Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
96b9b38d
Commit
96b9b38d
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Refactor recurring example into notebook
parent
5be4f14f
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
main.tex
+8
-60
8 additions, 60 deletions
main.tex
plots_and_expressions.ipynb
+26
-10
26 additions, 10 deletions
plots_and_expressions.ipynb
with
34 additions
and
70 deletions
main.tex
+
8
−
60
View file @
96b9b38d
...
@@ -749,28 +749,19 @@ bound for the rank of $E$:
...
@@ -749,28 +749,19 @@ bound for the rank of $E$:
\end{proof}
\end{proof}
\begin{example}
[
$
v
=(
3
,
2
\ell
,
-
2
)
$
on
$
\PP
^
2
$
]
\label
{
exmpl:recurring-first
}
\begin{sagesilent}
\begin{sagesilent}
recurring = Object()
from plots
_
and
_
expressions import recurring
recurring.chern = Chern
_
Char(3, 2, -2)
recurring.b = beta
_
minus(recurring.chern)
recurring.twisted = recurring.chern.twist(recurring.b)
\end{sagesilent}
\end{sagesilent}
\begin{example}
[
$
v
=(
3
,
2
\ell
,
-
2
)
$
on
$
\PP
^
2
$
]
\label
{
exmpl:recurring-first
}
Taking
$
\ell
=
c
_
1
(
\mathcal
{
O
}
(
1
))
$
as the standard polarization on
$
\PP
^
2
$
, so
Taking
$
\ell
=
c
_
1
(
\mathcal
{
O
}
(
1
))
$
as the standard polarization on
$
\PP
^
2
$
, so
that
$
m
=
2
$
,
$
\beta
_
-=
\sage
{
recurring.b
}$
,
that
$
m
=
2
$
,
$
\beta
_
-=
\sage
{
recurring.b
}$
,
giving
$
n
=
\sage
{
recurring.b.denominator
()
}$
and
giving
$
n
=
\sage
{
recurring.b.denominator
()
}$
and
$
\chern
_
1
^{
\sage
{
recurring.b
}}
(
F
)
=
\sage
{
recurring.twisted.ch
[
1
]
}$
.
$
\chern
_
1
^{
\sage
{
recurring.b
}}
(
F
)
=
\sage
{
recurring.twisted.ch
[
1
]
}$
.
\begin{sagesilent}
n = recurring.b.denominator()
m = 2
loose
_
bound = (
m*n
^
2*recurring.twisted.ch[1]
^
2
) / gcd(m, 2*n
^
2)
\end{sagesilent}
Using the above theorem
\ref
{
thm:loose-bound-on-r
}
, we get that the ranks of
Using the above theorem
\ref
{
thm:loose-bound-on-r
}
, we get that the ranks of
tilt semistabilizers for
$
v
$
are bounded above by
$
\sage
{
loose
_
bound
}$
.
tilt semistabilizers for
$
v
$
are bounded above by
$
\sage
{
recurring.
loose
_
bound
}$
.
However, when computing all tilt semistabilizers for
$
v
$
on
$
\PP
^
2
$
, the maximum
However, when computing all tilt semistabilizers for
$
v
$
on
$
\PP
^
2
$
, the maximum
rank that appears turns out to be 25. This will be a recurring example to
rank that appears turns out to be 25. This will be a recurring example to
illustrate the performance of later theorems about rank bounds
illustrate the performance of later theorems about rank bounds
...
@@ -1671,22 +1662,12 @@ $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
...
@@ -1671,22 +1662,12 @@ $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that
$
m
=
2
$
,
$
\beta
=
\sage
{
recurring.b
}$
,
that
$
m
=
2
$
,
$
\beta
=
\sage
{
recurring.b
}$
,
giving
$
n
=
\sage
{
recurring.b.denominator
()
}$
.
giving
$
n
=
\sage
{
recurring.b.denominator
()
}$
.
\begin{sagesilent}
recurring.n = recurring.b.denominator()
recurring.bgmlv = recurring.chern.Q
_
tilt()
corrolary
_
bound = (
r
_
upper
_
bound
_
all
_
q.expand()
.subs(Delta==recurring.bgmlv)
.subs(nu==1) ##
\ell
^
2=1 on P
^
2
.subs(R==recurring.chern.ch[0])
.subs(n==recurring.n)
)
\end{sagesilent}
Using the above corollary
\ref
{
cor:direct
_
rmax
_
with
_
uniform
_
eps
}
, we get that
Using the above corollary
\ref
{
cor:direct
_
rmax
_
with
_
uniform
_
eps
}
, we get that
the ranks of tilt semistabilizers for
$
v
$
are bounded above by
the ranks of tilt semistabilizers for
$
v
$
are bounded above by
$
\sage
{
corrolary
_
bound
}
\approx
\sage
{
float
(
corrolary
_
bound
)
}$
,
$
\sage
{
recurring.
corrolary
_
bound
}
\approx
\sage
{
float
(
recurring.
corrolary
_
bound
)
}$
,
which is much closer to real maximum 25 than the original bound 144.
which is much closer to real maximum 25 than the original bound 144.
\end{example}
\end{example}
\begin{example}
[extravagant example:
$
v
=(
29
,
13
\ell
,
-
3
/
2
)
$
on
$
\PP
^
2
$
]
\begin{example}
[extravagant example:
$
v
=(
29
,
13
\ell
,
-
3
/
2
)
$
on
$
\PP
^
2
$
]
\label
{
exmpl:extravagant-second
}
\label
{
exmpl:extravagant-second
}
Just like in example
\ref
{
exmpl:extravagant-first
}
, take
Just like in example
\ref
{
exmpl:extravagant-first
}
, take
...
@@ -1887,40 +1868,7 @@ The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabi
...
@@ -1887,40 +1868,7 @@ The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabi
in terms of the possible values for
$
q
\coloneqq\chern
_
1
^{
\beta
}
(
u
)
$
are as follows:
in terms of the possible values for
$
q
\coloneqq\chern
_
1
^{
\beta
}
(
u
)
$
are as follows:
\begin{sagesilent}
\begin{sagesilent}
import numpy as np
from plots
_
and
_
expressions import bound
_
comparisons
def bound
_
comparisons(example):
n = example.b.denominator()
a
_
v = example.b.numerator()
def theorem
_
bound(v
_
twisted, q
_
val, k):
return int(min(
n
^
2*q
_
val
^
2/k
,
v
_
twisted.ch[0]
+ n
^
2*(v
_
twisted.ch[1] - q
_
val)
^
2/k
))
def k(n, a
_
v, b
_
q):
n = int(n)
a
_
v = int(a
_
v)
b
_
q = int(b
_
q)
k = -a
_
v*b
_
q
% n
return k if k > 0 else k + n
b
_
qs = list(range(example.twisted.ch[1]*n+1))
qs = list(map(lambda x: x/n,b
_
qs))
ks = list(map(lambda b
_
q: k(n, a
_
v, b
_
q), b
_
qs))
theorem2
_
bounds = [
theorem
_
bound(example.twisted, q
_
val, 1)
for q
_
val in qs
]
theorem3
_
bounds = [
theorem
_
bound(example.twisted, q
_
val, k)
for q
_
val, k in zip(qs,ks)
]
return qs, theorem2
_
bounds, theorem3
_
bounds
qs, theorem2
_
bounds, theorem3
_
bounds = bound
_
comparisons(recurring)
qs, theorem2
_
bounds, theorem3
_
bounds = bound
_
comparisons(recurring)
\end{sagesilent}
\end{sagesilent}
...
...
This diff is collapsed.
Click to expand it.
plots_and_expressions.ipynb
+
26
−
10
View file @
96b9b38d
This diff is collapsed.
Click to expand it.
Luke Naylor
@s1511002
mentioned in commit
272f39df
·
1 year ago
mentioned in commit
272f39df
mentioned in commit 272f39df0e3e1b85804c3b51c177874215227e41
Toggle commit list
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment