Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
9626ee07
Commit
9626ee07
authored
8 months ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Tweak up to the main corollary with global bound for problem 2 ranks
parent
0254d611
No related branches found
No related tags found
No related merge requests found
Pipeline
#39805
failed
8 months ago
Stage: test
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
tex/bounds-on-semistabilisers.tex
+64
-41
64 additions, 41 deletions
tex/bounds-on-semistabilisers.tex
tex/setting-and-problems.tex
+4
-2
4 additions, 2 deletions
tex/setting-and-problems.tex
with
68 additions
and
43 deletions
tex/bounds-on-semistabilisers.tex
+
64
−
41
View file @
9626ee07
...
...
@@ -547,7 +547,7 @@ bounds do not share the same assymptote as the lower bound
d
&
\leq
\sage
{
problem1.bgmlv3
_
d
_
upperbound
_
terms.linear
}
+
\sage
{
problem1.bgmlv3
_
d
_
upperbound
_
terms.const
}
+
\sage
{
problem1.bgmlv3
_
d
_
upperbound
_
terms.hyperbolic
}
\sage
{
problem1.bgmlv3
_
d
_
upperbound
_
terms.hyperbolic
}
&
\text
{
when
}
r>R
\label
{
eqn:prob1:bgmlv3
}
\end{align}
...
...
@@ -678,33 +678,33 @@ following Lemma \ref{lem:prob1:convenient_r_bound}.
\ref
{
problem:problem-statement-2
}}
\label
{
subsec:bounds-on-semistab-rank-prob-2
}
Now, the inequalities from the above
s
ubsubsection
Now, the inequalities from the above
S
ubsubsection
\ref
{
subsubsect:all-bounds-on-d-prob2
}
will be used to find, for
each given
$
q
=
\chern
^{
\beta
}_
1
(
E
)
$
, how large
$
r
$
needs to be in order to leave
no possible solutions for
$
d
$
. At that point, there are no solutions
$
u
=(
r,c
\ell
,d
\ell
^
2
)
$
to problem
\ref
{
problem:problem-statement-2
}
.
The strategy here is similar to what was shown in Theorem
\ref
{
thm:loose-bound-on-r
}
.
no possible solutions for
$
d
$
in the context of Problem
\ref
{
problem:problem-statement-2
}
.
At that point, there are no solutions
$
u
=(
r,c
\ell
,d
\ell
^
2
)
$
to the Problem.
In the context of Problem
\ref
{
problem:problem-statement-2
}
,
$
\beta
_{
-
}
(
v
)
$
is
assumed to be rational.
Considering Corollary
\ref
{
cor:rational-beta:fixed-q-semistabs-criterion
}
,
for any solution
$
u
$
, we have
$
q
\coloneqq\chern
^{
\beta
_{
-
}
(
v
)
}
(
u
)
=
\frac
{
b
_
q
}{
n
}$
where
$
\beta
_{
-
}
(
v
)
=
\frac
{
a
_
v
}{
n
}$
in lowest terms and
$
b
_
q
$
is an integer
between 1 and
$
n
\chern
_
1
^{
\beta
_
0
}
(
v
)
-
1
$
(inclusive),
and
$
a
_
v r
\equiv
-
b
_
q
\pmod
{
n
}$
.
The Corollary then gives a lower bound for
$
r
$
, and states that any
$
u
$
of the
form from Equation
\ref
{
eqn:u-coords
}
satisfying these conditions so far, is a
solution to Problem
\ref
{
problem:problem-statement-2
}
if and only if it
satisfies the conditions
$
\chern
^{
\beta
_{
-
}
(
v
)
}
(
u
)
>
0
$
,
$
\Delta
(
u
)
\geq
0
$
, and
$
\Delta
(
v
-
u
)
\geq
0
$
.
\renewcommand
{
\aa
}{{
a
_
v
}}
\newcommand
{
\bb
}{{
b
_
q
}}
Suppose
$
\beta
=
\frac
{
\aa
}{
n
}$
for some coprime
$
n
\in
\NN
,
\aa
\in
\ZZ
$
.
Then fix a value of
$
q
$
:
\begin{equation}
q
\coloneqq
\chern
_
1
^{
\beta
}
(E)
=
\frac
{
\bb
}{
n
}
\in
\frac
{
1
}{
n
}
\ZZ
\cap
[0,
\chern
_
1
^{
\beta
}
(F)]
\end{equation}
as noted at the beginning of this section
\ref
{
sec:refinement
}
so that we are
considering
$
u
$
which satisfy
\ref
{
item:chern1bound:lem:num
_
test
_
prob2
}
in corollary
\ref
{
cor:num
_
test
_
prob2
}
.
Substituting the current values of
$
q
$
and
$
\beta
$
into the condition for the
radius of the pseudo-wall being positive
(eqn
\ref
{
eqn:radiuscond
_
d
_
bound
_
betamin
}
) we get:
Substituting more specialised values of
$
q
$
and
$
\beta
_
0
=
\beta
_{
-
}
(
v
)
$
into the condition
$
\chern
^{
\beta
_
0
}
(
u
)
>
0
$
(Equation
\ref
{
eqn:radiuscond
_
d
_
bound
_
betamin
}
) we get:
\begin{sagesilent}
from plots
_
and
_
expressions import
\
...
...
@@ -723,16 +723,25 @@ beta_value_expr
\frac
{
1
}{
2n
^
2
}
\ZZ
\end{equation}
\noindent
This fact will be leveraged to give tighter lower bounds in a similar way to the
proof of Theorem
\ref
{
thm:loose-bound-on-r
}
.
\begin{sagesilent}
from plots
_
and
_
expressions import main
_
theorem1
\end{sagesilent}
\begin{theorem}
[Bound on
$
r
$
\#
1]
\label
{
thm:rmax
_
with
_
uniform
_
eps
}
Let
$
v
=
(
R,C
\ell
,D
\ell
^
2
)
$
be a fixed Chern character. Then the ranks of the
pseudo-semistabilisers for
$
v
$
,
which are solutions to problem
\ref
{
problem:problem-statement-2
}
,
with
$
\chern
_
1
^
\beta
=
q
$
Let
$
X
$
be a smooth projective surface with Picard rank 1 and choice of ample
line bundle
$
L
$
with
$
c
_
1
(
L
)
$
generating
$
\neronseveri
(
X
)
$
and
$
m
\coloneqq\ell
^
2
$
.
Let
$
v
$
be a fixed Chern character on this surface with positive rank
(or rank 0 and
$
c
_
1
(
v
)
>
0
$
), and
$
\Delta
(
v
)
\geq
0
$
.
Then the ranks of the pseudo-semistabilisers
$
u
$
for
$
v
$
,
which are solutions to Problem
\ref
{
problem:problem-statement-2
}
,
with
$
\chern
_
1
^{
\beta
_{
-
}
(
v
)
}
(
u
)
=
q
$
are bounded above by the following expression.
\begin{align*}
...
...
@@ -742,18 +751,13 @@ from plots_and_expressions import main_theorem1
\sage
{
main
_
theorem1.r
_
upper
_
bound2
}
\right
)
\end{align*}
Taking the maximum of this expression over
$
q
\in
[
0
,
\chern
_
1
^{
\beta
}
(
F
)]
\cap
\frac
{
1
}{
n
}
\ZZ
$
would give an upper bound for the ranks of all solutions to problem
\ref
{
problem:problem-statement-2
}
.
\noindent
where
$
R
\coloneqq
\chern
_
0
(
v
)
$
.
\end{theorem}
\begin{proof}
\noindent
Both
$
d
$
and the lower bound in
(
eq
n
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
)
(
Equatio
n
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
)
are elements of
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}
\ZZ
$
.
So, if any of the two upper bounds on
$
d
$
come to within
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
of this lower bound, then there are no solutions for
...
...
@@ -803,8 +807,11 @@ from plots_and_expressions import q_sol, bgmlv_v, psi
\begin{corollary}
[Bound on
$
r
$
\#
2]
\label
{
cor:direct
_
rmax
_
with
_
uniform
_
eps
}
Let
$
v
$
be a fixed Chern character and
$
R
\coloneqq\chern
_
0
(
v
)
\leq
\frac
{
1
}{
2
}
\lcm
(
m,
2
n
^
2
)
{
\chern
_
1
^{
\beta
}
(
F
)
}^
2
$
.
Let
$
X
$
be a smooth projective surface with Picard rank 1 and choice of ample
line bundle
$
L
$
with
$
c
_
1
(
L
)
$
generating
$
\neronseveri
(
X
)
$
and
$
m
\coloneqq\ell
^
2
$
.
Let
$
v
$
be a fixed Chern character on this surface and
$
R
\coloneqq\chern
_
0
(
v
)
\leq
\frac
{
1
}{
2
}
\lcm
(
m,
2
n
^
2
)
{
\chern
_
1
^{
\beta
_{
-
}
(
v
)
}
(
v
)
}^
2
$
.
Then the ranks of the pseudo-semistabilisers for
$
v
$
,
which are solutions to problem
\ref
{
problem:problem-statement-2
}
,
are bounded above by the following expression.
...
...
@@ -812,6 +819,14 @@ from plots_and_expressions import q_sol, bgmlv_v, psi
\begin{equation*}
\sage
{
main
_
theorem1.corollary
_
r
_
bound
}
\end{equation*}
\noindent
If
$
R >
\frac
{
1
}{
2
}
\lcm
(
m,
2
n
^
2
)
{
\chern
_
1
^{
\beta
_{
-
}
(
v
)
}
(
v
)
}^
2
$
,
then these ranks of pseudo-semistabilisers can instead bounded above by the
following.
\begin{equation*}
\frac
{
\Delta
(v)
\lcm
(m,2n
^
2)
}{
2m
}
\end{equation*}
\end{corollary}
\begin{proof}
...
...
@@ -823,15 +838,23 @@ Noticing that the expression is a maximum of two quadratic functions in $q$:
f
_
1(q)
\coloneqq\sage
{
main
_
theorem1.r
_
upper
_
bound1
}
\qquad
f
_
2(q)
\coloneqq\sage
{
main
_
theorem1.r
_
upper
_
bound2
}
\end{equation*}
These have their minimums at
$
q
=
0
$
and
$
q
=
\chern
_
1
^{
\beta
}
(
F
)
$
respectively.
These have their minimums at
$
q
=
0
$
and
$
q
=
\chern
_
1
^{
\beta
}
(
v
)
$
respectively.
It suffices to find their intersection in
$
q
\in
[
0
,
\chern
_
1
^{
\beta
}
(
F
)]
$
, if it exists,
$
q
\in
[
0
,
\chern
_
1
^{
\beta
}
(
v
)]
$
, if it exists,
and evaluating on of the
$
f
_
i
$
there.
The intersection exists, provided that
$
f
_
1
(
\chern
_
1
^{
\beta
}
(
F
))
\geq
f
_
2
(
\chern
_
1
^{
\beta
}
(
F
))=
R
$
,
$
f
_
1
(
\chern
_
1
^{
\beta
}
(
v
))
\geq
f
_
2
(
\chern
_
1
^{
\beta
}
(
v
))=
R
$
,
or equivalently,
$
R
\leq
\frac
{
1
}{
2
}
\lcm
(
m,
2
n
^
2
)
{
\chern
_
1
^{
\beta
}
(
F
)
}^
2
$
.
Solving for
$
f
_
1
(
q
)=
f
_
2
(
q
)
$
yields
If this is not the case, then
$
\min
(
f
_
1
, f
_
2
)
$
reaches its maximum over the domain
$
[
0
,
\chern
_
1
^{
\beta
_{
-
}}
(
v
)]
$
at
$
q
=
\chern
_
1
^{
\beta
_{
-
}}
(
v
)
$
, and so is
bounded by
$
f
_
1
(
\chern
_
1
^{
\beta
_{
-
}
(
v
)
}
)
$
.
In the case where
$
R
\leq
\frac
{
1
}{
2
}
\lcm
(
m,
2
n
^
2
)
{
\chern
_
1
^{
\beta
}
(
F
)
}^
2
$
,
solving for
$
f
_
1
(
q
)=
f
_
2
(
q
)
$
yields
\begin{equation*}
q=
\sage
{
q
_
sol.expand()
}
\end{equation*}
...
...
@@ -839,7 +862,7 @@ And evaluating $f_1$ at this $q$-value gives:
\begin{equation*}
\sage
{
main
_
theorem1.corollary
_
intermediate
}
\end{equation*}
Finally, noting that
$
\Delta
(
v
)=
\psi
^
2
\ell
^
2
$
, we get the bound as
Finally, noting that
$
\Delta
(
v
)=
(
\chern
_
1
^{
\beta
_{
-
}
(
v
)
}
(
v
))
^
2
\ell
^
2
$
, we get the bound as
stated in the corollary.
\end{proof}
...
...
This diff is collapsed.
Click to expand it.
tex/setting-and-problems.tex
+
4
−
2
View file @
9626ee07
...
...
@@ -389,9 +389,11 @@ Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0)
$
\Delta
(
v
)
\geq
0
$
, and
$
\beta
_{
-
}
(
v
)
\in
\QQ
$
.
The goal is to find all pseudo-semistabilisers
$
u
$
which give circular
pseudo-walls on the left side of
$
V
_
v
$
.
Where
$
u
$
destabilises
$
v
$
going `down'
$
\Theta
_
v
^{
-
}$
(in the same sense as in
Problem
\ref
{
problem:problem-statement-1
}
.
\end{problem}
This is a specialization of
p
roblem
(
\ref
{
problem:problem-statement-1
}
)
This is a specialization of
P
roblem
\ref
{
problem:problem-statement-1
}
with the choice
$
P
=(
\beta
_{
-
}
,
0
)
$
, the point where
$
\Theta
_
v
^
-
$
meets the
$
\beta
$
-axis.
This is because all circular walls left of
$
V
_
v
$
intersect
$
\Theta
_
v
^
-
$
(once).
...
...
@@ -403,7 +405,7 @@ where an algorithm is produced to find all solutions.
This description still holds for the case of rank 0 case if we consider
$
V
_
v
$
to
be infinitely far to the right
(see
s
ection
\ref
{
subsubsect:rank-zero-case-charact-curves
}
).
(see
S
ection
\ref
{
subsubsect:rank-zero-case-charact-curves
}
).
Note also that the condition on
$
\beta
_
-(
v
)
$
always holds for
$
v
$
rank 0.
\subsection
{
Numerical Formulations of the Problems
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment