Skip to content
Snippets Groups Projects
Commit bf1d19cf authored by Luke Naylor's avatar Luke Naylor
Browse files

Start formatting result about new eps into theorem/dfn

parent d4910357
No related branches found
No related tags found
No related merge requests found
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
\newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}} \newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}}
\newtheorem{theorem}{Theorem}[section] \newtheorem{theorem}{Theorem}[section]
\newtheorem{lemmadfn}{Lemma/Definition}[section]
\begin{document} \begin{document}
...@@ -985,7 +986,36 @@ rhs_numerator = ( ...@@ -985,7 +986,36 @@ rhs_numerator = (
\noindent \noindent
Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$. Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$.
Considering the following tautology: Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_F$ in the
proof of theorem \ref{thm:rmax_with_uniform_eps}:
\begin{lemmadfn}[
Finding better alternatives to $\epsilon_F$:
$\epsilon_q^1$ and $\epsilon_q^1$
]
Suppose $d \in \frac{1}{m}\ZZ$ is satisfies the condition in
eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}.
That is:
\begin{equation*}
\sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()}
\end{equation*}
\noindent
Then we have:
\begin{equation*}
d - \frac{(\aa r + 2\bb)\aa}{2n^2}
\geq \epsilon_q^2 \geq \epsilon_q^1 > 0
\end{equation*}
Where $\epsilon_q^1$ and $\epsilon_q^2$ are defined as follows:
\end{lemmadfn}
\begin{proof}
Consider the following tautology:
\begin{align} \begin{align}
&\frac{ x }{ m } &\frac{ x }{ m }
...@@ -1021,12 +1051,12 @@ Considering the following tautology: ...@@ -1021,12 +1051,12 @@ Considering the following tautology:
\label{eqn:better_eps_problem_k_mod_n} \label{eqn:better_eps_problem_k_mod_n}
\end{align} \end{align}
In our situation, we want to find the gap between the right-hand-side of eqn In our situation, we want to find a gap between the right-hand-side of eqn
\ref{eqn:positive_rad_condition_in_terms_of_q_beta}, \ref{eqn:positive_rad_condition_in_terms_of_q_beta},
and the least element of $\frac{1}{m}\ZZ$ which is strictly greater. and the least element of $\frac{1}{m}\ZZ$ which is strictly greater.
This amounts to finding the least $k \in \ZZ_{>0}$ for which This amounts to finding the least $k \in \ZZ_{>0}$ for which
eqn \ref{eqn:finding_better_eps_problem} holds. eqn \ref{eqn:finding_better_eps_problem} holds.
Since such a $k$ satisfies eqn \ref{eqn:better_eps_problem_k_mod_n}, Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n},
we can pick the smallest $k \in \ZZ_{>0}$ which satisfies this new condition we can pick the smallest $k \in \ZZ_{>0}$ which satisfies this new condition
(a computation only depending on $q$ and $\beta$, but not $r$) (a computation only depending on $q$ and $\beta$, but not $r$)
and we are then guaranteed that the gap is at least $\frac{k}{2mn^2}$. and we are then guaranteed that the gap is at least $\frac{k}{2mn^2}$.
...@@ -1036,6 +1066,7 @@ $k \in \ZZ_{>0}$ satisfying eqn \ref{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} ...@@ -1036,6 +1066,7 @@ $k \in \ZZ_{>0}$ satisfying eqn \ref{eqn:better_eps_problem_k_mod_gcd2n2_a2mn}
instead, but at the cost of computing several $\gcd$'s and modulo reductions instead, but at the cost of computing several $\gcd$'s and modulo reductions
for each $q$ considered. for each $q$ considered.
\end{proof}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment