Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • personal-latex-documents/research/max-destabilizer-rank
1 result
Show changes
Commits on Source (1)
......@@ -4,6 +4,7 @@
The proof for the following Theorem \ref{thm:loose-bound-on-r} was hinted at in
\cite{SchmidtBenjamin2020Bsot}, but the value appears explicitly in
\cite{SchmidtGithub2020} as shown in the following Listing
% texlab: ignore
\ref{fig:code:schmidt-bound}.
The latter citation is a SageMath \cite{sagemath}
library for computing certain quantities related to Bridgeland stabilities on
......@@ -18,130 +19,130 @@ pseudo-semistabilisers for tilt stability.
]{schmidt-snippet}
\begin{theorem}[Bound on $r$ - Benjamin Schmidt]
\label{thm:loose-bound-on-r}
Let $X$ be a smooth projective Picard rank 1 surface with choice of ample line
bundle $L$ such that $\ell\coloneqq c_1(L)$ generates $\neronseveri(X)$ and
take $m\coloneqq \ell^2$.
Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or
$\chern_0(v) = 0$ and $\chern_1(v) > 0$)
such that
$\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of
any solution $u$ of Problem \ref{problem:problem-statement-2} is
bounded above by:
\begin{equation*}
r \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
\end{equation*}
\label{thm:loose-bound-on-r}
Let $X$ be a smooth projective Picard rank 1 surface with choice of ample line
bundle $L$ such that $\ell\coloneqq c_1(L)$ generates $\neronseveri(X)$ and
take $m\coloneqq \ell^2$.
Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or
$\chern_0(v) = 0$ and $\chern_1(v) > 0$)
such that
$\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of
any solution $u$ of Problem \ref{problem:problem-statement-2} is
bounded above by:
\begin{equation*}
r \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
\end{equation*}
\end{theorem}
\begin{proof}
The Bogomolov form applied to the twisted Chern character is the same as the
untwisted one.
\noindent
\begin{minipage}{0.57\linewidth}
So $0 \leq \Delta(u)$ (condition 2 from Corollary \ref{cor:num_test_prob2})
yields:
\begin{equation}
\label{eqn-bgmlv-on-E}
2\chern_0(u) \chern^{\beta_{-}}_2(u) \leq \chern^{\beta_{-}}_1(u)^2
\end{equation}
The Bogomolov form applied to the twisted Chern character is the same as the
untwisted one.
\noindent
Furthermore,
condition 5 from Corollary \ref{cor:num_test_prob2}
gives:
\begin{equation}
\label{eqn-tilt-cat-cond}
0 < \chern^{\beta_{-}}_1(u) < \chern^{\beta_{-}}_1(v)
\end{equation}
\begin{minipage}{0.57\linewidth}
So $0 \leq \Delta(u)$ (condition 2 from Corollary \ref{cor:num_test_prob2})
yields:
\begin{equation}
\label{eqn-bgmlv-on-E}
2\chern_0(u) \chern^{\beta_{-}}_2(u) \leq \chern^{\beta_{-}}_1(u)^2
\end{equation}
\noindent
Furthermore,
condition 5 from Corollary \ref{cor:num_test_prob2}
gives:
\begin{equation}
\label{eqn-tilt-cat-cond}
0 < \chern^{\beta_{-}}_1(u) < \chern^{\beta_{-}}_1(v)
\end{equation}
\noindent
The induced restrictions on possible pairs $\chern^{\beta_-}_0(u)$ and
$\chern^{\beta_-}_2(u)$,
as well as conditions 1 and 6 from Corollary \ref{cor:num_test_prob2}
are illustrated here on the right, with the invalid regions shaded.
\end{minipage}
\hfill
\begin{minipage}{0.39\linewidth}
%\label{prop:proof:fig:pseudowall-pos}
\begin{center}
\def\svgwidth{\linewidth}
{\small
\subimport{../figures/}{schmidt-arg-diag.pdf_tex}
}
\end{center}
\vspace{3pt}
\end{minipage}
Currently, the unshaded region in the diagram above, corresponding to possible
values for $\chern_0(u)$ and $\chern^{\beta_{-}}_2(u)$ that satisfy the
currently considered restrictions, is unbounded.
This is where the rationality of $\beta_{-}$ comes in.
If $\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$,
then $\chern^{\beta_-}_2(u) \in \frac{1}{\lcm(m,2n^2)}\ZZ$.
In particular, since $\chern_2^{\beta_-}(u) > 0$ we must also have
$\chern^{\beta_-}_2(u) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a
bound for the rank of $u$:
\begin{align}
\chern_0(u)
& \leq \frac{\chern^{\beta_-}_1(u)^2}{2\chern^{\beta_{-}}_2(u)} \nonumber \\
& \leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(u)^2}{2} \nonumber \\
& = \frac{mn^2 \chern^{\beta_-}_1(u)^2}{\gcd(m,2n^2)}
\label{proof:first-bound-on-r}
\end{align}
\noindent
The induced restrictions on possible pairs $\chern^{\beta_-}_0(u)$ and
$\chern^{\beta_-}_2(u)$,
as well as conditions 1 and 6 from Corollary \ref{cor:num_test_prob2}
are illustrated here on the right, with the invalid regions shaded.
\end{minipage}
\hfill
\begin{minipage}{0.39\linewidth}
%\label{prop:proof:fig:pseudowall-pos}
\begin{center}
\def\svgwidth{\linewidth}
{\small
\subimport{../figures/}{schmidt-arg-diag.pdf_tex}
}
\end{center}
\vspace{3pt}
\end{minipage}
Currently, the unshaded region in the diagram above, corresponding to possible
values for $\chern_0(u)$ and $\chern^{\beta_{-}}_2(u)$ that satisfy the
currently considered restrictions, is unbounded.
This is where the rationality of $\beta_{-}$ comes in.
If $\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$,
then $\chern^{\beta_-}_2(u) \in \frac{1}{\lcm(m,2n^2)}\ZZ$.
In particular, since $\chern_2^{\beta_-}(u) > 0$ we must also have
$\chern^{\beta_-}_2(u) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a
bound for the rank of $u$:
\begin{align}
\chern_0(u)
&\leq \frac{\chern^{\beta_-}_1(u)^2}{2\chern^{\beta_{-}}_2(u)} \nonumber \\
&\leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(u)^2}{2} \nonumber \\
&= \frac{mn^2 \chern^{\beta_-}_1(u)^2}{\gcd(m,2n^2)}
\label{proof:first-bound-on-r}
\end{align}
\noindent
Which we can then immediately bound using Equation \ref{eqn-tilt-cat-cond}.
Alternatively, given that
$\chern_1^{\beta_{-}}(u)$, $\chern_1^{\beta_{-}}(v)\in\frac{1}{n}\ZZ$,
we can tighten this bound on $\chern_1^{\beta_{-}}(u)$ given by that equation to:
\[
n\chern^{\beta_{-}}_1(u) \leq n\chern^{\beta_{-}}_1(v) - 1
\]
allowing us to bound the expression in Equation \ref{proof:first-bound-on-r} to
the following:
\[
\chern_0(u)
\leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
\]
Which we can then immediately bound using Equation \ref{eqn-tilt-cat-cond}.
Alternatively, given that
$\chern_1^{\beta_{-}}(u)$, $\chern_1^{\beta_{-}}(v)\in\frac{1}{n}\ZZ$,
we can tighten this bound on $\chern_1^{\beta_{-}}(u)$ given by that equation to:
\[
n\chern^{\beta_{-}}_1(u) \leq n\chern^{\beta_{-}}_1(v) - 1
\]
allowing us to bound the expression in Equation \ref{proof:first-bound-on-r} to
the following:
\[
\chern_0(u)
\leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
\]
\end{proof}
\begin{sagesilent}
from examples import recurring
from examples import recurring
\end{sagesilent}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-first}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=1$, $\beta_-=\sage{recurring.betaminus}$,
giving $n=\sage{recurring.n}$ and
$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilisers for $v$ are bounded above by $\sage{recurring.loose_bound}$.
However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be 25. This will be a recurring example to
illustrate the performance of later theorems about rank bounds
\label{exmpl:recurring-first}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=1$, $\beta_-=\sage{recurring.betaminus}$,
giving $n=\sage{recurring.n}$ and
$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilisers for $v$ are bounded above by $\sage{recurring.loose_bound}$.
However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be 25. This will be a recurring example to
illustrate the performance of later theorems about rank bounds
\end{example}
\begin{sagesilent}
from examples import extravagant
from examples import extravagant
\end{sagesilent}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-first}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=1$, $\beta_-=\sage{extravagant.betaminus}$,
giving $n=\sage{extravagant.n}$ and
$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.loose_bound}$.
However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be $\sage{round(extravagant.actual_rmax, 1)}$.
\label{exmpl:extravagant-first}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=1$, $\beta_-=\sage{extravagant.betaminus}$,
giving $n=\sage{extravagant.n}$ and
$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.loose_bound}$.
However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be $\sage{round(extravagant.actual_rmax, 1)}$.
\end{example}
......@@ -166,19 +167,19 @@ and Corollary \ref{cor:num_test_prob2}, in a way which better fits our direction
of travel.
\begin{lemma}
\label{lem:fixed-q-semistabs-criterion}
\label{lem:fixed-q-semistabs-criterion}
Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}),
with choice of point $P=(\alpha_0,\beta_0)$ on $\Theta_v^{-}$
(or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.).
(or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.).
\noindent
If $u$ is a solution to the Problem then $u$ satisfies:
\begin{equation}
q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right)
\label{lem:eqn:cond-for-fixed-q}
\qquad
\text{and}
\qquad
\qquad
\text{and}
\qquad
\chern_0(u) > \frac{q}{\mu(v) - \beta_0}.
\nonumber
\end{equation}
......@@ -189,11 +190,11 @@ of travel.
satisfying the above Equations \ref{lem:eqn:cond-for-fixed-q}
is a solution to the Problem if and only if the following are satisfied:
\begin{multicols}{3}
\begin{itemize}
\item $\Delta(u) \geq 0$
\item $\Delta(v-u) \geq 0$
\item $\chern^{\alpha_0,\beta_0}_2(u) \geq 0$
\end{itemize}
\begin{itemize}
\item $\Delta(u) \geq 0$
\item $\Delta(v-u) \geq 0$
\item $\chern^{\alpha_0,\beta_0}_2(u) \geq 0$
\end{itemize}
\end{multicols}
\end{lemma}
......@@ -202,23 +203,23 @@ of travel.
to the problem are given by $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$
which satisfy six numerical conditions.
The first line of Equation \ref{lem:eqn:cond-for-fixed-q} is equivalent to
numerical condition 5.
numerical condition 5.
The second line is a rearrangement of numerical condition 4, assuming $r>0$ which is given by
the first numerical condition.
Therefore any solution $u$ satisfies Equation \ref{lem:eqn:cond-for-fixed-q}.
But then Theorems \ref{lem:num_test_prob1} and \ref{cor:num_test_prob2}, also give that
$u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying Equation
\ref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions
1, 2, 3 and 6 are satisfied.
$u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying Equation
\ref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions
1, 2, 3 and 6 are satisfied.
This is in essence the second part of the Lemma.
\end{proof}
\begin{corollary}
\label{cor:rational-beta:fixed-q-semistabs-criterion}
\label{cor:rational-beta:fixed-q-semistabs-criterion}
Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}),
with choice of point $P=(\alpha_0,\beta_0)$ on $\Theta_v^{-}$
(or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.),
(or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.),
and suppose that $\beta_{0}$ is
rational, and written $\beta_0=\frac{a_v}{n}$ for
some coprime integers $a_v$, $n$ with $n>0$.
......@@ -227,27 +228,27 @@ of travel.
\begin{align*}
\chern^{\beta_0}_1(u)
= \frac{b_q}{n},
\qquad
a_v r &\equiv -b_q \pmod{n},
\qquad
a_v r & \equiv -b_q \pmod{n},
\quad
\text{and}
\qquad
r > \frac{q}{\mu(v) - \beta_0}
\end{align*}
\[
\text{for some }
b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}.
\text{for some }
b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}.
\]
And any $u = (r,c\ell,d\ell^2)$
with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$
satisfying these equations is a solution to the Problem if and only if, again,
the following are satisfied:
\begin{multicols}{3}
\begin{itemize}
\item $\Delta(u) \geq 0$
\item $\Delta(v-u) \geq 0$
\item $\chern^P_2(u) \geq 0$
\end{itemize}
\begin{itemize}
\item $\Delta(u) \geq 0$
\item $\Delta(v-u) \geq 0$
\item $\chern^P_2(u) \geq 0$
\end{itemize}
\end{multicols}
\end{corollary}
......@@ -256,24 +257,24 @@ of travel.
This is a specialisation of Lemma \ref{lem:fixed-q-semistabs-criterion}
with a modification to the statement
\[
q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right)
q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right)
\]
for the case where $\beta_0$ is rational.
Taking $\beta_0 = \frac{a_v}{n}$ we have:
for the case where $\beta_0$ is rational.
Taking $\beta_0 = \frac{a_v}{n}$ we have:
\[
q\coloneqq\chern_1^{\beta_0}(u)
= c - \frac{a_v}{n}r
\in \frac{1}{n}\ZZ
q\coloneqq\chern_1^{\beta_0}(u)
= c - \frac{a_v}{n}r
\in \frac{1}{n}\ZZ
\]
So $q=\frac{b_q}{n}$ for some $b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}$
and then
${
nc - a_v r = b_q
}$
and so
nc - a_v r = b_q
}$
and so
${
a_v r \equiv -b_q
}$ modulo $n$.
a_v r \equiv -b_q
}$ modulo $n$.
\end{proof}
\subsection{Bounds on \texorpdfstring{`$d$'}{d}-values for Solutions of Problems}
......@@ -299,7 +300,7 @@ to the Problem satisfies
q \coloneqq \chern_1^{\beta_0}(u)
\in
\left(
0, \chern_1^{\beta_0}(v)
0, \chern_1^{\beta_0}(v)
\right)
\]
and also gives a lower bound for $r$ when considering $u$ with a fixed $q$.
......@@ -322,7 +323,7 @@ In the context of Problem \ref{problem:problem-statement-2}, this condition,
when rearranged to a bound on $d$, amounts to:
\begin{equation}
\label{eqn:radius-cond-betamin}
\label{eqn:radius-cond-betamin}
\chern_2^{\beta_{-}}(u) > 0
\qquad
\text{and}
......@@ -332,7 +333,7 @@ when rearranged to a bound on $d$, amounts to:
\end{equation}
\begin{sagesilent}
import other_P_choice as problem1
import other_P_choice as problem1
\end{sagesilent}
In the case where we are tackling Problem \ref{problem:problem-statement-1},
......@@ -368,7 +369,7 @@ $q = \chern^{\beta_0}_1(u) = c - r\beta_0$,
we get:
\begin{sagesilent}
from plots_and_expressions import bgmlv2_with_q
from plots_and_expressions import bgmlv2_with_q
\end{sagesilent}
\begin{equation}
\sage{bgmlv2_with_q}
......@@ -379,7 +380,7 @@ Rearranging to express this as a bound on $d$, we get the following.
Recall that $r>0$ is ensured by Equations \ref{lem:eqn:cond-for-fixed-q}.
\begin{sagesilent}
from plots_and_expressions import bgmlv2_d_ineq
from plots_and_expressions import bgmlv2_d_ineq
\end{sagesilent}
\begin{equation}
\label{eqn-bgmlv2_d_upperbound}
......@@ -400,7 +401,7 @@ $d$ yields:
\begin{sagesilent}
from plots_and_expressions import bgmlv3_d_upperbound_terms
from plots_and_expressions import bgmlv3_d_upperbound_terms
\end{sagesilent}
\begin{equation}
......@@ -433,31 +434,31 @@ see-saw principle.
% TODO maybe cover the see-saw principle
\begin{align*}
\left(
\frac{\chern^{\beta_0}_1(v-u)}{\chern_0(v-u)}
\frac{\chern^{\beta_0}_1(v-u)}{\chern_0(v-u)}
\right)^2
&=
& =
\left(
\mu(v-u) - \beta_0
\mu(v-u) - \beta_0
\right)^2
\\
&>
\\
& >
\left(
\mu(v) - \beta_0
\mu(v) - \beta_0
\right)^2
&\text{by Equation \ref{lem:proof:slope-order-rltR}}
\\
&=
& \text{by Equation \ref{lem:proof:slope-order-rltR}}
\\
& =
\left(
\frac{\chern^{\beta_0}_1(v)}{\chern_0(v)}
\frac{\chern^{\beta_0}_1(v)}{\chern_0(v)}
\right)^2
\\
&\geq
\\
& \geq
2 \frac{\chern^{\beta_0}_2(v)}{\chern_0(v)}
&\text{since }\Delta(v) \geq 0
& \text{since }\Delta(v) \geq 0
\:\text{and }\chern_0(v) > 0
\\
\text{So}
\quad
\\
\text{So}
\quad
\frac{
\left(
q-\chern^{\beta_0}_1(v)
......@@ -467,9 +468,9 @@ see-saw principle.
R-r
\right)^2
}
&>
& >
2 \frac{\chern^{\beta_0}_2(v)}{R}
&
&
\text{and}
\quad
\chern_2^{\beta_0}(v)
......@@ -482,7 +483,7 @@ see-saw principle.
R-r
\right)
}
&<
& <
\frac{r\chern^{\beta_0}_2(v)}{R}
\end{align*}
\noindent
......@@ -493,7 +494,7 @@ are greater than those of Equation
\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem
\texorpdfstring{\ref{problem:problem-statement-2}}{2}}
\texorpdfstring{\ref{problem:problem-statement-2}}{2}}
\label{subsubsect:all-bounds-on-d-prob2}
In the context of Problem \ref{problem:problem-statement-2}, with
......@@ -505,30 +506,30 @@ for a potential solution to the problem of the form in Equation
\ref{eqn:u-coords}, amounts to the following:
\begin{sagesilent}
from plots_and_expressions import bgmlv2_d_upperbound_terms
from plots_and_expressions import bgmlv2_d_upperbound_terms
\end{sagesilent}
\begin{align}
d &>
d & >
\frac{1}{2}{\beta_0}^2 r
+ {\beta_0} q,
\phantom{+} % to keep terms aligned
&\qquad\text{when\:} r > 0
& \qquad\text{when\:} r > 0
\label{eqn:radiuscond_d_bound_betamin}
\\
d &\leq
\\
d & \leq
\sage{bgmlv2_d_upperbound_terms.problem2.linear}
+ \sage{bgmlv2_d_upperbound_terms.problem2.const}
+\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic},
&\qquad\text{when\:} r > 0
\label{eqn:bgmlv2_d_bound_betamin}
\\
d &\leq
+\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic},
& \qquad\text{when\:} r > 0
\label{eqn:bgmlv2_d_bound_betamin}
\\
d & \leq
\sage{bgmlv3_d_upperbound_terms.problem2.linear}
+ \sage{bgmlv3_d_upperbound_terms.problem2.const}
% ^ ch_2^\beta(F)=0 for beta_{-}
\sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic},
&\qquad\text{when\:} r > R
\label{eqn:bgmlv3_d_bound_betamin}
\sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic},
& \qquad\text{when\:} r > R
\label{eqn:bgmlv3_d_bound_betamin}
\end{align}
Recalling that $q \coloneqq \chern^{\beta}_1(u) \in (0, \chern^{\beta}_1(v))$,
......@@ -560,22 +561,22 @@ This will be pursued in Subsection
\ref{subsec:bounds-on-semistab-rank-prob-2}.
\begin{sagesilent}
from plots_and_expressions import typical_bounds_on_d
from plots_and_expressions import typical_bounds_on_d
\end{sagesilent}
\begin{figure}
\centering
\sageplot[width=\linewidth]{typical_bounds_on_d}
\caption{
Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(u)$.
