Skip to content
Snippets Groups Projects
Commit 58cffb6a authored by Luke Naylor's avatar Luke Naylor
Browse files

Correct references in last 2 commits

parent 9252077b
No related branches found
No related tags found
No related merge requests found
...@@ -697,6 +697,7 @@ conditions. However, these can be reduced down completely to purely numerical ...@@ -697,6 +697,7 @@ conditions. However, these can be reduced down completely to purely numerical
problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
\begin{lemma}[Numerical Tests for Sufficiently Large `left' Pseudo-walls] \begin{lemma}[Numerical Tests for Sufficiently Large `left' Pseudo-walls]
\label{lem:num_test_prob1}
Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$,
and a choice of point $P$ on $\Theta_v^-$. and a choice of point $P$ on $\Theta_v^-$.
Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$ Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$
...@@ -726,7 +727,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. ...@@ -726,7 +727,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
\end{proof} \end{proof}
\begin{corrolary}[Numerical Tests for All `left' Pseudo-walls] \begin{corrolary}[Numerical Tests for All `left' Pseudo-walls]
\label{cor:numerical-test-left-pseudowalls-rational-betamin} \label{cor:num_test_prob2}
Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$,
such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$. such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$.
Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$ Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$
...@@ -985,8 +986,8 @@ u = Chern_Char(*var("r c d", domain="real")) ...@@ -985,8 +986,8 @@ u = Chern_Char(*var("r c d", domain="real"))
\end{sagesilent} \end{sagesilent}
Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in
lemma \ref{lem:pseudo_wall_numerical_tests} lemma \ref{lem:num_test_prob1}
(or corrolary \ref{cor:numerical-test-left-pseudowalls-rational-betamin}) (or corrolary \ref{cor:num_test_prob2})
that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$, that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$,
and so we can write: and so we can write:
...@@ -1019,8 +1020,8 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. ...@@ -1019,8 +1020,8 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
\subsection{Numerical Inequalities} \subsection{Numerical Inequalities}
This section studies the numerical conditions that $u$ must satisfy as per This section studies the numerical conditions that $u$ must satisfy as per
lemma \ref{lem:pseudo_wall_numerical_tests} lemma \ref{lem:num_test_prob1}
(or corrolary \ref{cor:numerical-test-left-pseudowalls-rational-betamin}). (or corrolary \ref{cor:num_test_prob2})
\subsubsection{Size of pseudo-wall: $\chern_2^P(u)>0$ } \subsubsection{Size of pseudo-wall: $\chern_2^P(u)>0$ }
\label{subsect-d-bound-radiuscond} \label{subsect-d-bound-radiuscond}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment