Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
8ad46c7d
Commit
8ad46c7d
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Remove second version of strong thm (5.2) since it's equivalent to first
parent
58bfc4f5
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+42
-74
42 additions, 74 deletions
main.tex
with
42 additions
and
74 deletions
main.tex
+
42
−
74
View file @
8ad46c7d
...
...
@@ -1361,7 +1361,7 @@ considering equations
\bgroup
\let\originalepsilon\epsilon
\renewcommand\epsilon
{{
\originalepsilon
_{
F
}}}
\renewcommand\epsilon
{{
\originalepsilon
_{
v
}}}
\begin{sagesilent}
var("epsilon")
...
...
@@ -1549,8 +1549,8 @@ Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_F$ in the
proof of theorem
\ref
{
thm:rmax
_
with
_
uniform
_
eps
}
:
\begin{lemmadfn}
[
Finding better alternative
s
to
$
\epsilon
_
F
$
:
$
\epsilon
_{
q,
1
}$
and
$
\epsilon
_{
q,
2
}$
Finding
a
better alternative to
$
\epsilon
_
v
$
:
$
\epsilon
_{
v,q
}$
]
\label
{
lemdfn:epsilon
_
q
}
Suppose
$
d
\in
\frac
{
1
}{
2
}
\ZZ
$
satisfies the condition in
...
...
@@ -1564,39 +1564,23 @@ proof of theorem \ref{thm:rmax_with_uniform_eps}:
\noindent
Then we have:
\begin{equation*}
\begin{equation}
\label
{
eqn:epsilon
_
q
_
lemma
_
prop
}
d -
\frac
{
(
\aa
r + 2
\bb
)
\aa
}{
2n
^
2
}
\geq
\epsilon
_{
q,2
}
\geq
\epsilon
_
{
q,1
}
> 0
\end{equation
*
}
\geq
\epsilon
_{
v,q
}
\geq
\epsilon
_
v
> 0
\end{equation}
Where
$
\epsilon
_{
q,
1
}$
and
$
\epsilon
_{
q,
2
}$
are defined as follows:
\noindent
Where
$
\epsilon
_{
v,q
}$
is defined as follows:
\begin{equation*}
\epsilon
_{
q,1
}
:=
\frac
{
k
_{
q,1
}}{
2n
^
2
}
\qquad
\epsilon
_{
q,2
}
:=
\frac
{
k
_{
q,2
}}{
2n
^
2
}
\end{equation*}
\begin{align*}
\text
{
where
}
&
k
_{
q,1
}
\text
{
is the least
}
k
\in\ZZ
_{
>0
}
\:
s.t.:
\:
k
\equiv
-
\aa\bb
\mod
n
\\
&
k
_{
q,2
}
\text
{
is the least
}
k
\in\ZZ
_{
>0
}
\:
s.t.:
\:
k
\equiv
\aa\bb
(
\aa\aa
^{
'
}
-2)
\mod
n
\gcd
(n,
\aa
^
2)
\end{align*}
\begin{equation*}
\epsilon
_{
v,q
}
:=
\frac
{
k
_{
q
}}{
2n
^
2
}
\end{equation*}
with
$
k
_{
v,q
}$
being the least
$
k
\in\ZZ
_{
>
0
}$
satisfying
$
k
\equiv
-
\aa\bb
\mod
n
$
\end{lemmadfn}
It is worth noting that
$
\epsilon
_{
q,
2
}$
is potentially larger than
$
\epsilon
_{
q,
1
}$
but calculating it involves a
$
\gcd
$
, a modulo reduction, and a modulo
$
n
$
inverse, for each
$
q
$
considered.
\begin{proof}
Consider the following:
...
...
@@ -1621,9 +1605,9 @@ Consider the following:
&
\equiv
k
&&
\mod
n
^
2
\\
&
\Longrightarrow
&
\aa
^
2
\aa
^{
'
}
\bb
- 2
\aa\bb
\aa
^
2
\aa
^{
-1
}
\bb
- 2
\aa\bb
&
\equiv
k
&&
\mod
\gcd
(n
^
2,
\aa
^
2 n)
\mod
n
\label
{
eqn:better
_
eps
_
problem
_
k
_
mod
_
gcd2n2
_
a2mn
}
\\
&
\Longrightarrow
&
-
\aa\bb
...
...
@@ -1637,12 +1621,11 @@ eqn \ref{eqn:finding_better_eps_problem}.
Since such a
$
k
$
must also satisfy eqn
\ref
{
eqn:better
_
eps
_
problem
_
k
_
mod
_
n
}
,
we can pick the smallest
$
k
_{
q,
1
}
\in
\ZZ
_{
>
0
}$
which satisfies this new condition
(a computation only depending on
$
q
$
and
$
\beta
$
, but not
$
r
$
).
We are then guaranteed that the gap
$
\frac
{
k
}{
2
n
^
2
}$
is at least
$
\epsilon
_{
q,
1
}$
.
Furthermore,
$
k
$
also satisfies
eqn
\ref
{
eqn:better
_
eps
_
problem
_
k
_
mod
_
gcd2n2
_
a2mn
}
so we can also pick the smallest
$
k
_{
q,
2
}
\in
\ZZ
_{
>
0
}$
satisfying this condition,
which also guarantees that the gap
$
\frac
{
k
}{
2
n
^
2
}$
is at least
$
\epsilon
_{
q,
2
}$
.
We are then guaranteed that
$
k
_{
v,q
}$
is less than any
$
k
$
satisfying eqn
\ref
{
eqn:finding
_
better
_
eps
_
problem
}
, giving the first inequality in eqn
\ref
{
eqn:epsilon
_
q
_
lemma
_
prop
}
.
Furthermore,
$
k
_{
v,q
}
\geq
1
$
gives the second part of the inequality:
$
\epsilon
_{
v,q
}
\geq\epsilon
_
v
$
, with equality when
$
k
_{
v,q
}
=
1
$
.
\end{proof}
...
...
@@ -1653,14 +1636,14 @@ which also guarantees that the gap $\frac{k}{2n^2}$ is at least $\epsilon_{q,2}$
rational and expressed in lowest terms.
Then the ranks
$
r
$
of the pseudo-semistabilizers
$
u
$
for
$
v
$
with
$
\chern
_
1
^
\beta
(
u
)
=
q
=
\frac
{
b
_
q
}{
n
}$
are bounded above by the following expression
(with
$
i
=
1
$
or
$
2
$
).
are bounded above by the following expression
:
\begin{sagesilent}
var("delta", domain="real") # placeholder symbol to be replaced by k
_{
q,i
}
\end{sagesilent}
\bgroup
\def\kappa
{
k
_{
q,i
}}
\def\kappa
{
k
_{
v,q
}}
\def\psi
{
\chern
_
1
^{
\beta
}
(F)
}
\begin{align*}
\min
...
...
@@ -1670,7 +1653,7 @@ var("delta", domain="real") # placeholder symbol to be replaced by k_{q,i}
\right
)
\end{align*}
\egroup
Where
$
k
_{
q,i
}$
is defined as in definition/lemma
\ref
{
lemdfn:epsilon
_
q
}
,
Where
$
k
_{
v,q
}$
is defined as in definition/lemma
\ref
{
lemdfn:epsilon
_
q
}
,
and
$
R
=
\chern
_
0
(
v
)
$
Furthermore, if
$
\aa
\not
=
0
$
then
...
...
@@ -1683,12 +1666,11 @@ var("delta", domain="real") # placeholder symbol to be replaced by k_{q,i}
Just like in examples
\ref
{
exmpl:recurring-first
}
and
\ref
{
exmpl:recurring-second
}
,
take
$
\ell
=
c
_
1
(
\mathcal
{
O
}
(
1
))
$
as the standard polarization on
$
\PP
^
2
$
, so that
$
m
=
2
$
,
$
\beta
=
\sage
{
recurring.b
}$
, giving
$
n
=
\sage
{
recurring.b.denominator
()
}$
$
\beta
=
\sage
{
recurring.b
}$
, giving
$
n
=
\sage
{
recurring.b.denominator
()
}$
and
$
\chern
_
1
^{
\sage
{
recurring.b
}}
(
F
)
=
\sage
{
recurring.twisted.ch
[
1
]
}$
.
%% TODO transcode notebook code
Using the above theorem
\ref
{
thm:rmax
_
with
_
eps1
}
,
TODO fill in values
\end{example}
The (non-exclusive) upper bounds for
$
r:
=
\chern
_
0
(
u
)
$
of a tilt semistabilizer
$
u
$
of
$
v
$
in terms of the possible values for
$
q:
=
\chern
_
1
^{
\beta
}
(
u
)
$
are as follows:
\begin{sagesilent}
import numpy as np
...
...
@@ -1705,41 +1687,27 @@ def bound_comparisons(example):
+ n
^
2*(v
_
twisted.ch[1] - q
_
val)
^
2/k
))
def k
_
1
(n, a
_
v, b
_
q):
def k(n, a
_
v, b
_
q):
n = int(n)
a
_
v = int(a
_
v)
b
_
q = int(b
_
q)
k = -a
_
v*b
_
q
% n
return k if k > 0 else k + n
def k
_
2(n, a
_
v, b
_
q):
n = int(n)
a
_
v = int(a
_
v)
b
_
q = int(b
_
q)
a
_
v
_
inv = inverse
_
mod(a
_
v, n)
modulo = n*gcd(n, a
_
v
^
2)
k = (a
_
v
^
2*a
_
v
_
inv*b
_
q - 2*a
_
v*b
_
q)
% modulo
return k if k > 0 else k + modulo
b
_
qs = list(range(example.twisted.ch[1]*n+1))
qs = list(map(lambda x: x/n,b
_
qs))
k
_
1s = list(map(lambda b
_
q: k
_
1(n, a
_
v, b
_
q), b
_
qs))
k
_
2s = list(map(lambda b
_
q: k
_
2(n, a
_
v, b
_
q), b
_
qs))
ks = list(map(lambda b
_
q: k(n, a
_
v, b
_
q), b
_
qs))
theorem2
_
bounds = [
theorem
_
bound(example.twisted, q
_
val, 1)
for q
_
val in qs
]
theorem31
_
bounds = [
theorem
_
bound(example.twisted, q
_
val, k)
for q
_
val, k in zip(qs,k
_
1s)
]
theorem32
_
bounds = [
theorem3
_
bounds = [
theorem
_
bound(example.twisted, q
_
val, k)
for q
_
val, k in zip(qs,k
_
2
s)
for q
_
val, k in zip(qs,ks)
]
return qs, theorem2
_
bounds, theorem3
1
_
bounds, theorem32
_
bounds
return qs, theorem2
_
bounds, theorem3
_
bounds
qs, theorem2
_
bounds, theorem3
1
_
bounds, theorem32
_
bounds = bound
_
comparisons(recurring)
qs, theorem2
_
bounds, theorem3
_
bounds = bound
_
comparisons(recurring)
\end{sagesilent}
\directlua
{
table
_
width = 3*4+1
}
...
...
@@ -1756,20 +1724,20 @@ end}
tex.sprint(cell)
end
}
\\
Thm
\ref
{
thm:rmax
_
with
_
eps1
}
(i=1)
Thm
\ref
{
thm:rmax
_
with
_
eps1
}
\directlua
{
for i=0,table
_
width-1 do
local cell = [[
&$
\noexpand\sage
{
theorem
31
_
bounds
[]]
.. i .. "
]
}$
"
tex.sprint(cell)
end
}
\\
Thm
\ref
{
thm:rmax
_
with
_
eps1
}
(i=2)
\directlua
{
for i=0,table
_
width-1 do
local cell = [[
&$
\noexpand\sage
{
theorem
32
_
bounds
[]]
.. i .. "
]
}$
"
local cell = [[
&$
\noexpand\sage
{
theorem
3
_
bounds
[]]
.. i .. "
]
}$
"
tex.sprint(cell)
end
}
\end{tabular}
\minorheading
{
Irrational
$
\beta
$}
It's worth noting that the bounds given by theorem
\ref
{
thm:rmax
_
with
_
eps1
}
reach, but do not exceed the actual maximum rank 25 of the
pseudo-semistabilizers of
$
v
$
in this case.
As a reminder, the original loose bound from theorem
\ref
{
thm:loose-bound-on-r
}
was 144.
\end{example}
\egroup
% end scope where beta redefined to beta_{-}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment