Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
e270a2e9
Commit
e270a2e9
authored
9 months ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Add remark on the numerical restrictions for semistabs
parent
2e692870
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tex/setting-and-problems.tex
+81
-36
81 additions, 36 deletions
tex/setting-and-problems.tex
with
81 additions
and
36 deletions
tex/setting-and-problems.tex
+
81
−
36
View file @
e270a2e9
...
...
@@ -28,12 +28,12 @@ $L$ such that $\ell\coloneqq c_1(L)$ generates $NS(X)$.
We take
$
m
\coloneqq
\ell
^
2
$
as this will be the main quantity which will
affect the results.
\begin{definition}
[Pseudo-semistabili
z
ers]
\begin{definition}
[Pseudo-semistabili
s
ers]
\label
{
dfn:pseudo-semistabilizer
}
% NOTE: SURFACE SPECIALIZATION
Given a Chern Character
$
v
$
, and a given stability
condition
$
\sigma
_{
\alpha
,
\beta
}$
,
a
\textit
{
pseudo-semistabili
z
ing
}
$
u
$
is a `potential' Chern character:
a
\textit
{
pseudo-semistabili
s
ing
}
$
u
$
is a `potential' Chern character:
\[
u
=
\left
(
r, c
\ell
,
\frac
{
e
}{
\lcm
(
m,
2
)
}
\ell
^
2
\right
)
\qquad
...
...
@@ -55,7 +55,7 @@ affect the results.
\end{definition}
At this point, and in this document, we do not care about whether
pseudo-semistabili
z
ers are even Chern characters of actual elements of
pseudo-semistabili
s
ers are even Chern characters of actual elements of
$
\bddderived
(
X
)
$
, some other sources may have this extra restriction too.
Later, Chern characters will be written
$
(
r,c
\ell
,d
\ell
^
2
)
$
because operations
...
...
@@ -65,25 +65,25 @@ $d \in \frac{1}{\lcm(m,2)}\ZZ$.
\begin{definition}
[Pseudo-walls]
\label
{
dfn:pseudo-wall
}
Let
$
u
$
be a pseudo-semistabili
z
er of
$
v
$
, for some stability condition.
Let
$
u
$
be a pseudo-semistabili
s
er of
$
v
$
, for some stability condition.
Then the
\textit
{
pseudo-wall
}
associated to
$
u
$
is the set of all stablity
conditions where
$
u
$
is a pseudo-semistabili
z
er of
$
v
$
.
conditions where
$
u
$
is a pseudo-semistabili
s
er of
$
v
$
.
\end{definition}
% TODO possibly reference forwards to Bertram's nested wall Theorem section to
% cover that being a pseudo-semistabili
z
er somewhere implies also on whole circle
% cover that being a pseudo-semistabili
s
er somewhere implies also on whole circle
\begin{lemma}
[Sanity check for Pseudo-semistabili
z
ers]
\begin{lemma}
[Sanity check for Pseudo-semistabili
s
ers]
\label
{
lem:sanity-check-for-pseudo-semistabilizers
}
Given a stability
condition
$
\sigma
_{
\alpha
,
\beta
}$
,
if
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
is a semistabili
z
ing sequence in
if
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
is a semistabili
s
ing sequence in
$
\firsttilt\beta
$
for
$
F
$
.
Then
$
\chern
(
E
)
$
is a pseudo-semistabili
z
er of
$
\chern
(
F
)
$
Then
$
\chern
(
E
)
$
is a pseudo-semistabili
s
er of
$
\chern
(
F
)
$
\end{lemma}
\begin{proof}
Suppose
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
is a semistabili
z
ing
Suppose
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
is a semistabili
s
ing
sequence with respect to a stability condition
$
\sigma
_{
\alpha
,
\beta
}$
.
\begin{equation*}
\chern
(E) = -
\chern
(
\homol
^{
-1
}_{
\coh
}
(E)) +
\chern
(
\homol
^{
0
}_{
\coh
}
(E))
...
...
@@ -114,12 +114,12 @@ $d \in \frac{1}{\lcm(m,2)}\ZZ$.
$
0
\leq
\chern
_
1
^{
\beta
}
(
E
)
\leq
\chern
_
1
^{
\beta
}
(
F
)
$
.
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
being a semistabili
z
ing sequence
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
being a semistabili
s
ing sequence
means
$
\nu
_{
\alpha
,
\beta
}
(
E
)
=
\nu
_{
\alpha
,
\beta
}
(
F
)
=
\nu
_{
\alpha
,
\beta
}
(
F
)
$
.
% MAYBE: justify this harder
But also, that this is an instance of
$
F
$
being semistable, so
$
E
$
must also
be semistable
(otherwise the destabili
z
ing subobject would also destabili
z
e
$
F
$
).
(otherwise the destabili
s
ing subobject would also destabili
s
e
$
F
$
).
Similarly
$
G
$
must also be semistable too.
$
E
$
and
$
G
$
being semistable implies they also satisfy the Bogomolov
inequalities:
...
...
@@ -130,10 +130,10 @@ $d \in \frac{1}{\lcm(m,2)}\ZZ$.
\end{proof}
\subsection
{
Characteristic Curves for Pseudo-semistabili
z
ers
}
\subsection
{
Characteristic Curves for Pseudo-semistabili
s
ers
}
These characteristic curves introduced are convenient tools to think about the
numerical conditions that can be used to test for pseudo-semistabili
z
ers, and
numerical conditions that can be used to test for pseudo-semistabili
s
ers, and
for solutions to the problems
(
\ref
{
problem:problem-statement-1
}
,
\ref
{
problem:problem-statement-2
}
)
tackled in this article (to be introduced later).
...
...
@@ -143,9 +143,9 @@ a list of numerical inequalities on it's solutions $u$.
The next Lemma is a key to making this translation and revolves around the
geometry and configuration of the characteristic curves involved in a
semistabili
z
ing sequence.
semistabili
s
ing sequence.
\begin{lemma}
[Numerical tests for left-wall pseudo-semistabili
z
ers]
\begin{lemma}
[Numerical tests for left-wall pseudo-semistabili
s
ers]
\label
{
lem:pseudo
_
wall
_
numerical
_
tests
}
Let
$
v
$
and
$
u
$
be Chern characters with
$
\Delta
(
v
)
,
\Delta
(
u
)
\geq
0
$
, and
$
v
$
has non-negative rank (and
$
\chern
_
1
(
v
)
>
0
$
if rank 0).
...
...
@@ -153,10 +153,10 @@ Let $P$ be a point on $\Theta_v^-$.
\noindent
The following conditions:
\begin{enumerate}
\item
$
u
$
is a pseudo-semistabili
z
er of
$
v
$
at some point on
$
\Theta
_
v
^
-
$
above
\begin{enumerate}
[label=
\alph*
]
\item
$
u
$
is a pseudo-semistabili
s
er of
$
v
$
at some point on
$
\Theta
_
v
^
-
$
above
$
P
$
\item
$
u
$
destabili
z
es
$
v
$
going `inwards', that is,
\item
$
u
$
destabili
s
es
$
v
$
going `inwards', that is,
$
\nu
_{
\alpha
,
\beta
}
(
u
)
<
\nu
_{
\alpha
,
\beta
}
(
v
)
$
outside the pseudo-wall, and
$
\nu
_{
\alpha
,
\beta
}
(
u
)
>
\nu
_{
\alpha
,
\beta
}
(
v
)
$
inside.
\end{enumerate}
...
...
@@ -166,7 +166,9 @@ are equivalent to the following more numerical conditions:
\begin{enumerate}
\item
$
u
$
has positive rank
\item
$
\beta
(
P
)
<
\mu
(
u
)
<
\mu
(
v
)
$
, i.e.
$
V
_
u
$
is strictly between
$
P
$
and
$
V
_
v
$
.
\item
$
\chern
_
1
^{
\beta
(
P
)
}
(
u
)
\leq
\chern
_
1
^{
\beta
(
P
)
}
(
v
)
$
,
$
\Delta
(
v
-
u
)
\geq
0
$
\label
{
lem:ps-wall-num-test:num-cond-slope
}
\item
$
\chern
_
1
^{
\beta
(
P
)
}
(
u
)
\leq
\chern
_
1
^{
\beta
(
P
)
}
(
v
)
$
\item
$
\Delta
(
v
-
u
)
\geq
0
$
\item
$
\chern
_
2
^{
P
}
(
u
)
>
0
$
\end{enumerate}
\end{lemma}
...
...
@@ -178,9 +180,9 @@ $\Delta(u),\Delta(v) \geq 0$, and $v$ has positive rank.
For the forwards implication, assume that the suppositions of the Lemma are
satisfied. Let
$
Q
$
be the point on
$
\Theta
_
v
^
-
$
(above
$
P
$
) where
$
u
$
is a
pseudo-semistabili
z
er of
$
v
$
.
pseudo-semistabili
s
er of
$
v
$
.
Firstly, consequence 3 is part of the definition for
$
u
$
being a
pseudo-semistabili
z
er at a point with same
$
\beta
$
value of
$
P
$
(since the
pseudo-semistabili
s
er at a point with same
$
\beta
$
value of
$
P
$
(since the
pseudo-wall surrounds
$
P
$
).
If
$
u
$
were to have 0 rank, it's tilt slope would be decreasing as
$
\beta
$
increases, contradicting supposition b. So
$
u
$
must have strictly non-zero rank,
...
...
@@ -248,8 +250,8 @@ This implies that the characteristic curves for $u$ and $v$ are in the
configuration illustrated in Fig
\ref
{
fig:correct-hyperbol-intersection
}
.
We then have
$
\nu
(
u
)=
\nu
(
v
)
$
along a circle to the left of
$
V
_
u
$
reaching it's
apex at
$
Q
$
, and encircling
$
P
$
. This along with consequence 3 implies that
$
u
$
is a pseudo-semistabili
z
er at the point on the circle with
$
\beta
=
\beta
(
P
)
$
.
Therefore, it's also a pseudo-semistabili
z
er further along the circle at
$
Q
$
is a pseudo-semistabili
s
er at the point on the circle with
$
\beta
=
\beta
(
P
)
$
.
Therefore, it's also a pseudo-semistabili
s
er further along the circle at
$
Q
$
(supposition a).
Finally, consequence 4 along with
$
P
$
being to the left of
$
V
_
u
$
implies
$
\nu
_
P
(
u
)
>
0
$
giving supposition b.
...
...
@@ -258,10 +260,53 @@ The case with rank 0 can be handled the same way.
\end{proof}
\begin{remark}
Given a fixed positive
$
v
$
with
$
\Delta
(
v
)
\geq
0
$
,
for any
$
u
$
satisfying the numerical conditions of this Lemma,
with some given fixed rank (
$
\chern
_
0
(
u
)
$
),
condition
\ref
{
lem:ps-wall-num-test:num-cond-slope
}
gives us bounds for
$
\chern
_
1
(
u
)
$
. For any fixed values for
$
\chern
_
0
(
u
)
$
and
$
\chern
_
1
(
u
)
$
, the last three conditions will give bounds
for
$
\chern
_
2
(
u
)
$
.
These bounds exist regardless of any extra assumptions about
$
v
$
.
However any bounds on
$
\chern
_
0
(
u
)
$
are less immediate from these numerical
conditions.
The semistabiliser
$
E
$
for the largest `left' wall for
$
v
$
must destabilise a Gieseker
stable sheaf
$
F
$
with
$
\chern
(
F
)=
v
$
. We would have a short exact sequence in
the heart of a stability condition on the wall given by
\[
0
\to
E
\hookrightarrow
F
\twoheadrightarrow
G
\to
0
\]
for some
$
G
$
in the heart.
Considering cohomology over
$
\coh
(
X
)
$
, and using the fact that
$
F
$
is a sheaf,
we get an exact sequence in
$
\coh
(
X
)
$
given by:
\[
0
\to
\cancelto
{
0
}{
\cohom
^{
-
1
}
(
E
)
}
\to
0
\to
\cohom
^{
-
1
}
(
G
)
\to
\cohom
^{
0
}
(
E
)
\to
\cohom
^{
0
}
(
F
)
\to
\cohom
^{
0
}
(
G
)
\to
0
\]
So we do have that
$
E
$
must be a sheaf, but not necessarily a subsheaf of
$
F
$
,
and so
$
\chern
_
0
(
E
)
$
is not necessarily smaller than
$
\chern
_
0
(
F
)
$
.
Furthermore, for smaller walls, the semistabiliser may not even be a sheaf.
When choosing the base-point of
$
\Theta
_
v
^{
-
}$
:
$
P
=(
\beta
_{
-
}
(
v
)
,
0
)
$
, we
will see in Part
\ref
{
part:inf-walls
}
that there can be infinitely many walls
when
$
\beta
_{
-
}
(
v
)
$
is irrational,
hence infinitely many
$
u
$
satisfying the above.
Therefore any construction of a bound on the ranks of possible
$
u
$
must rely on the rationality of
$
\beta
(
P
)
$
in this case.
\end{remark}
\section
{
The Problem: Finding Pseudo-walls
}
As hinted in the introduction (
\ref
{
sec:intro
}
), the main motivation of the
results in this article are not only the bounds on pseudo-semistabili
z
er
results in this article are not only the bounds on pseudo-semistabili
s
er
ranks;
but also applications for finding a list (comprehensive or subset) of
pseudo-walls.
...
...
@@ -277,34 +322,34 @@ are trying to solve for.
Fix a Chern character
$
v
$
with non-negative rank (and
$
\chern
_
1
(
v
)
>
0
$
if rank 0),
and
$
\Delta
(
v
)
\geq
0
$
.
The goal is to find all pseudo-semistabili
z
ers
$
u
$
The goal is to find all pseudo-semistabili
s
ers
$
u
$
which give circular pseudo-walls containing some fixed point
$
P
\in\Theta
_
v
^
-
$
.
With the added restriction that
$
u
$
`destabili
z
es'
$
v
$
moving `inwards', that is,
With the added restriction that
$
u
$
`destabili
s
es'
$
v
$
moving `inwards', that is,
$
\nu
(
u
)
>
\nu
(
v
)
$
inside the circular pseudo-wall.
\end{problem}
This will give all pseudo-walls between the chamber corresponding to Gieseker
stability and the stability condition corresponding to
$
P
$
.
The purpose of the final `direction' condition is because, up to that condition,
semistabili
z
ers are not distinguished from their corresponding quotients:
semistabili
s
ers are not distinguished from their corresponding quotients:
Suppose
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
, then the tilt slopes
$
\nu
_{
\alpha
,
\beta
}$
are strictly increasing, strictly decreasing, or equal across the short exact
sequence (consequence of the see-saw principle).
In this case,
$
\chern
(
E
)
$
is a pseudo-semistabili
z
er of
$
\chern
(
F
)
$
, if and
only if
$
\chern
(
G
)
$
is a pseudo-semistabili
z
er of
$
\chern
(
F
)
$
.
The numerical inequalities in the definition for pseudo-semistabili
z
er cannot
In this case,
$
\chern
(
E
)
$
is a pseudo-semistabili
s
er of
$
\chern
(
F
)
$
, if and
only if
$
\chern
(
G
)
$
is a pseudo-semistabili
s
er of
$
\chern
(
F
)
$
.
The numerical inequalities in the definition for pseudo-semistabili
s
er cannot
tell which of
$
E
$
or
$
G
$
is the subobject.
However, what can be distinguished is the direction across the wall that
$
\chern
(
E
)
$
or
$
\chern
(
G
)
$
destabili
z
es
$
\chern
(
F
)
$
(they will each destabili
z
e in the opposite direction to the other).
The `inwards' semistabili
z
ers are preferred because we are moving from a
$
\chern
(
E
)
$
or
$
\chern
(
G
)
$
destabili
s
es
$
\chern
(
F
)
$
(they will each destabili
s
e in the opposite direction to the other).
The `inwards' semistabili
s
ers are preferred because we are moving from a
typically more familiar chamber
(the stable objects of Chern character
$
v
$
in the outside chamber will only be
Gieseker stable sheaves).
Also note that this last restriction does not remove any pseudo-walls found,
and if we do want to recover `outwards' semistabili
z
ers, we can simply take
and if we do want to recover `outwards' semistabili
s
ers, we can simply take
$
v
-
u
$
for each solution
$
u
$
of the problem.
...
...
@@ -313,7 +358,7 @@ $v-u$ for each solution $u$ of the problem.
Fix a Chern character
$
v
$
with non-negative rank (and
$
\chern
_
1
(
v
)
>
0
$
if rank 0),
$
\Delta
(
v
)
\geq
0
$
, and
$
\beta
_{
-
}
(
v
)
\in
\QQ
$
.
The goal is to find all pseudo-semistabili
z
ers
$
u
$
which give circular
The goal is to find all pseudo-semistabili
s
ers
$
u
$
which give circular
pseudo-walls on the left side of
$
V
_
v
$
.
\end{problem}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment