Skip to content
Snippets Groups Projects
Commit ff1b012b authored by Luke Naylor's avatar Luke Naylor
Browse files

Rearrange and correct work from last 4 commits

parent b8e7b6c2
No related branches found
No related tags found
No related merge requests found
...@@ -807,22 +807,25 @@ beta_value_expr = (beta == a/n) ...@@ -807,22 +807,25 @@ beta_value_expr = (beta == a/n)
\noindent \noindent
That is, $r \equiv -a^{-1}b$ mod $n$ ($a$ is coprime to $n$, and so invertible mod $n$). That is, $r \equiv -a^{-1}b$ mod $n$ ($a$ is coprime to $n$, and so invertible mod $n$).
Substituting the current values of $q$ and $\beta$ into the condition for the Substituting the current values of $q$ and $\beta$ into the condition for the
radius of the pseudo-wall being positive radius of the pseudo-wall being positive
(eqn \ref{eqn:positive_rad_d_bound_betamin}) we get: (eqn \ref{eqn:positive_rad_d_bound_betamin}) we get:
\begin{equation} \begin{equation}
\frac{1}{\lcm(m,2n^2)}\ZZ \label{eqn:positive_rad_condition_in_terms_of_q_beta}
\frac{1}{m}\ZZ
\ni \ni
\sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()} \sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()}
\in \in
\frac{1}{2n^2}\ZZ \frac{1}{2n^2}\ZZ
\end{equation} \end{equation}
For each $r$, the smallest element of $\frac{1}{\lcm(m,2n^2)}\ZZ$ strictly larger \noindent
than the lower bound here is exactly $\frac{1}{\lcm(m,2n^2)}$ greater. Both $d$ and the lower bound are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
Therefore, if any of the two upper bounds come to within So, if any of the two upper bounds on $d$ come to within
$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for $d$. $\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for
$d$.
Considering equations Considering equations
\ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv2_d_bound_betamin},
...@@ -835,9 +838,11 @@ this happens when: ...@@ -835,9 +838,11 @@ this happens when:
\sage{bgmlv2_d_upperbound_exp_term}, \sage{bgmlv2_d_upperbound_exp_term},
\sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)}, \sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)},
\right) \right)
< \frac{1}{\lcm(m,2n^2)} < \epsilon := \frac{1}{\lcm(m,2n^2)}
\end{equation} \end{equation}
%% refinements using specific values of q and beta
\begin{sagesilent} \begin{sagesilent}
rhs_numerator = ( rhs_numerator = (
positive_radius_condition positive_radius_condition
...@@ -849,7 +854,8 @@ rhs_numerator = ( ...@@ -849,7 +854,8 @@ rhs_numerator = (
\end{sagesilent} \end{sagesilent}
\noindent \noindent
Considering the numerator of the right-hand-side: Considering the numerator of the right-hand-side of
(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}):
\begin{align} \begin{align}
\sage{rhs_numerator} \sage{rhs_numerator}
...@@ -858,7 +864,9 @@ Considering the numerator of the right-hand-side: ...@@ -858,7 +864,9 @@ Considering the numerator of the right-hand-side:
&\equiv ab &\mod n &\equiv ab &\mod n
\end{align} \end{align}
And so, we also have $a(ar+2b) \equiv ab$ (mod $\lcm(m,2n^2)$). \noindent
And so, we also have $a(ar+2b) \equiv ab$ (mod $2n^2$).
\minorheading{Irrational $\beta$} \minorheading{Irrational $\beta$}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment