Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
ff1b012b
Commit
ff1b012b
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Rearrange and correct work from last 4 commits
parent
b8e7b6c2
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+16
-8
16 additions, 8 deletions
main.tex
with
16 additions
and
8 deletions
main.tex
+
16
−
8
View file @
ff1b012b
...
@@ -807,22 +807,25 @@ beta_value_expr = (beta == a/n)
...
@@ -807,22 +807,25 @@ beta_value_expr = (beta == a/n)
\noindent
\noindent
That is,
$
r
\equiv
-
a
^{
-
1
}
b
$
mod
$
n
$
(
$
a
$
is coprime to
$
n
$
, and so invertible mod
$
n
$
).
That is,
$
r
\equiv
-
a
^{
-
1
}
b
$
mod
$
n
$
(
$
a
$
is coprime to
$
n
$
, and so invertible mod
$
n
$
).
Substituting the current values of
$
q
$
and
$
\beta
$
into the condition for the
Substituting the current values of
$
q
$
and
$
\beta
$
into the condition for the
radius of the pseudo-wall being positive
radius of the pseudo-wall being positive
(eqn
\ref
{
eqn:positive
_
rad
_
d
_
bound
_
betamin
}
) we get:
(eqn
\ref
{
eqn:positive
_
rad
_
d
_
bound
_
betamin
}
) we get:
\begin{equation}
\begin{equation}
\frac
{
1
}{
\lcm
(m,2n
^
2)
}
\ZZ
\label
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
\frac
{
1
}{
m
}
\ZZ
\ni
\ni
\sage
{
positive
_
radius
_
condition.subs([q
_
value
_
expr,beta
_
value
_
expr]).factor()
}
\sage
{
positive
_
radius
_
condition.subs([q
_
value
_
expr,beta
_
value
_
expr]).factor()
}
\in
\in
\frac
{
1
}{
2n
^
2
}
\ZZ
\frac
{
1
}{
2n
^
2
}
\ZZ
\end{equation}
\end{equation}
For each
$
r
$
, the smallest element of
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}
\ZZ
$
strictly larger
\noindent
than the lower bound here is exactly
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
greater.
Both
$
d
$
and the lower bound are elements of
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}
\ZZ
$
.
Therefore, if any of the two upper bounds come to within
So, if any of the two upper bounds on
$
d
$
come to within
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
of this lower bound, then there are no solutions for
$
d
$
.
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
of this lower bound, then there are no solutions for
$
d
$
.
Considering equations
Considering equations
\ref
{
eqn:bgmlv2
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:bgmlv2
_
d
_
bound
_
betamin
}
,
...
@@ -835,9 +838,11 @@ this happens when:
...
@@ -835,9 +838,11 @@ this happens when:
\sage
{
bgmlv2
_
d
_
upperbound
_
exp
_
term
}
,
\sage
{
bgmlv2
_
d
_
upperbound
_
exp
_
term
}
,
\sage
{
bgmlv3
_
d
_
upperbound
_
exp
_
term
_
alt.subs(chbv==0)
}
,
\sage
{
bgmlv3
_
d
_
upperbound
_
exp
_
term
_
alt.subs(chbv==0)
}
,
\right
)
\right
)
<
\frac
{
1
}{
\lcm
(m,2n
^
2)
}
<
\epsilon
:=
\frac
{
1
}{
\lcm
(m,2n
^
2)
}
\end{equation}
\end{equation}
%% refinements using specific values of q and beta
\begin{sagesilent}
\begin{sagesilent}
rhs
_
numerator = (
rhs
_
numerator = (
positive
_
radius
_
condition
positive
_
radius
_
condition
...
@@ -849,7 +854,8 @@ rhs_numerator = (
...
@@ -849,7 +854,8 @@ rhs_numerator = (
\end{sagesilent}
\end{sagesilent}
\noindent
\noindent
Considering the numerator of the right-hand-side:
Considering the numerator of the right-hand-side of
(eqn
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
):
\begin{align}
\begin{align}
\sage
{
rhs
_
numerator
}
\sage
{
rhs
_
numerator
}
...
@@ -858,7 +864,9 @@ Considering the numerator of the right-hand-side:
...
@@ -858,7 +864,9 @@ Considering the numerator of the right-hand-side:
&
\equiv
ab
&
\mod
n
&
\equiv
ab
&
\mod
n
\end{align}
\end{align}
And so, we also have
$
a
(
ar
+
2
b
)
\equiv
ab
$
(mod
$
\lcm
(
m,
2
n
^
2
)
$
).
\noindent
And so, we also have
$
a
(
ar
+
2
b
)
\equiv
ab
$
(mod
$
2
n
^
2
$
).
\minorheading
{
Irrational
$
\beta
$}
\minorheading
{
Irrational
$
\beta
$}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment