Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
58cffb6a
Commit
58cffb6a
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Correct references in last 2 commits
parent
9252077b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+6
-5
6 additions, 5 deletions
main.tex
with
6 additions
and
5 deletions
main.tex
+
6
−
5
View file @
58cffb6a
...
@@ -697,6 +697,7 @@ conditions. However, these can be reduced down completely to purely numerical
...
@@ -697,6 +697,7 @@ conditions. However, these can be reduced down completely to purely numerical
problem with the help of lemma
\ref
{
lem:pseudo
_
wall
_
numerical
_
tests
}
.
problem with the help of lemma
\ref
{
lem:pseudo
_
wall
_
numerical
_
tests
}
.
\begin{lemma}
[Numerical Tests for Sufficiently Large `left' Pseudo-walls]
\begin{lemma}
[Numerical Tests for Sufficiently Large `left' Pseudo-walls]
\label
{
lem:num
_
test
_
prob1
}
Given a Chern character
$
v
$
with positive rank and
$
\Delta
(
v
)
\geq
0
$
,
Given a Chern character
$
v
$
with positive rank and
$
\Delta
(
v
)
\geq
0
$
,
and a choice of point
$
P
$
on
$
\Theta
_
v
^
-
$
.
and a choice of point
$
P
$
on
$
\Theta
_
v
^
-
$
.
Solutions
$
u
=(
r,c
\ell
,d
\frac
{
1
}{
2
}
\ell
^
2
)
$
Solutions
$
u
=(
r,c
\ell
,d
\frac
{
1
}{
2
}
\ell
^
2
)
$
...
@@ -726,7 +727,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
...
@@ -726,7 +727,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
\end{proof}
\end{proof}
\begin{corrolary}
[Numerical Tests for All `left' Pseudo-walls]
\begin{corrolary}
[Numerical Tests for All `left' Pseudo-walls]
\label
{
cor:num
erical-test-left-pseudowalls-rational-betamin
}
\label
{
cor:num
_
test
_
prob2
}
Given a Chern character
$
v
$
with positive rank and
$
\Delta
(
v
)
\geq
0
$
,
Given a Chern character
$
v
$
with positive rank and
$
\Delta
(
v
)
\geq
0
$
,
such that
$
\beta
_{
-
}
\coloneqq\beta
_{
-
}
(
v
)
\in
\QQ
$
.
such that
$
\beta
_{
-
}
\coloneqq\beta
_{
-
}
(
v
)
\in
\QQ
$
.
Solutions
$
u
=(
r,c
\ell
,d
\frac
{
1
}{
2
}
\ell
^
2
)
$
Solutions
$
u
=(
r,c
\ell
,d
\frac
{
1
}{
2
}
\ell
^
2
)
$
...
@@ -985,8 +986,8 @@ u = Chern_Char(*var("r c d", domain="real"))
...
@@ -985,8 +986,8 @@ u = Chern_Char(*var("r c d", domain="real"))
\end{sagesilent}
\end{sagesilent}
Recall from condition
\ref
{
item:chern1bound:lem:num
_
test
_
prob1
}
in
Recall from condition
\ref
{
item:chern1bound:lem:num
_
test
_
prob1
}
in
lemma
\ref
{
lem:
pseudo
_
wall
_
numerical
_
tests
}
lemma
\ref
{
lem:
num
_
test
_
prob1
}
(or corrolary
\ref
{
cor:num
erical-test-left-pseudowalls-rational-betamin
}
)
(or corrolary
\ref
{
cor:num
_
test
_
prob2
}
)
that
$
\chern
_
1
^{
\beta
}
(
u
)
$
has fixed bounds in terms of
$
\chern
_
1
^{
\beta
}
(
v
)
$
,
that
$
\chern
_
1
^{
\beta
}
(
u
)
$
has fixed bounds in terms of
$
\chern
_
1
^{
\beta
}
(
v
)
$
,
and so we can write:
and so we can write:
...
@@ -1019,8 +1020,8 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
...
@@ -1019,8 +1020,8 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
\subsection
{
Numerical Inequalities
}
\subsection
{
Numerical Inequalities
}
This section studies the numerical conditions that
$
u
$
must satisfy as per
This section studies the numerical conditions that
$
u
$
must satisfy as per
lemma
\ref
{
lem:
pseudo
_
wall
_
numerical
_
tests
}
lemma
\ref
{
lem:
num
_
test
_
prob1
}
(or corrolary
\ref
{
cor:num
erical-test-left-pseudowalls-rational-betamin
}
)
.
(or corrolary
\ref
{
cor:num
_
test
_
prob2
}
)
\subsubsection
{
Size of pseudo-wall:
$
\chern
_
2
^
P
(
u
)
>
0
$
}
\subsubsection
{
Size of pseudo-wall:
$
\chern
_
2
^
P
(
u
)
>
0
$
}
\label
{
subsect-d-bound-radiuscond
}
\label
{
subsect-d-bound-radiuscond
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment