Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
\span \span \span
\nonumber
\\ \Rightarrow& &
- \bb\aa
\frac{\lcm(m,2n^2)}{2n^2}
&\equiv k &&
\nonumber
\\ &&&
\mod \gcd\left(
\frac{\lcm(m,2n^2)}{\lcm(m,2)},
\frac{n \aa \lcm(m,2n^2)}{2n^2}
\right)
\span \span \span
\nonumber
\\ \Leftrightarrow& &
- \bb\aa
\frac{m}{\gcd(m,2n^2)}
&\equiv k &&
\label{eqn:better_eps_problem_k_mod_n}
\\ &&&
\mod \gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn \aa}{\gcd(m,2n^2)}
\right)
\span \span \span
\nonumber
\end{align}
In our situation, we want to find the least $k>0$ satisfying
Equation \ref{eqn:finding_better_eps_problem}.
Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n},
we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
(a computation only depending on $q$ and $\beta$, but not $r$).
We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation
\ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation
\ref{eqn:epsilon_q_lemma_prop}.
Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
\end{proof}
\begin{sagesilent}
from plots_and_expressions import main_theorem2
\end{sagesilent}
\begin{theorem}[Bound on $r$ \#3 for Problem \ref{problem:problem-statement-2}]
\label{thm:rmax_with_eps1}
Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
$m\coloneqq\ell^2$.
Let $v$ be a fixed Chern character on this surface with positive rank
(or rank 0 and $c_1(v)>0$), and $\Delta(v)\geq 0$.
Then the ranks of the pseudo-semistabilisers $u$ for $v$,
which are solutions to Problem \ref{problem:problem-statement-2},
with $\chern_1^{\beta_{-}(v)}(u) = q$
are bounded above by the following expression.
\begin{align*}
\min
\left(
\sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2.r_upper_bound2.subs(betamin_subs)}
\right)
\end{align*}
Where $k_{v,q}$ is defined as in Definition/Lemma \ref{lemdfn:epsilon_q},
and $R = \chern_0(v)$
\end{theorem}
\begin{proof}
Following the same proof as Theorem \ref{thm:rmax_with_uniform_eps},
$\epsilon_{v,q} = \frac{k_{v,q}}{\lcm(m, 2n^2)}$ can be used instead of
$\epsilon_{v} = \frac{1}{\lcm(m, 2n^2)}$ as it satisfies the same required
property, as per Definition/Lemma \ref{lemdfn:epsilon_q}.
\end{proof}
Although the general form of this bound is quite complicated, it does simplify a
lot when $m$ is small.
\begin{sagesilent}
from plots_and_expressions import main_theorem2_corollary
\end{sagesilent}
\begin{corollary}[Bound on $r$ \#3 on $\PP^2$ and Principally polarised abelian surfaces]
\label{cor:rmax_with_eps1}
Suppose we are working over $\PP^2$ or a principally polarised abelian surface
(or any other surfaces with $m=\ell^2=1$ or $2$).
Let $v$ be a fixed Chern character, with $\beta_{-}\coloneqq\beta_{-}(v)=\frac{a_v}{n}$
rational and expressed in lowest terms.
Then the ranks $r$ of the pseudo-semistabilisers $u$ for $v$ with,
which are solutions to Problem \ref{problem:problem-statement-2},
$\chern_1^{\beta_{-}}(u) = q = \frac{b_q}{n}$
are bounded above by the following expression:
\begin{align*}
\min
\left(
\sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)}
\right)
\end{align*}
Where $R = \chern_0(v)$ and $k_{v,q}$ is the least
$k\in\ZZ_{>0}$ satisfying
\begin{equation*}
k \equiv -\aa\bb
\pmod{n}
\end{equation*}
\end{corollary}
\begin{proof}
This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can
drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-third}
Just like in examples \ref{exmpl:recurring-first} and
\ref{exmpl:recurring-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
%% TODO transcode notebook code
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
from examples import bound_comparisons
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 3*4+1 }
\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\ \hline
Thm \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\
Thm \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\end{tabular}
\vspace{1em}
\noindent
It's worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1}
reach, but do not exceed the actual maximum rank 25 of the
pseudo-semistabilisers of $v$ in this case.
As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r}
was 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-third}
Just like in examples \ref{exmpl:extravagant-first} and
\ref{exmpl:extravagant-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
This example was chosen because the $n$ value is moderatly large, giving more
possible values for $k_{v,q}$, in dfn/Lemma \ref{lemdfn:epsilon_q}. This allows
for a larger possible difference between the bounds given by Theorems
\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 12 }
\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\ \hline
Thm \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\
Thm \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\end{tabular}
\vspace{1em}
\noindent
However the reduction in the overall bound on $r$ is not as drastic, since all
possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
cyclically as we consider successive possible values for $q$.
And for each $q$ where $k_{v,q}=1$, both Theorems give the same bound.
Calculating the maximums over all values of $q$ yields
$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and
$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}.