Skip to content
Snippets Groups Projects
Commit ba9fdd97 authored by Luke Naylor's avatar Luke Naylor
Browse files

Reformat twisted chern and loose bound on r into theorem envs

parent 168a2185
No related branches found
No related tags found
No related merge requests found
Pipeline #27398 failed
%% Write basic article template
%% Write basic article template
\documentclass[12pt]{article}
\usepackage{amsmath}
......@@ -25,6 +25,7 @@
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemmadfn}{Lemma/Definition}[section]
\newtheorem{dfn}{Definition}[section]
\begin{document}
......@@ -84,12 +85,15 @@ bounds on $\chern_0(E)$ of potential destabilizers $E$ of $F$.
\section{Characteristic Curves of Stability Conditions Associated to Chern
Characters}
\section{Twisted Chern Characters of Pseudo Destabilizers}
\label{sec:twisted-chern}
For a given $\beta$, we can define a twisted Chern character
$\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)$:
\section{Loose Bounds on $\chern_0(E)$ for Semistabilizers Along Fixed
$\beta\in\QQ$}
\begin{dfn}[Twisted Chern Character]
\label{sec:twisted-chern}
For a given $\beta$, define the twisted Chern character as follows.
\[\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)\]
\noindent
Component-wise, this is:
\begin{align*}
\chern^\beta_0(E) &= \chern_0(E)
\\
......@@ -99,6 +103,7 @@ $\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)$:
\end{align*}
% TODO I think this^ needs adjusting for general Surface with $\ell$
\end{dfn}
$\chern^\beta_1(E)$ is the imaginary component of the central charge
$\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$
......@@ -120,6 +125,18 @@ normal one. So $0 \leq \Delta(E)$ yields:
2\chern^\beta_0(E) \chern^\beta_2(E) \leq \chern^\beta_1(E)^2
\end{equation}
\begin{theorem}[Bound on $r$ - Benjamin Schmidt]
Given a Chern character $v$ such that $\beta_{-}(v)\in\QQ$, the rank $r$ of
any semistabilizer $E$ of some $F \in \firsttilt\beta$ with $\chern(F)=v$ is
bounded above by:
\begin{equation*}
r \leq \frac{mn^2 \chern^\beta_1(v)^2}{\gcd(m,2n^2)}
\end{equation*}
\end{theorem}
\begin{proof}
The restrictions on $\chern^\beta_0(E)$ and $\chern^\beta_2(E)$
is best seen with the following graph:
......@@ -142,6 +159,8 @@ for the rank of $E$:
&\leq \frac{mn^2 \chern^\beta_1(F)^2}{\gcd(m,2n^2)}
\end{align}
\end{proof}
\section{B.Schmidt's Method}
\section{Limitations}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment