Skip to content
Snippets Groups Projects
Commit 1ea1ba65 authored by Luke Naylor's avatar Luke Naylor
Browse files

Overhaul expressions for bgmlv1 condition (\Delta(u,v) >= 0)

parent d439619a
No related branches found
No related tags found
No related merge requests found
Pipeline #28329 passed
......@@ -10,6 +10,7 @@
\usepackage{sagetex}
\usepackage{minted}
\usepackage{subcaption}
\usepackage{cancel}
\usepackage[]{breqn}
\usepackage[
backend=biber,
......@@ -642,6 +643,7 @@ algorithm will be presented making use of the later theorems in this article,
with the goal of cutting down the run time.
\subsection*{Problem statement}
\label{subsect:problem-statement}
Fix a Chern character $v$ with positive rank, $\Delta(v) \geq 0$,
and $\beta_{-}(v) \in \QQ$.
......@@ -732,9 +734,11 @@ As opposed to only eliminating possible values of $\chern_0(E)$ for which all
corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what
was implicitly happening before).
First, let us fix a Chern character for $F$,
$\chern(F) = (R,C\ell,D\ell^2)$, and consider the possible Chern characters
$\chern(E) = (r,c\ell,d\ell^2)$ of some semistabilizer $E$.
First, let us fix a Chern character for $F$, and some semistabilizer $E$:
\begin{align}
v &:= \chern(F) = (R,C\ell,D\ell^2) \\
u &:= \chern(E) = (r,c\ell,d\ell^2)
\end{align}
\begin{sagesilent}
# Requires extra package:
......@@ -748,8 +752,8 @@ u = Chern_Char(*var("r c d", domain="real"))
Δ = lambda v: v.Q_tilt()
\end{sagesilent}
Recall from eqn \ref{eqn-tilt-cat-cond} that $\chern_1^{\beta}$ has fixed
bounds in terms of $\chern(F)$, and so we can write:
Recall from eqn \ref{eqn-tilt-cat-cond} that $\chern_1^{\beta}(u)$ has fixed
bounds in terms of $\chern_1^{\beta}(v)$, and so we can write:
\begin{sagesilent}
ts = stability.Tilt
......@@ -766,8 +770,8 @@ c_in_terms_of_q = c_lower_bound + q
\begin{equation}
\label{eqn-cintermsofm}
c=\chern_1(E) = \sage{c_in_terms_of_q}
\qquad 0 \leq q \leq \chern_1^{\beta}(F)
c=\chern_1(u) = \sage{c_in_terms_of_q}
\qquad 0 \leq q := \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v)
\end{equation}
Furthermore, $\chern_1 \in \ZZ$ so we only need to consider
......@@ -778,128 +782,99 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
\subsection{Numerical Inequalities}
\subsubsection{Size of pseudo-wall: $\chern_2^P(u)>0$ }
\label{subsect-d-bound-radiuscond}
This condition refers to consequence 4 from
lemma \ref{lem:pseudo_wall_numerical_tests}.
In the case where $P$ was chosen to be the base of $\Theta_v^-$: $P=(\beta_{-},0)$.
This condition amounts to:
\begin{align}
\label{eqn:radius-cond-betamin}
\chern_2^{\beta_{-}}(u) &\geq 0 \\
d &\geq \beta_{-}q + \frac{1}{2} \beta_{-}^2r
\end{align}
\subsubsection{
\texorpdfstring{
$\Delta(E) + \Delta(G) \leq \Delta(F)$
$\Delta(u,v-u) \geq 0$
}{
Δ(E) + Δ(G) ≤ Δ(F)
Δ(u,v-u) ≤ 0
}
}
\label{subsect-d-bound-bgmlv1}
This condition expressed in terms of $R,C,D,r,c,d$ looks as follows:
\begin{sagesilent}
# First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv1 = Δ(v) - Δ(u) - Δ(v-u)
\end{sagesilent}
Writing the condition in terms of the twisted chern characters
for $u$ and $v$ at $\beta$
($(r,\chern_1^{\beta}(u),\chern_2^{\beta}(u))$
and $(R-r,\chern_1^{\beta}(v-u),\chern_2^{\beta}(v-u))$) yields:
\begin{equation}
\sage{0 <= bgmlv1.expand() }
\label{eqn:bgmlv1-pt1}
(R-r)\chern_2^{\beta}(u)
\leq
\chern_1^{\beta}(u)\chern_1^{\beta}(v-u)
- r\chern_2^{\beta}(v-u)
\end{equation}
\noindent
Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following:
\begin{sagesilent}
bgmlv1_with_q = (
bgmlv1
.expand()
.subs(c == c_in_terms_of_q)
)
\end{sagesilent}
Which rearranges to (using additivity of $\chern_2^{\beta}$):
\begin{equation}
\sage{0 <= bgmlv1_with_q}
\label{eqn:bgmlv1-pt2}
(R-2r)\chern_2^{\beta}(u)
\leq
\chern_1^{\beta}(u)\chern_1^{\beta}(v-u)
- r\chern_2^{\beta}(v)
\end{equation}
With $u$ satisfying the condition given by equation \ref{eqn-cintermsofm},
we note that $\chern_1^{\beta}(u),\chern_1^{\beta}(v-u) \geq 0$.
\noindent
This can be rearranged to express a bound on $d$ as follows:
\begin{sagesilent}
var("r_alt",domain="real") # r_alt = r - R/2 temporary substitution
bgmlv1_with_q_reparam = (bgmlv1_with_q.subs(r == r_alt + R/2)/r_alt).expand()
bgmlv1_d_ineq = (
((0 >= -bgmlv1_with_q_reparam)/4 + d) # Rearrange for d
.subs(r_alt == r - R/2) # Resubstitute r back in
.expand()
)
bgmlv1_d_lowerbound = bgmlv1_d_ineq.rhs() # Keep hold of lower bound for d
\end{sagesilent}
\begin{dmath}
\label{eqn-bgmlv1_d_lowerbound}
\sage{bgmlv1_d_ineq}
\end{dmath}
\begin{sagesilent}
# Separate out the terms of the lower bound for d
bgmlv1_d_lowerbound_without_hyp = bgmlv1_d_lowerbound.subs(1/(R-2*r) == 0)
In the special case with $P=(\beta_{-},0)$,
we have $\chern_2^{\beta_{-}}(v)=0$, and we can assume
equation $\chern_2^{\beta_{-}}(u)>0$ (eqn \ref{eqn:radius-cond-betamin})
in the context of our problem.
bgmlv1_d_lowerbound_exp_term = (
bgmlv1_d_lowerbound
- bgmlv1_d_lowerbound_without_hyp
).expand()
Finally, $r>0$ as per the statement of the problem, so the right-hand-side
of equation \ref{eqn:bgmlv1-pt1} is always greater than, or equal, to zero.
And so, when $P:=(\beta_{-},0)$, this condition $\Delta(u,v-u) \geq 0$ is
always satisfied when $2r \geq R$, provided that the other conditions of the
problem statement (\ref{subsect:problem-statement}) hold.
bgmlv1_d_lowerbound_const_term = bgmlv1_d_lowerbound_without_hyp.subs(r==0)
bgmlv1_d_lowerbound_linear_term = (
bgmlv1_d_lowerbound_without_hyp
- bgmlv1_d_lowerbound_const_term
).expand()
# Verify the simplified forms of the terms that will be mentioned in text
var("chbv",domain="real") # symbol to represent ch_1^\beta(v)
assert bgmlv1_d_lowerbound_const_term == (
(
# Keep hold of this alternative expression:
bgmlv1_d_lowerbound_const_term_alt :=
(
chbv/2
+ beta*q
)
)
.subs(chbv == v.twist(beta).ch[2])
.expand()
)
assert bgmlv1_d_lowerbound_exp_term == (
(
# Keep hold of this alternative expression:
bgmlv1_d_lowerbound_exp_term_alt :=
(
- R*chbv/2
- R*beta*q
+ C*q
- q^2
)/(R-2*r)
)
.subs(chbv == v.twist(beta).ch[2])
.expand()
)
\end{sagesilent}
However, when $2r<R$, this condition does add potentially independent condition
of the others:
\begin{equation}
\label{eqn:bgmlv1-pt3}
\chern_2^{\beta}(u)
\leq
\frac{
\chern_1^{\beta}(u)\chern_1^{\beta}(v-u)
- r\chern_2^{\beta}(v)
}
{R-2r},
\qquad
2r<R
\end{equation}
\noindent
Viewing equation \ref{eqn-bgmlv1_d_lowerbound} as a lower bound for $d$ given
as a function of $r$, the terms can be rewritten as follows.
The constant term in $r$ is
$\chern^{\beta}_2(F)/2 + \beta q$.
The linear term in $r$ is
$\sage{bgmlv1_d_lowerbound_linear_term}$.
Finally, there is an hyperbolic term in $r$ which tends to 0 as $r \to \infty$,
and can be written:
$\frac{R\chern^{\beta}_2(F)/2 + R\beta q - Cq + q^2 }{2r-R}$.
In the case $\beta = \beta_{-}$ (or $\beta_{+}$) we have
$\chern^{\beta}_2(F) = 0$,
so some of these expressions simplify.
Expressed in terms of $d$ and $q$:
\begin{equation}
\label{eqn:bgmlv1-pt4}
d
\leq
\beta_{-}q
+\frac{1}{2}{\beta_{-}}^2r
+
\frac{
q(\chern_1^{\beta}(v)-q)
- r\chern_2^{\beta}(v)
}
{R-2r},
\qquad
2r<R
\end{equation}
\subsubsection{
\texorpdfstring{
......@@ -1174,12 +1149,23 @@ vertical wall (TODO as discussed in ref).
% redefine \psi in sage expressions (placeholder for ch_1^\beta(F)
\def\psi{\chern_1^{\beta}(F)}
\begin{align}
d &\geq&
\sage{bgmlv1_d_lowerbound_linear_term}
&+ \sage{bgmlv1_d_lowerbound_const_term_alt.subs(chbv == 0)}
+& \sage{bgmlv1_d_lowerbound_exp_term_alt.subs(chbv == 0)},
&\qquad\text{when\:} r > \frac{R}{2}
\label{eqn:bgmlv1_d_bound_betamin}
d &>&
\frac{1}{2}\beta^2 r
&+ \beta q,
\phantom{+}& % to keep terms aligned
&\qquad\text{when\:} r > 0
\label{eqn:radiuscond_d_bound_betamin}
\\
d &\leq&
\frac{1}{2}{\beta}^2r
&+ \beta q
+&
\frac{
q(\chern_1^{\beta}(v)-q)
}
{R-2r},
&\qquad\text{when\:} 0 < r < \frac{R}{2}
\label{eqn:bgmlv1_d_bound_betamin}
\\
d &\leq&
\sage{bgmlv2_d_upperbound_linear_term}
......@@ -1246,12 +1232,15 @@ def plot_d_bound(
# Equations to plot imminently representing the bounds on d:
eq1 = (
bgmlv1_d_lowerbound
.subs(R == v_example.ch[0])
.subs(C == v_example.ch[1])
.subs(D == v_example.ch[2])
(
beta^2*r/2
+ beta*q
+ q*(chb1v - q)/(R-2*r)
)
.subs(chb1v == v_example.twist(beta_min(v_example)).ch[1])
.subs(beta = beta_min(v_example))
.subs(q == q_example)
.subs(R == v_example.ch[0])
)
eq2 = (
......@@ -1284,28 +1273,28 @@ def plot_d_bound(
(r,v_example.ch[0],xmax),
color='green',
linestyle = "dashed",
legend_label=r"upper bound: $\Delta(G) \geq 0$",
legend_label=r"upper bound: $\Delta(v-u) \geq 0$",
)
+ plot(
eq2,
(r,0,xmax),
color='blue',
linestyle = "dashed",
legend_label=r"upper bound: $\Delta(E) \geq 0$"
legend_label=r"upper bound: $\Delta(u) \geq 0$"
)
+ plot(
eq4,
(r,0,xmax),
color='orange',
linestyle = "dotted",
legend_label=r"lower bound: $\mathrm{ch}_2^{\beta_{-}}(E)>0$"
legend_label=r"lower bound: $\mathrm{ch}_2^{\beta_{-}}(u)>0$"
)
+ plot(
eq1,
(r,v_example.ch[0]/2,xmax),
(r,0,v_example.ch[0]/2),
color='red',
linestyle = "dotted",
legend_label=r"lower bound: $\Delta(E) + \Delta(G) \leq \Delta(F)$"
linestyle = "dashed",
legend_label=r"upper bound: $\Delta(u,v) \geq 0$"
)
)
example_bounds_on_d_plot.ymin(ymin)
......@@ -1328,7 +1317,7 @@ def plot_d_bound(
\hfill
\begin{subfigure}{.45\textwidth}
\centering
\sageplot[width=\linewidth]{plot_d_bound(v_example, 4)}
\sageplot[width=\linewidth]{plot_d_bound(v_example, 4, ymin=-3)}
\caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)}
\label{fig:d_bounds_xmpl_max_q}
\end{subfigure}
......@@ -1376,7 +1365,7 @@ Some of the details around the associated numerics are explored next.
\centering
\sageplot[
width=\linewidth
]{plot_d_bound(v_example, 2, ymax=6, ymin=-0.5, aspect_ratio=1)}
]{plot_d_bound(v_example, 2, ymax=6, ymin=-2, aspect_ratio=1)}
\caption{
Bounds on $d:=\chern_2(E)$ in terms of $r:=\chern_0(E)$ for a fixed
value $\chern_1^{\beta}(F)/2$ of $q:=\chern_1^{\beta}(E)$.
......@@ -1507,6 +1496,7 @@ considering equations
\begin{sagesilent}
var("epsilon")
var("chbv") # symbol to represent \chern_1^{\beta}(v)
# Tightness conditions:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment