Skip to content
Snippets Groups Projects
Commit 96b9b38d authored by Luke Naylor's avatar Luke Naylor
Browse files

Refactor recurring example into notebook

parent 5be4f14f
No related branches found
No related tags found
No related merge requests found
...@@ -749,28 +749,19 @@ bound for the rank of $E$: ...@@ -749,28 +749,19 @@ bound for the rank of $E$:
\end{proof} \end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-first}
\begin{sagesilent} \begin{sagesilent}
recurring = Object() from plots_and_expressions import recurring
recurring.chern = Chern_Char(3, 2, -2)
recurring.b = beta_minus(recurring.chern)
recurring.twisted = recurring.chern.twist(recurring.b)
\end{sagesilent} \end{sagesilent}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-first}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta_-=\sage{recurring.b}$, that $m=2$, $\beta_-=\sage{recurring.b}$,
giving $n=\sage{recurring.b.denominator()}$ and giving $n=\sage{recurring.b.denominator()}$ and
$\chern_1^{\sage{recurring.b}}(F) = \sage{recurring.twisted.ch[1]}$. $\chern_1^{\sage{recurring.b}}(F) = \sage{recurring.twisted.ch[1]}$.
\begin{sagesilent}
n = recurring.b.denominator()
m = 2
loose_bound = (
m*n^2*recurring.twisted.ch[1]^2
) / gcd(m, 2*n^2)
\end{sagesilent}
Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilizers for $v$ are bounded above by $\sage{loose_bound}$. tilt semistabilizers for $v$ are bounded above by $\sage{recurring.loose_bound}$.
However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be 25. This will be a recurring example to rank that appears turns out to be 25. This will be a recurring example to
illustrate the performance of later theorems about rank bounds illustrate the performance of later theorems about rank bounds
...@@ -1671,22 +1662,12 @@ $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so ...@@ -1671,22 +1662,12 @@ $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{recurring.b}$, that $m=2$, $\beta=\sage{recurring.b}$,
giving $n=\sage{recurring.b.denominator()}$. giving $n=\sage{recurring.b.denominator()}$.
\begin{sagesilent}
recurring.n = recurring.b.denominator()
recurring.bgmlv = recurring.chern.Q_tilt()
corrolary_bound = (
r_upper_bound_all_q.expand()
.subs(Delta==recurring.bgmlv)
.subs(nu==1) ## \ell^2=1 on P^2
.subs(R==recurring.chern.ch[0])
.subs(n==recurring.n)
)
\end{sagesilent}
Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilizers for $v$ are bounded above by the ranks of tilt semistabilizers for $v$ are bounded above by
$\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$, $\sage{recurring.corrolary_bound} \approx \sage{float(recurring.corrolary_bound)}$,
which is much closer to real maximum 25 than the original bound 144. which is much closer to real maximum 25 than the original bound 144.
\end{example} \end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-second} \label{exmpl:extravagant-second}
Just like in example \ref{exmpl:extravagant-first}, take Just like in example \ref{exmpl:extravagant-first}, take
...@@ -1887,40 +1868,7 @@ The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabi ...@@ -1887,40 +1868,7 @@ The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabi
in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent} \begin{sagesilent}
import numpy as np from plots_and_expressions import bound_comparisons
def bound_comparisons(example):
n = example.b.denominator()
a_v = example.b.numerator()
def theorem_bound(v_twisted, q_val, k):
return int(min(
n^2*q_val^2/k
,
v_twisted.ch[0]
+ n^2*(v_twisted.ch[1] - q_val)^2/k
))
def k(n, a_v, b_q):
n = int(n)
a_v = int(a_v)
b_q = int(b_q)
k = -a_v*b_q % n
return k if k > 0 else k + n
b_qs = list(range(example.twisted.ch[1]*n+1))
qs = list(map(lambda x: x/n,b_qs))
ks = list(map(lambda b_q: k(n, a_v, b_q), b_qs))
theorem2_bounds = [
theorem_bound(example.twisted, q_val, 1)
for q_val in qs
]
theorem3_bounds = [
theorem_bound(example.twisted, q_val, k)
for q_val, k in zip(qs,ks)
]
return qs, theorem2_bounds, theorem3_bounds
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring) qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
\end{sagesilent} \end{sagesilent}
......
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment