:} r > 0
\label{eqn:radiuscond_d_bound_betamin}
\\
d &\leq&
\sage{bgmlv2_d_upperbound_terms.problem2.linear}
&+ \sage{bgmlv2_d_upperbound_terms.problem2.const}
+& \sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic},
&\qquad\text{when\:} r > 0
\label{eqn:bgmlv2_d_bound_betamin}
\\
d &\leq&
\sage{bgmlv3_d_upperbound_terms.problem2.linear}
&+ \sage{bgmlv3_d_upperbound_terms.problem2.const}
% ^ ch_2^\beta(F)=0 for beta_{-}
+& \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic},
&\qquad\text{when\:} r > R
\label{eqn:bgmlv3_d_bound_betamin}
\end{align}
\begin{sagesilent}
from plots_and_expressions import \
bounds_on_d_qmin, \
bounds_on_d_qmax
\end{sagesilent}
\begin{figure}
\centering
\begin{subfigure}{.45\textwidth}
\centering
\sageplot[width=\linewidth]{bounds_on_d_qmin}
\caption{$q = 0$ (all bounds other than green coincide on line)}
\label{fig:d_bounds_xmpl_min_q}
\end{subfigure}%
\hfill
\begin{subfigure}{.45\textwidth}
\centering
\sageplot[width=\linewidth]{bounds_on_d_qmax}
\caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)}
\label{fig:d_bounds_xmpl_max_q}
\end{subfigure}
\caption{
Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq\chern_0(E)$ for fixed, extreme,
values of $q\coloneqq\chern_1^{\beta}(E)$.
Where $\chern(F) = (3,2,-2)$.
}
\label{fig:d_bounds_xmpl_extrm_q}
\end{figure}
Recalling that $q \coloneqq \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$,
it is worth noting that the extreme values of $q$ in this range lead to the
(\ref{fig:d_bounds_xmpl_extrm_q}).
In fact, in each case, one of the weak upper bounds coincides with one of the
weak lower bounds, (implying no possible destabilisers $E$ with
$\chern_0(E)=\vcentcolon r>R\coloneqq\chern_0(F)$ for these $q$-values).
This indeed happens in general since the right hand sides of
(eqn \ref{eqn:bgmlv2_d_bound_betamin}) and
(eqn \ref{eqn:radiuscond_d_bound_betamin}) match when $q=0$.
In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of
(eqn \ref{eqn:bgmlv3_d_bound_betamin}) and
(eqn \ref{eqn:radiuscond_d_bound_betamin}) which match.
The more generic case, when $0 < q\coloneqq\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$
for the bounds on $d$ in terms of $r$ is illustrated in Figure
(\ref{fig:d_bounds_xmpl_gnrc_q}).
The question of whether there are pseudo-destabilisers of arbitrarily large
rank, in the context of the graph, comes down to whether there are points
$(r,d) \in \ZZ \oplus \frac{1}{\lcm(m,2)} \ZZ$ (with large $r$)
that fit above the yellow line (ensuring positive radius of wall) but below the
blue and green (ensuring $\Delta(u), \Delta(v-u) > 0$).
These lines have the same assymptote at $r \to \infty$
(eqns \ref{eqn:bgmlv2_d_bound_betamin},
\ref{eqn:bgmlv3_d_bound_betamin},
\ref{eqn:radiuscond_d_bound_betamin}).
As mentioned in the introduction to this Part, the finiteness of these
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
solutions is entirely determined by whether $\beta$ is rational or irrational.
Some of the details around the associated numerics are explored next.
\begin{sagesilent}
from plots_and_expressions import typical_bounds_on_d
\end{sagesilent}
\begin{figure}
\centering
\sageplot[width=\linewidth]{typical_bounds_on_d}
\caption{
Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed
value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$.
Where $\chern(F) = (3,2,-2)$.
}
\label{fig:d_bounds_xmpl_gnrc_q}
\end{figure}
\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem
\texorpdfstring{\ref{problem:problem-statement-1}}{1}}
\label{subsubsect:all-bounds-on-d-prob1}
Unlike for problem \ref{problem:problem-statement-2},
the bounds on $d=\chern_2(u)$ induced by conditions
\ref{item:bgmlvu:lem:num_test_prob2},
\ref{item:bgmlvv-u:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob1}
from corollary \ref{cor:num_test_prob2} have different
constant and linear terms, so that the graphs for upper
bounds do not share the same assymptote as the lower bound
(and they will turn out to intersect).
\begin{align}
\sage{problem1.radius_condition_d_bound.lhs()}
&>
\sage{problem1.radius_condition_d_bound.rhs()}
&\text{where }r>0
\label{eqn:prob1:radiuscond}
\\
d &\leq
\sage{problem1.bgmlv2_d_upperbound_terms.linear}
+ \sage{problem1.bgmlv2_d_upperbound_terms.const}
+ \sage{problem1.bgmlv2_d_upperbound_terms.hyperbolic}
&\text{where }r>R
\label{eqn:prob1:bgmlv2}
\\
d &\leq
\sage{problem1.bgmlv3_d_upperbound_terms.linear}
+ \sage{problem1.bgmlv3_d_upperbound_terms.const}
+ \sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic}
&\text{where }r>R
\label{eqn:prob1:bgmlv3}
\end{align}
Notice that as a function in $r$, the linear term in
equation \ref{eqn:prob1:radiuscond} is strictly greater than
and \ref{eqn:prob1:bgmlv3}. This is because $r$, $R$
and $\chern_2^B(v)$ are all strictly positive:
\begin{itemize}
\item $R > 0$ from the setting of problem
\ref{problem:problem-statement-1}
\item $r > 0$ from Lemma \ref{lem:num_test_prob1}
\item $\chern_2^B(v)>0$ because $B < \originalbeta_{-}$ due to the choice of $P$ being
a point on $\Theta_v^{-}$
\end{itemize}
This means that the lower bound for $d$ will be large than either of the two
upper bounds for sufficiently large $r$, and hence those values of $r$ would yield no
solution to problem \ref{problem:problem-statement-1}.
\ref{fig:problem1:d_bounds_xmpl_gnrc_q}.
\begin{figure}
\centering
\sageplot[width=\linewidth]{problem1.example_plot}
\caption{
Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed
value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$.
Where $\chern(F) = (3,2,-2)$ and $P$ chosen as the point on $\Theta_v$
with $B\coloneqq-2/3-1/99$ in the context of problem
\ref{problem:problem-statement-1}.
}
\label{fig:problem1:d_bounds_xmpl_gnrc_q}
\end{figure}
\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem
\ref{problem:problem-statement-1}}
As discussed at the end of subsection \ref{subsubsect:all-bounds-on-d-prob1}
(and illustrated in Figure \ref{fig:problem1:d_bounds_xmpl_gnrc_q}),
there are no solutions $u$ to problem \ref{problem:problem-statement-1}
with large $r=\chern_0(u)$, since the lower bound on $d=\chern_2(u)$ is larger
than the upper bounds.
Therefore, we can calculate upper bounds on $r$ by calculating for which values,
the lower bound on $d$ is equal to one of the upper bounds on $d$
(i.e. finding certain intersection points of the graph in Figure
\ref{fig:problem1:d_bounds_xmpl_gnrc_q}).
\begin{theorem}[Problem \ref{problem:problem-statement-1} upper Bound on $r$]
\label{lem:prob1:r_bound}
Let $u$ be a solution to problem \ref{problem:problem-statement-1}
and $q\coloneqq\chern_1^{B}(u)$.
Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression:
\begin{equation}
\sage{problem1.r_bound_expression}
\end{equation}
\begin{proof}
Recall that $d\coloneqq\chern_2(u)$ has two upper bounds in terms of $r$: in
Equations \ref{eqn:prob1:bgmlv2} and \ref{eqn:prob1:bgmlv3};
and one lower bound: in Equation \ref{eqn:prob1:radiuscond}.
Solving for the lower bound in Equation \ref{eqn:prob1:radiuscond} being
less than the upper bound in Equation \ref{eqn:prob1:bgmlv2} yields:
\begin{equation}
r<\sage{problem1.positive_intersection_bgmlv2}
\end{equation}
Similarly, but with the upper bound in Equation \ref{eqn:prob1:bgmlv3}, gives:
\begin{equation}
r<\sage{problem1.positive_intersection_bgmlv3}
\end{equation}
Therefore, $r$ is bounded above by the minimum of these two expressions which
can then be factored into the expression given in the Lemma.
\end{proof}
The above Lemma \ref{lem:prob1:r_bound} gives an upper bound on $r$ in terms of $q$.
But given that $0 \leq q \leq \chern_1^{B}(v)$, we can take the maximum of this
bound, over $q$ in this range, to get a simpler (but weaker) bound in the
following Lemma \ref{lem:prob1:convenient_r_bound}.
\begin{theorem}[Problem \ref{problem:problem-statement-1} global upper Bound on $r$]
\label{lem:prob1:convenient_r_bound}
Let $u$ be a solution to problem \ref{problem:problem-statement-1}.
Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression:
\begin{equation}
\sage{problem1.r_max}
\end{equation}
The first term of the minimum in Lemma \ref{lem:prob1:r_bound}
increases linearly in $q$, and the second
decreases linearly. So the maximum is achieved with the value of
$q=q_{\mathrm{max}}$ where they are equal.
Solving for the two terms in the minimum to be equal yields:
$q_{\mathrm{max}}=\sage{problem1.maximising_q}$.
Substituting $q=q_{\mathrm{max}}$ into the bound in Lemma
\ref{lem:prob1:r_bound} gives the bound as stated in the current Lemma.
\end{proof}
$q_{\mathrm{max}} > 0$ is immediate from the expression, but
$q_{\mathrm{max}} \leq \chern_1^{B}(v)$ is equivalent to $\Delta(v) \geq 0$,
which is true by assumption in this setting.
\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem
\ref{problem:problem-statement-2}}
Now, the inequalities from the above subsubsection
\ref{subsubsect:all-bounds-on-d-prob2} will be used to find, for
each given $q=\chern^{\beta}_1(E)$, how large $r$ needs to be in order to leave
no possible solutions for $d$. At that point, there are no solutions
$u=(r,c\ell,d\ell^2)$ to problem \ref{problem:problem-statement-2}.
The strategy here is similar to what was shown in Theorem
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
\ref{thm:loose-bound-on-r}.
\renewcommand{\aa}{{a_v}}
\newcommand{\bb}{{b_q}}
Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$.
Then fix a value of $q$:
\begin{equation}
q\coloneqq \chern_1^{\beta}(E)
=\frac{\bb}{n}
\in
\frac{1}{n} \ZZ
\cap [0, \chern_1^{\beta}(F)]
\end{equation}
as noted at the beginning of this section \ref{sec:refinement} so that we are
considering $u$ which satisfy \ref{item:chern1bound:lem:num_test_prob2}
in corollary \ref{cor:num_test_prob2}.
Substituting the current values of $q$ and $\beta$ into the condition for the
radius of the pseudo-wall being positive
(eqn \ref{eqn:radiuscond_d_bound_betamin}) we get:
\begin{sagesilent}
from plots_and_expressions import \
positive_radius_condition_with_q, \
q_value_expr, \
beta_value_expr
\end{sagesilent}
\begin{equation}
\label{eqn:positive_rad_condition_in_terms_of_q_beta}
\frac{1}{\lcm(m,2)}\ZZ
\ni
\qquad
\sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()}
\qquad
\in
\frac{1}{2n^2}\ZZ
\end{equation}
\begin{sagesilent}
from plots_and_expressions import main_theorem1
\end{sagesilent}
\begin{theorem}[Bound on $r$ \#1]
\label{thm:rmax_with_uniform_eps}
Let $v = (R,C\ell,D\ell^2)$ be a fixed Chern character. Then the ranks of the
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
which are solutions to problem \ref{problem:problem-statement-2},
with $\chern_1^\beta = q$
are bounded above by the following expression.
\begin{align*}
\min
\left(
\sage{main_theorem1.r_upper_bound1}, \:\:
\sage{main_theorem1.r_upper_bound2}
\right)
\end{align*}
Taking the maximum of this expression over
$q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$
would give an upper bound for the ranks of all solutions to problem
\ref{problem:problem-statement-2}.
\end{theorem}
\begin{proof}
\noindent
Both $d$ and the lower bound in
(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta})
are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
So, if any of the two upper bounds on $d$ come to within
$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for
$d$.
Hence any corresponding $r$ cannot be a rank of a
To avoid this, we must have,
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
\ref{eqn:bgmlv2_d_bound_betamin},
\ref{eqn:bgmlv3_d_bound_betamin},
\ref{eqn:radiuscond_d_bound_betamin}.
\begin{sagesilent}
from plots_and_expressions import \
assymptote_gap_condition1, assymptote_gap_condition2, k
\end{sagesilent}
\begin{align}
&\sage{assymptote_gap_condition1.subs(k==1)} \\
&\sage{assymptote_gap_condition2.subs(k==1)}
\end{align}
\noindent
This is equivalent to:
\begin{equation}
\label{eqn:thm-bound-for-r-impossible-cond-for-r}
r \leq
\min\left(
\sage{
main_theorem1.r_upper_bound1
} ,
\sage{
main_theorem1.r_upper_bound2
}
\right)
\end{equation}
\end{proof}
\begin{sagesilent}
from plots_and_expressions import q_sol, bgmlv_v, psi
\end{sagesilent}
\begin{corollary}[Bound on $r$ \#2]
\label{cor:direct_rmax_with_uniform_eps}
Let $v$ be a fixed Chern character and
$R\coloneqq\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$.
Then the ranks of the pseudo-semistabilisers for $v$,
which are solutions to problem \ref{problem:problem-statement-2},
are bounded above by the following expression.
\begin{equation*}
\sage{main_theorem1.corollary_r_bound}
\end{equation*}
\end{corollary}
\begin{proof}
The ranks of the pseudo-semistabilisers for $v$ are bounded above by the
maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in Theorem
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
\ref{thm:rmax_with_uniform_eps}.
Noticing that the expression is a maximum of two quadratic functions in $q$:
\begin{equation*}
f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad
f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2}
\end{equation*}
These have their minimums at $q=0$ and $q=\chern_1^{\beta}(F)$ respectively.
It suffices to find their intersection in
$q\in [0, \chern_1^{\beta}(F)]$, if it exists,
and evaluating on of the $f_i$ there.
The intersection exists, provided that
$f_1(\chern_1^{\beta}(F)) \geq f_2(\chern_1^{\beta}(F))=R$,
or equivalently,
$R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$.
Solving for $f_1(q)=f_2(q)$ yields
\begin{equation*}
q=\sage{q_sol.expand()}
\end{equation*}
And evaluating $f_1$ at this $q$-value gives:
\begin{equation*}
\sage{main_theorem1.corollary_intermediate}
\end{equation*}
Finally, noting that $\Delta(v)=\psi^2\ell^2$, we get the bound as
stated in the corollary.
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-second}
Just like in example \ref{exmpl:recurring-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{recurring.betaminus}$,
giving $n=\sage{recurring.n}$.
Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilisers for $v$ are bounded above by
$\sage{recurring.corrolary_bound} \approx \sage{float(recurring.corrolary_bound)}$,
which is much closer to real maximum 25 than the original bound 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-second}
Just like in example \ref{exmpl:extravagant-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{extravagant.betaminus}$,
giving $n=\sage{extravagant.n}$.
Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilisers for $v$ are bounded above by
$\sage{extravagant.corrolary_bound} \approx \sage{float(extravagant.corrolary_bound)}$,
which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
original bound 215296.
\end{example}
%% refinements using specific values of q and beta
These bound can be refined a bit more by considering restrictions from the
possible values that $r$ take.
Furthermore, the proof of Theorem \ref{thm:rmax_with_uniform_eps} uses the fact
that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of
$\frac{1}{2}\ZZ$ is at least $\frac{1}{2n^2}$ away. However this a
conservative estimate, and a larger gap can sometimes be guaranteed if we know
this value of $\frac{1}{2n^2}\ZZ$ explicitly.
The expressions that will follow will be a bit more complicated and have more
parts which depend on the values of $q$ and $\beta$, even their numerators
$\aa,\bb$ specifically. The upcoming Theorem \ref{thm:rmax_with_eps1} is less useful as a
`clean' formula for a bound on the ranks of the pseudo-semistabilisers, but has a
purpose in the context of writing a computer program to find
pseudo-semistabilisers. Such a program would iterate through possible values of
$q$, then iterate through values of $r$ within the bounds (dependent on $q$),
which would then determine $c$, and then find the corresponding possible values
for $d$.
Firstly, we only need to consider $r$-values for which $c\coloneqq\chern_1(E)$ is
integral:
\begin{equation}
c =
\sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])}
\in \ZZ
\end{equation}
\noindent
That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to
$n$, and so invertible mod $n$).
\noindent
Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$.
Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_F$ in the
proof of Theorem \ref{thm:rmax_with_uniform_eps}:
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
\begin{lemmadfn}[
Finding a better alternative to $\epsilon_v$:
$\epsilon_{v,q}$
]
\label{lemdfn:epsilon_q}
Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in
eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}.
That is:
\begin{equation*}
\sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()}
\end{equation*}
\noindent
Then we have:
\begin{equation}
\label{eqn:epsilon_q_lemma_prop}
d - \frac{(\aa r + 2\bb)\aa}{2n^2}
\geq \epsilon_{v,q} \geq \epsilon_v > 0
\end{equation}
\noindent
Where $\epsilon_{v,q}$ is defined as follows:
\begin{equation*}
\epsilon_{v,q} \coloneqq
\frac{k_{q}}{\lcm(m,2n^2)}
\end{equation*}
with $k_{v,q}$ being the least $k\in\ZZ_{>0}$ satisfying
\begin{equation*}
k \equiv -\aa\bb \frac{m}{\gcd(m,2n^2)}
\mod{\gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn\aa}{\gcd(m,2n^2)}
\right)}
\end{equation*}
\end{lemmadfn}
\vspace{10pt}
\begin{proof}
Consider the following sequence of logical implications.
The one-way implication follows from
$\aa r + \bb \equiv 0 \pmod{n}$,
and the final logical equivalence is just a simplification of the expressions.
\begin{align}
\frac{ x }{ \lcm(m,2) }
- \frac{
(\aa r+2\bb)\aa
}{
2n^2
}
= \frac{ k }{ \lcm(m,2n^2) }
\quad \text{for some } x \in \ZZ
\span \span \span \span \span
\label{eqn:finding_better_eps_problem}
\\ \nonumber
\\ \Leftrightarrow& &
- (\aa r+2\bb)\aa
\frac{\lcm(m,2n^2)}{2n^2}
&\equiv k &&
\nonumber
\\ &&&
\mod \frac{\lcm(m,2n^2)}{\lcm(m,2)}
\span \span \span
\nonumber
\\ \Rightarrow& &
- \bb\aa
\frac{\lcm(m,2n^2)}{2n^2}
&\equiv k &&
\nonumber
\\ &&&
\mod \gcd\left(
\frac{\lcm(m,2n^2)}{\lcm(m,2)},
\frac{n \aa \lcm(m,2n^2)}{2n^2}
\right)
\span \span \span
\nonumber
\\ \Leftrightarrow& &
- \bb\aa
\frac{m}{\gcd(m,2n^2)}
&\equiv k &&
\label{eqn:better_eps_problem_k_mod_n}
\\ &&&
\mod \gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn \aa}{\gcd(m,2n^2)}
\right)
\span \span \span
\nonumber
\end{align}
In our situation, we want to find the least $k>0$ satisfying
eqn \ref{eqn:finding_better_eps_problem}.
Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n},
we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
(a computation only depending on $q$ and $\beta$, but not $r$).
We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying eqn
\ref{eqn:finding_better_eps_problem}, giving the first inequality in eqn
\ref{eqn:epsilon_q_lemma_prop}.
Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
\end{proof}
\begin{sagesilent}
from plots_and_expressions import main_theorem2
\end{sagesilent}
\begin{theorem}[Bound on $r$ \#3]
\label{thm:rmax_with_eps1}
Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$
rational and expressed in lowest terms.
Then the ranks $r$ of the pseudo-semistabilisers $u$ for $v$ with,
which are solutions to problem \ref{problem:problem-statement-2},
$\chern_1^\beta(u) = q = \frac{b_q}{n}$
are bounded above by the following expression:
\begin{align*}
\min
\left(
\sage{main_theorem2.r_upper_bound1}, \:\:
\sage{main_theorem2.r_upper_bound2}
\right)
\end{align*}
Where $k_{v,q}$ is defined as in definition/Lemma \ref{lemdfn:epsilon_q},
and $R = \chern_0(v)$
Furthermore, if $\aa \not= 0$ then
$r \equiv \aa^{-1}b_q \pmod{n}$.
\end{theorem}
Although the general form of this bound is quite complicated, it does simplify a
lot when $m$ is small.
\begin{sagesilent}
from plots_and_expressions import main_theorem2_corollary
\end{sagesilent}
\begin{corollary}[Bound on $r$ \#3 on $\PP^2$ and Principally polarized abelian surfaces]
\label{cor:rmax_with_eps1}
Suppose we are working over $\PP^2$ or a principally polarized abelian surface
(or any other surfaces with $m=1$ or $2$).
Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$
rational and expressed in lowest terms.
Then the ranks $r$ of the pseudo-semistabilisers $u$ for $v$ with,
which are solutions to problem \ref{problem:problem-statement-2},
$\chern_1^\beta(u) = q = \frac{b_q}{n}$
are bounded above by the following expression:
\begin{align*}