Where $\chern(v) = (3,2\ell,-2\ell^2)$.
}
\label{fig:d_bounds_xmpl_gnrc_q}
\centering
\sageplot[width=\linewidth]{typical_bounds_on_d}
\caption{
Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(u)$.
Where $\chern(v) = (3,2\ell,-2\ell^2)$.
}
\label{fig:d_bounds_xmpl_gnrc_q}
\end{figure}
\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem
\texorpdfstring{\ref{problem:problem-statement-1}}{1}}
\texorpdfstring{\ref{problem:problem-statement-1}}{1}}
\label{subsubsect:all-bounds-on-d-prob1}
Unlike for Problem \ref{problem:problem-statement-2},
......@@ -588,37 +589,37 @@ bounds do not share the same assymptote as the lower bound
\begin{align}
\sage{problem1.radius_condition_d_bound.lhs()}
&>
& >
\sage{problem1.radius_condition_d_bound.rhs()}
&\text{when }r>0
& \text{when }r>0
\label{eqn:prob1:radiuscond}
\\
d &\leq
d & \leq
\sage{problem1.bgmlv2_d_upperbound_terms.linear}
+ \sage{problem1.bgmlv2_d_upperbound_terms.const}
+ \sage{problem1.bgmlv2_d_upperbound_terms.hyperbolic}
&\text{when }r>R
& \text{when }r>R
\label{eqn:prob1:bgmlv2}
\\
d &\leq
d & \leq
\sage{problem1.bgmlv3_d_upperbound_terms.linear}
+ \sage{problem1.bgmlv3_d_upperbound_terms.const}
\sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic}
&\text{when }r>R
\sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic}
& \text{when }r>R
\label{eqn:prob1:bgmlv3}
\end{align}
\begin{figure}
\centering
\sageplot[width=\linewidth]{problem1.example_plot}
\caption{
Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(E)$.
Where $\chern(v) = (3,2\ell,-2\ell^2)$ and $P$ chosen as the point on $\Theta_v$
with $\beta(P)\coloneqq-2/3-1/99$ in the context of Problem
\ref{problem:problem-statement-1}.
}
\label{fig:problem1:d_bounds_xmpl_gnrc_q}
\centering
\sageplot[width=\linewidth]{problem1.example_plot}
\caption{
Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(E)$.
Where $\chern(v) = (3,2\ell,-2\ell^2)$ and $P$ chosen as the point on $\Theta_v$
with $\beta(P)\coloneqq-2/3-1/99$ in the context of Problem
\ref{problem:problem-statement-1}.
}
\label{fig:problem1:d_bounds_xmpl_gnrc_q}
\end{figure}
......@@ -630,11 +631,11 @@ This is because $R\coloneqq\chern_0(v)$
and $\chern_2^{\beta_0}(v)$ are all strictly positive:
\begin{itemize}
\item $R > 0$ from the setting of Problem
\ref{problem:problem-statement-1}
\ref{problem:problem-statement-1}
\item $\chern_2^{\beta_0}(v)>0$
by Lemma \ref{lem:comparison-test-with-beta_}
because ${\beta_0} < \beta_{-}$ due to the choice of $P$ being
a point on $\Theta_v^{-}$
by Lemma \ref{lem:comparison-test-with-beta_}
because ${\beta_0} < \beta_{-}$ due to the choice of $P$ being
a point on $\Theta_v^{-}$
\end{itemize}
This means that the lower bound for $d$ will be larger than either of the two
......@@ -645,7 +646,7 @@ A generic example of this is plotted in Figure
idea will be pursued in Subsection \ref{subsec:bounds-on-semistab-rank-prob-1}.
\subsection{Bounds on Semistabiliser Rank \texorpdfstring{$r$}{} in Problem
\ref{problem:problem-statement-1}}
\ref{problem:problem-statement-1}}
\label{subsec:bounds-on-semistab-rank-prob-1}
As discussed at the end of Subsection \ref{subsubsect:all-bounds-on-d-prob1}
......@@ -659,7 +660,7 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$
\ref{fig:problem1:d_bounds_xmpl_gnrc_q}).
\begin{theorem}[Problem \ref{problem:problem-statement-1} upper Bound on $r$]
\label{lem:prob1:r_bound}
\label{lem:prob1:r_bound}
Let $u$ be a solution to Problem \ref{problem:problem-statement-1}
and $q\coloneqq\chern_1^{B}(u)$.
Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression:
......@@ -682,13 +683,13 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$
Solving for the lower bound in Equation \ref{eqn:prob1:radiuscond} being
less than the upper bound in Equation \ref{eqn:prob1:bgmlv2} yields:
\begin{equation}
r<\sage{problem1.positive_intersection_bgmlv2}
r<\sage{problem1.positive_intersection_bgmlv2}
\end{equation}
\noindent
Similarly, but with the upper bound in Equation \ref{eqn:prob1:bgmlv3}, gives:
\begin{equation}
r<\sage{problem1.positive_intersection_bgmlv3}
r<\sage{problem1.positive_intersection_bgmlv3}
\end{equation}
\noindent
......@@ -703,7 +704,7 @@ bound, over $q$ in this range, to get a simpler (but weaker) bound in the
following Lemma \ref{lem:prob1:convenient_r_bound}.
\begin{theorem}[Problem \ref{problem:problem-statement-1} global upper Bound on $r$]
\label{lem:prob1:convenient_r_bound}
\label{lem:prob1:convenient_r_bound}
Let $u$ be a solution to Problem \ref{problem:problem-statement-1}.
Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression:
\begin{equation}
......@@ -731,7 +732,7 @@ following Lemma \ref{lem:prob1:convenient_r_bound}.
\subsection{Bounds on Semistabiliser Rank \texorpdfstring{$r$}{} in Problem
\ref{problem:problem-statement-2}}
\ref{problem:problem-statement-2}}
\label{subsec:bounds-on-semistab-rank-prob-2}
Now, the inequalities from the above Subsubsection
......@@ -763,13 +764,13 @@ $\chern^{\beta_0}(u) > 0$
(Equation \ref{eqn:radiuscond_d_bound_betamin}) we get:
\begin{sagesilent}
from plots_and_expressions import \
positive_radius_condition_with_q, \
q_value_expr, \
beta_value_expr
from plots_and_expressions import \
positive_radius_condition_with_q, \
q_value_expr, \
beta_value_expr
\end{sagesilent}
\begin{equation}
\label{eqn:positive_rad_condition_in_terms_of_q_beta}
\label{eqn:positive_rad_condition_in_terms_of_q_beta}
\frac{1}{\lcm(m,2)}\ZZ
\ni
\:\:
......@@ -786,10 +787,10 @@ proof of Theorem
\begin{sagesilent}
from plots_and_expressions import main_theorem1, betamin_subs
from plots_and_expressions import main_theorem1, betamin_subs
\end{sagesilent}
\begin{theorem}[First bound on $r$ for Problem \ref{problem:problem-statement-2}]
\label{thm:rmax_with_uniform_eps}
\label{thm:rmax_with_uniform_eps}
Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
$m\coloneqq\ell^2$.
......@@ -803,8 +804,8 @@ from plots_and_expressions import main_theorem1, betamin_subs
\begin{align*}
\min
\left(
\sage{main_theorem1.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem1.r_upper_bound2.subs(betamin_subs)}
\sage{main_theorem1.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem1.r_upper_bound2.subs(betamin_subs)}
\right)
\end{align*}
\noindent
......@@ -812,57 +813,57 @@ from plots_and_expressions import main_theorem1, betamin_subs
\end{theorem}
\begin{proof}
Both $d$ and the lower bound in
(Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta})
are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
So, if any of the two upper bounds on $d$ come to within
$\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound,
then there are no solutions for $d$.
Hence any corresponding $r$ cannot be a rank of a
pseudo-semistabiliser for $v$.
To avoid this, we must have,
considering Equations
\ref{eqn:bgmlv2_d_bound_betamin},
\ref{eqn:bgmlv3_d_bound_betamin},
\ref{eqn:radiuscond_d_bound_betamin}.
Both $d$ and the lower bound in
(Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta})
are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
So, if any of the two upper bounds on $d$ come to within
$\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound,
then there are no solutions for $d$.
Hence any corresponding $r$ cannot be a rank of a
pseudo-semistabiliser for $v$.
To avoid this, we must have,
considering Equations
\ref{eqn:bgmlv2_d_bound_betamin},
\ref{eqn:bgmlv3_d_bound_betamin},
\ref{eqn:radiuscond_d_bound_betamin}.
\begin{sagesilent}
from plots_and_expressions import \
assymptote_gap_condition1, assymptote_gap_condition2, k
\end{sagesilent}
\begin{align}
\epsilon_v = & \sage{assymptote_gap_condition1.subs(k==1)} \\
\epsilon_v = & \sage{assymptote_gap_condition2.subs(k==1)}
\end{align}
\begin{sagesilent}
from plots_and_expressions import \
assymptote_gap_condition1, assymptote_gap_condition2, k
\end{sagesilent}
\begin{align}
\epsilon_v =&\sage{assymptote_gap_condition1.subs(k==1)} \\
\epsilon_v =&\sage{assymptote_gap_condition2.subs(k==1)}
\end{align}
\noindent
This is equivalent to:
\noindent
This is equivalent to:
\begin{equation}
\label{eqn:thm-bound-for-r-impossible-cond-for-r}
r \leq
\min\left(
\begin{equation}
\label{eqn:thm-bound-for-r-impossible-cond-for-r}
r \leq
\min\left(
\sage{
main_theorem1.r_upper_bound1
} ,
\sage{
main_theorem1.r_upper_bound2
}
\right)
\end{equation}
\right)
\end{equation}
\end{proof}
\begin{sagesilent}
from plots_and_expressions import q_sol, bgmlv_v, psi
from plots_and_expressions import q_sol, bgmlv_v, psi
\end{sagesilent}
\begin{corollary}[Second, global bound on $r$ for Problem \ref{problem:problem-statement-2}]
\label{cor:direct_rmax_with_uniform_eps}
\label{cor:direct_rmax_with_uniform_eps}
Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
$m\coloneqq\ell^2$.
......@@ -873,90 +874,90 @@ from plots_and_expressions import q_sol, bgmlv_v, psi
are bounded above as follows.
\begin{align*}
r &\leq \sage{main_theorem1.corollary_r_bound}
&\text{if } R < \frac{\Delta(v)\lcm(m,2n^2)}{2m}
r & \leq \sage{main_theorem1.corollary_r_bound}
& \text{if } R < \frac{\Delta(v)\lcm(m,2n^2)}{2m}
\\
r &\leq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
&\text{if } R \geq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
r & \leq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
& \text{if } R \geq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
\end{align*}
\end{corollary}
\begin{proof}
The ranks of the pseudo-semistabilisers for $v$ are bounded above by the
maximum over $q\in [0, \chern_1^{\beta_{-}}(v)]$ of the expression in Theorem
\ref{thm:rmax_with_uniform_eps}.
Noticing that the expression is a maximum of two quadratic functions in $q$
($\beta_0=\beta_{-}(v)$ in this context):
\begin{equation*}
f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad
f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2}
\end{equation*}
These have their minimums at $q=0$ and $q=\chern_1^{\beta_{-}}(v)$ respectively,
with values 0 and $R>0$ respectively.
So provided that
$f_2\left(\chern^{\beta_{-}}_1(v)\right) < f_1\left(\chern^{\beta_{-}}_1(v)\right)$,
the maximum is achieved at their intersection.
Otherwise, the maximum is achieved at
$\chern^{\beta_{-}}_1(v)$.
So we can say that
The ranks of the pseudo-semistabilisers for $v$ are bounded above by the
maximum over $q\in [0, \chern_1^{\beta_{-}}(v)]$ of the expression in Theorem
\ref{thm:rmax_with_uniform_eps}.
Noticing that the expression is a maximum of two quadratic functions in $q$
($\beta_0=\beta_{-}(v)$ in this context):
\begin{equation*}
f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad
f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2}
\end{equation*}
These have their minimums at $q=0$ and $q=\chern_1^{\beta_{-}}(v)$ respectively,
with values 0 and $R>0$ respectively.
So provided that
$f_2\left(\chern^{\beta_{-}}_1(v)\right) < f_1\left(\chern^{\beta_{-}}_1(v)\right)$,
the maximum is achieved at their intersection.
Otherwise, the maximum is achieved at
$\chern^{\beta_{-}}_1(v)$.
So we can say that
\begin{align*}
r &\leq
\begin{align*}
r & \leq
f_{1}(q_{\mathrm{max}})
&\text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) <
& \text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) <
f_1\left(\chern^{\beta_{-}}_1(v)\right)
\\ &&
\\ &&
\text{where $q_{\mathrm{max}}$ is the $q$-value where the $f_i$ intersect}
\\
r &\leq f_1\left(\chern^{\beta_{-}}(v)\right)
&\text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) \geq
\\
r & \leq f_1\left(\chern^{\beta_{-}}(v)\right)
& \text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) \geq
f_1\left(\chern^{\beta_{-}}_1(v)\right)
\end{align*}
\end{align*}
\noindent
In the first case,
solving for $f_1(q)=f_2(q)$ yields
\begin{equation*}
q=\sage{q_sol.expand()}
\end{equation*}
And evaluating $f_1$ at this $q$-value gives:
\begin{equation*}
\sage{main_theorem1.corollary_intermediate}
\end{equation*}
\noindent
In the first case,
solving for $f_1(q)=f_2(q)$ yields
\begin{equation*}
q=\sage{q_sol.expand()}
\end{equation*}
And evaluating $f_1$ at this $q$-value gives:
\begin{equation*}
\sage{main_theorem1.corollary_intermediate}
\end{equation*}
\noindent
Finally, noting that $\Delta(v)=\left(\chern_1^{\beta_{-}(v)}(v)\right)^2\ell^2$,
we get the bounds as stated in the statement of the Corollary.
\noindent
Finally, noting that $\Delta(v)=\left(\chern_1^{\beta_{-}(v)}(v)\right)^2\ell^2$,
we get the bounds as stated in the statement of the Corollary.
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-second}
Just like in Example \ref{exmpl:recurring-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{recurring.betaminus}$,
giving $n=\sage{recurring.n}$.
Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilisers for $v$ are bounded above by
$\sage{recurring.corrolary_bound} \approx
\sage{round(float(recurring.corrolary_bound), 1)}$,
which is much closer to real maximum 25 than the original bound 144.
\label{exmpl:recurring-second}
Just like in Example \ref{exmpl:recurring-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{recurring.betaminus}$,
giving $n=\sage{recurring.n}$.
Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilisers for $v$ are bounded above by
$\sage{recurring.corrolary_bound} \approx
\sage{round(float(recurring.corrolary_bound), 1)}$,
which is much closer to real maximum 25 than the original bound 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-second}
Just like in Example \ref{exmpl:extravagant-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{extravagant.betaminus}$,
giving $n=\sage{extravagant.n}$.
Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilisers for $v$ are bounded above by
$\sage{extravagant.corrolary_bound} \approx
\sage{round(float(extravagant.corrolary_bound), 1)}$,
which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
original bound 215296.
\label{exmpl:extravagant-second}
Just like in Example \ref{exmpl:extravagant-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{extravagant.betaminus}$,
giving $n=\sage{extravagant.n}$.
Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilisers for $v$ are bounded above by
$\sage{extravagant.corrolary_bound} \approx
\sage{round(float(extravagant.corrolary_bound), 1)}$,
which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
original bound 215296.
\end{example}
%% refinements using specific values of q and beta
......@@ -982,8 +983,8 @@ Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_v$ in the
proof of Theorem \ref{thm:rmax_with_uniform_eps}:
\begin{lemmadfn}[%
A better alternative to $\epsilon_v$:
$\epsilon_{v,q}$
A better alternative to $\epsilon_v$:
$\epsilon_{v,q}$
]
\label{lemdfn:epsilon_q}
Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in
......@@ -1021,94 +1022,94 @@ proof of Theorem \ref{thm:rmax_with_uniform_eps}:
\mod{\gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn\aa}{\gcd(m,2n^2)}
\right)}
\right)}
\end{equation*}
\end{lemmadfn}
\begin{remark}
The quantity $m$ is determined by the variety, whereas $a_v$ and $n$ are determined by the Chern
character $v$ for which we are trying to find pseudo-semistabilisers.
So the $\gcd$ expression we are taking the modulus with respect to is considered
constant in the context of the problem we are solving for
(i.e. Problem \ref{problem:problem-statement-2}).
However $b_q$ depends on the choice of $q$, that is the value of
$\chern_1^{\beta_{-}(v)}(u)$ for which we are searching for solutions $u$, hence
why $k_{v,q}$ is denoted to depend on $q$ on top of $v$ and the context of the problem.
The quantity $m$ is determined by the variety, whereas $a_v$ and $n$ are determined by the Chern
character $v$ for which we are trying to find pseudo-semistabilisers.
So the $\gcd$ expression we are taking the modulus with respect to is considered
constant in the context of the problem we are solving for
(i.e. Problem \ref{problem:problem-statement-2}).
However $b_q$ depends on the choice of $q$, that is the value of
$\chern_1^{\beta_{-}(v)}(u)$ for which we are searching for solutions $u$, hence
why $k_{v,q}$ is denoted to depend on $q$ on top of $v$ and the context of the problem.
\end{remark}
\begin{proof}
Consider the following sequence of logical implications.
The one-way implication follows from
$\aa r + \bb \equiv 0 \pmod{n}$,
and the final logical equivalence is just a simplification of the expressions.
\begin{align}
\frac{ x }{ \lcm(m,2) }
- \frac{
(\aa r+2\bb)\aa
}{
2n^2
}
= \frac{ k }{ \lcm(m,2n^2) }
\quad \text{for some } x \in \ZZ
\span \span \span \span \span
\label{eqn:finding_better_eps_problem}
\\ \nonumber
\\ \Leftrightarrow& &
- (\aa r+2\bb)\aa
\frac{\lcm(m,2n^2)}{2n^2}
&\equiv k &&
\nonumber
\\ &&&
\mod \frac{\lcm(m,2n^2)}{\lcm(m,2)}
\span \span \span
\nonumber
\\ \Rightarrow& &
- \bb\aa
\frac{\lcm(m,2n^2)}{2n^2}
&\equiv k &&
\nonumber
\\ &&&
\mod \gcd\left(
Consider the following sequence of logical implications.
The one-way implication follows from
$\aa r + \bb \equiv 0 \pmod{n}$,
and the final logical equivalence is just a simplification of the expressions.
\begin{align}
\frac{ x }{ \lcm(m,2) }
- \frac{
(\aa r+2\bb)\aa
}{
2n^2
}
= \frac{ k }{ \lcm(m,2n^2) }
\quad \text{for some } x \in \ZZ
\span \span \span \span \span
\label{eqn:finding_better_eps_problem}
\\ \nonumber
\\ \Leftrightarrow& &
- (\aa r+2\bb)\aa
\frac{\lcm(m,2n^2)}{2n^2}
& \equiv k & &
\nonumber
\\ &&&
\mod \frac{\lcm(m,2n^2)}{\lcm(m,2)}
\span \span \span
\nonumber
\\ \Rightarrow& &
- \bb\aa
\frac{\lcm(m,2n^2)}{2n^2}
& \equiv k & &
\nonumber
\\ &&&
\mod \gcd\left(
\frac{\lcm(m,2n^2)}{\lcm(m,2)},
\frac{n \aa \lcm(m,2n^2)}{2n^2}
\right)
\span \span \span
\nonumber
\\ \Leftrightarrow& &
- \bb\aa
\frac{m}{\gcd(m,2n^2)}
&\equiv k &&
\label{eqn:better_eps_problem_k_mod_n}
\\ &&&
\mod \gcd\left(
\right)
\span \span \span
\nonumber
\\ \Leftrightarrow& &
- \bb\aa
\frac{m}{\gcd(m,2n^2)}
& \equiv k & &
\label{eqn:better_eps_problem_k_mod_n}
\\ &&&
\mod \gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn \aa}{\gcd(m,2n^2)}
\right)
\span \span \span
\nonumber
\end{align}
In our situation, we want to find the least $k>0$ satisfying
Equation \ref{eqn:finding_better_eps_problem}.
Since such a $k$ must also satisfy Equation \ref{eqn:better_eps_problem_k_mod_n},
we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
(a computation only depending on $q$ and $\beta$, but not $r$).
We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation
\ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation
\ref{eqn:epsilon_q_lemma_prop}.
Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
\right)
\span \span \span
\nonumber
\end{align}
In our situation, we want to find the least $k>0$ satisfying
Equation \ref{eqn:finding_better_eps_problem}.
Since such a $k$ must also satisfy Equation \ref{eqn:better_eps_problem_k_mod_n},
we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
(a computation only depending on $q$ and $\beta$, but not $r$).
We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation
\ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation
\ref{eqn:epsilon_q_lemma_prop}.
Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
\end{proof}
\begin{sagesilent}
from plots_and_expressions import main_theorem2
from plots_and_expressions import main_theorem2
\end{sagesilent}
\begin{theorem}[Third bound on $r$ for Problem \ref{problem:problem-statement-2}]
\label{thm:rmax_with_eps1}
\label{thm:rmax_with_eps1}
Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
$m\coloneqq\ell^2$.
......@@ -1122,8 +1123,8 @@ from plots_and_expressions import main_theorem2
\begin{align*}
\min
\left(
\sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2.r_upper_bound2.subs(betamin_subs)}
\sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2.r_upper_bound2.subs(betamin_subs)}
\right),
\end{align*}
where $k_{v,q}$ is defined as in Definition/Lemma \ref{lemdfn:epsilon_q},
......@@ -1142,10 +1143,10 @@ Although the general form of this bound is quite complicated, it does simplify a
lot when $m$ is small.
\begin{sagesilent}
from plots_and_expressions import main_theorem2_corollary
from plots_and_expressions import main_theorem2_corollary
\end{sagesilent}
\begin{corollary}[Third bound on $r$ on $\PP^2$ and principally polarised abelian surfaces]
\label{cor:rmax_with_eps1}
\label{cor:rmax_with_eps1}
Suppose we are working over $\PP^2$ or a principally polarised abelian surface
(or any other surfaces with $m=\ell^2=1$ or $2$).
Let $v$ be a fixed Chern character, with $\beta_{-}\coloneqq\beta_{-}(v)=\frac{a_v}{n}$
......@@ -1158,127 +1159,127 @@ from plots_and_expressions import main_theorem2_corollary
\begin{align*}
\min
\left(
\sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)}
\sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\:
\sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)}
\right),
\end{align*}
where $R = \chern_0(v)$ and $k_{v,q}$ is the least
$k\in\ZZ_{>0}$ satisfying
${
k \equiv -\aa\bb
\pmod{n}
}$.
k \equiv -\aa\bb
\pmod{n}
}$.
\end{corollary}
\begin{proof}
This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can
drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can
drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-third}
Just like in Examples \ref{exmpl:recurring-first} and
\ref{exmpl:recurring-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
%% TODO transcode notebook code
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows:
\begin{sagesilent}
from examples import bound_comparisons
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 3*4+1 }
\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
$q=\chern_1^{\beta_{-}}(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\ \hline
Theorem \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\
Theorem \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\end{tabular}
\vspace{1em}
\label{exmpl:recurring-third}
Just like in Examples \ref{exmpl:recurring-first} and
\ref{exmpl:recurring-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
%% TODO transcode notebook code
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows:
\begin{sagesilent}
from examples import bound_comparisons
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 3*4+1 }
\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
$q=\chern_1^{\beta_{-}}(u)$
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\ \hline
Theorem \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\
Theorem \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\end{tabular}
\vspace{1em}
\noindent
It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1}
reach, but do not exceed, the actual maximum rank 25 of the
pseudo-semistabilisers of $v$ in this case.
As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r}
was 144.
\noindent
It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1}
reach, but do not exceed, the actual maximum rank 25 of the
pseudo-semistabilisers of $v$ in this case.
As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r}
was 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-third}
Just like in examples \ref{exmpl:extravagant-first} and
\ref{exmpl:extravagant-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
This example was chosen because the $n$ value is moderatly large, giving more
possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows
for a larger possible difference between the bounds given by Theorems
\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 12 }
\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\ \hline
Theorem \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\
Theorem \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\end{tabular}
\vspace{1em}
\label{exmpl:extravagant-third}
Just like in examples \ref{exmpl:extravagant-first} and
\ref{exmpl:extravagant-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
This example was chosen because the $n$ value is moderatly large, giving more
possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows
for a larger possible difference between the bounds given by Theorems
\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
\end{sagesilent}
\vspace{1em}
\noindent
\directlua{ table_width = 12 }
\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
& $\cdots$
\\ \hline
Theorem \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
& $\cdots$
\\
Theorem \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
& $\cdots$
\end{tabular}
\vspace{1em}
\noindent
However the reduction in the overall bound on $r$ is not as drastic, since all
possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
cyclically as we consider successive possible values for $q$.
And for each $q$ where $k_{v,q}=1$, both theorems give the same bound.
Calculating the maximums over all values of $q$ yields
$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and
$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}.
\noindent
However the reduction in the overall bound on $r$ is not as drastic, since all
possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
cyclically as we consider successive possible values for $q$.
And for each $q$ where $k_{v,q}=1$, both theorems give the same bound.
Calculating the maximums over all values of $q$ yields
$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and
$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}.
\end{example}
......@@ -13,7 +13,7 @@ a different algorithm will be presented making use of theorems from Section
with the goal of cutting down the run time.
\subsubsection{Finding possible \texorpdfstring{$r$}{r} and
\texorpdfstring{$c$}{c}}
\texorpdfstring{$c$}{c}}
To do this, first calculate the upper bound $r_{\mathrm{max}}$ on the ranks of tilt
semistabilisers, as given by Theorem \ref{thm:loose-bound-on-r}.
......@@ -36,7 +36,7 @@ the Bogomolov inequalities and Consequence 3 of Lemma
($\chern_2^{\beta_{-}}(u)>0$).
\subsubsection{Finding \texorpdfstring{$d$}{d} for fixed \texorpdfstring{$r$}{r}
and \texorpdfstring{$c$}{c}}
and \texorpdfstring{$c$}{c}}
$\Delta(u) \geq 0$ induces an upper bound $\frac{c^2}{2r}$ on $d$, and the
$\chern_2^{\beta_{-}}(u)>0$ condition induces a lower bound on $d$.
......@@ -51,8 +51,8 @@ end up not yielding any solutions for the problem.
In fact, solutions $u$ to our problem with high rank must have $\mu(u)$ close to
$\beta_{-}(v)$:
\begin{align*}
0 &\leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u) \\
0 &\leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r}
0 & \leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u) \\
0 & \leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r}
\end{align*}
In particular, it is the $\chern_1^{\beta_{-}}(v-u) \geq 0$ condition which
fails for $r$,$c$ pairs with large $r$ and $\frac{c}{r}$ too far from $\beta_{-}$.
......@@ -66,17 +66,17 @@ alternative algorithm which will later be described in Section
\ref{sect:prob2-algorithm}.
\begin{center}
\label{table:bench-schmidt-vs-nay}
\begin{tabular}{ |r|l|l| }
\hline
Choice of $v$ on $\mathbb{P}^2$
& $(3, 2\ell, -2)$
& $(3, 2\ell, -\frac{15}{2})$ \\
\hline
\cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s & >1hr \\
\cite{NaylorRust2023} exec time & \sim 50ms & \sim 50ms \\
\hline
\end{tabular}
\label{table:bench-schmidt-vs-nay}
\begin{tabular}{ |r|l|l| }
\hline
Choice of $v$ on $\mathbb{P}^2$
& $(3, 2\ell, -2)$
& $(3, 2\ell, -\frac{15}{2})$ \\
\hline
\cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s & >1hr \\
\cite{NaylorRust2023} exec time & \sim 50ms & \sim 50ms \\
\hline
\end{tabular}
\end{center}
\section{Computing Solutions to Problem \ref{problem:problem-statement-2}}
......@@ -94,7 +94,7 @@ The algorithm yields solutions
$u=(r,c\ell,d\ell^2)$ to the problem as follows.
\subsubsection{Iterating Over Possible
\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}}
\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}}
Given a Chern character $v$, the domain of the problem are first verified: that
$v$ has positive rank, that it satisfies $\Delta(v) \geq 0$, and that
......@@ -102,6 +102,7 @@ $\beta_{-}(v)$ is rational.
Take $\beta_{-}(v)=\frac{a_v}{n}$ in simplest terms.
Iterate over $q = \frac{b_q}{n} \in (0,\chern_1^{\beta_{-}}(v))\cap\frac{1}{n}\ZZ$.
The code used to generate the corresponding values for $b_q$ is shown in Listing
% texlab: ignore
\ref{fig:code:consideredb}.
\lstinputlisting[
......@@ -118,6 +119,7 @@ We can therefore reduce the problem of finding solutions to the more specialised
problem of finding the solutions $u$ with each fixed possible $q=\chern_1^\beta(u)$
(i.e. choice of $b$).
The code representing this appears in Listing
% texlab: ignore
\ref{fig:code:reducingtoeachb}.
Line 16 refers to creating an objects representing the context the specialised
problem for the fixed $q$ value, with the next line `solving' the specialised
......@@ -133,9 +135,9 @@ and collect up the results.
]{../tilt.rs/src/tilt_stability/find_all.git-untrack.rs.tex.git-untrack}
\subsubsection{Iterating Over Possible
\texorpdfstring{$r=\chern_0(u)$}{r}
for Fixed
\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
\texorpdfstring{$r=\chern_0(u)$}{r}
for Fixed
\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
}
Let $q=\frac{b_q}{n}$, for which we are now solving the more specialised problem of finding
......@@ -159,6 +161,7 @@ Fixing $r$ and $q$ also determines $c\coloneqq\chern_1(u)$, and so we can genera
the corresponding values of $c$, as we generate the $r$ values.
It now remains to solve the problem for each of the combinations of fixed values
for $q$ and $r$ (and consequently $c$) considered.
% texlab: ignore
This is shown in Listing \ref{fig:code:reducingtoeachr}.
\lstinputlisting[
......@@ -170,11 +173,11 @@ This is shown in Listing \ref{fig:code:reducingtoeachr}.
\subsubsection{Iterating Over Possible
\texorpdfstring{$d=\chern_2(u)/\ell^2$}{d}
for Fixed
\texorpdfstring{$r=\chern_0(u)$}{r}
and
\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
\texorpdfstring{$d=\chern_2(u)/\ell^2$}{d}
for Fixed
\texorpdfstring{$r=\chern_0(u)$}{r}
and
\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
}
At this point we are considering a specialisation of the problem
......@@ -198,8 +201,10 @@ equivalent to bounds on $d$ given by the equations
in Subsubsection \ref{subsubsect:all-bounds-on-d-prob2}
It therefore remains to just pick values
$d\in\frac{1}{\lcm(m,2n^2)}\ZZ$ within the bounds.
% texlab: ignore
Listing \ref{fig:code:solveforfixedr} is the code for solving this
specialisation of the problem, where the possible $d$ values are computed in
% texlab: ignore
Listing \ref{fig:code:possible_chern2}.
The explicit code for the bounds can be found in Appendix
\ref{appendix:subsubsec:fixed-r}.
......@@ -232,11 +237,11 @@ decrease in computational time to find the solutions to the problem.
This could be due to a range of potential reasons:
\begin{itemize}
\item Unexpected optimisations from the compiler for a certain form of the
program.
program.
\item Increased complexity to computing the formulae for the tighter bounds.
\item Modern CPU architecture such as branch predictors
\cite{BranchPredictor2024} may offset the overhead of considering ranks that
turn out to be too large to have any solutions.
\cite{BranchPredictor2024} may offset the overhead of considering ranks that
turn out to be too large to have any solutions.
\end{itemize}
For relatively small Chern characters (as those appearing in examples so far),
......