Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
aliby-mirror
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Swain Lab
aliby
aliby-mirror
Commits
13e49faa
Commit
13e49faa
authored
2 years ago
by
Alán Muñoz
Browse files
Options
Downloads
Patches
Plain Diff
refactor(chainer): Integrate brfilter
parent
4b245781
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/agora/utils/kymograph.py
+63
-0
63 additions, 0 deletions
src/agora/utils/kymograph.py
src/postprocessor/chainer.py
+5
-125
5 additions, 125 deletions
src/postprocessor/chainer.py
with
68 additions
and
125 deletions
src/agora/utils/kymograph.py
+
63
−
0
View file @
13e49faa
...
...
@@ -58,3 +58,66 @@ def intersection_matrix(
index2
=
np
.
array
(
index2
.
to_list
())
return
(
index1
[...,
None
]
==
index2
.
T
).
all
(
axis
=
1
)
def
get_mother_ilocs_from_daughters
(
df
:
pd
.
DataFrame
)
->
np
.
ndarray
:
"""
Fetch mother locations in the index of df for all daughters in df.
"""
daughter_ids
=
df
.
index
[
df
.
index
.
get_level_values
(
"
mother_label
"
)
>
0
]
mother_ilocs
=
intersection_matrix
(
daughter_ids
.
droplevel
(
"
cell_label
"
),
drop_level
(
df
,
"
mother_label
"
,
as_list
=
False
),
).
any
(
axis
=
0
)
return
mother_ilocs
def
get_mothers_from_another_df
(
whole_df
:
pd
.
DataFrame
,
da_df
:
pd
.
DataFrame
):
daughter_ids
=
da_df
.
index
[
da_df
.
index
.
get_level_values
(
"
mother_label
"
)
>
0
]
mother_ilocs
=
intersection_matrix
(
daughter_ids
.
droplevel
(
"
cell_label
"
),
drop_level
(
whole_df
,
"
mother_label
"
,
as_list
=
False
),
).
any
(
axis
=
0
)
return
mother_ilocs
def
bidirectional_retainment_filter
(
df
:
pd
.
DataFrame
,
mothers_thresh
:
float
=
0.8
,
daughters_thresh
:
int
=
7
):
"""
Retrieve families where mothers are present for more than a fraction of the experiment, and daughters for longer than some number of time-points.
"""
all_daughters
=
df
.
loc
[
df
.
index
.
get_level_values
(
"
mother_label
"
)
>
0
]
# Filter daughters
retained_daughters
=
all_daughters
.
loc
[
all_daughters
.
notna
().
sum
(
axis
=
1
)
>
daughters_thresh
]
# Fectch mother using existing daughters
mothers
=
df
.
loc
[
get_mothers_from_another_df
(
df
,
retained_daughters
)]
# Get mothers
retained_mothers
=
mothers
.
loc
[
mothers
.
notna
().
sum
(
axis
=
1
)
>
mothers
.
shape
[
1
]
*
mothers_thresh
]
# Filter-out daughters with no valid mothers
final_da_mask
=
intersection_matrix
(
drop_level
(
retained_daughters
,
"
cell_label
"
,
as_list
=
False
),
drop_level
(
retained_mothers
,
"
mother_label
"
,
as_list
=
False
),
)
final_daughters
=
retained_daughters
.
loc
[
final_da_mask
.
any
(
axis
=
1
)]
# Join mothers and daughters and sort index
#
return
pd
.
concat
((
final_daughters
,
retained_mothers
),
axis
=
0
).
sort_index
()
def
melt_reset
(
df
:
pd
.
DataFrame
,
additional_ids
:
t
.
Dict
[
str
,
pd
.
Series
]
=
{}):
new_df
=
add_index_levels
(
df
,
additional_ids
)
return
new_df
.
melt
(
ignore_index
=
False
).
reset_index
()
This diff is collapsed.
Click to expand it.
src/postprocessor/chainer.py
+
5
−
125
View file @
13e49faa
#!/usr/bin/env jupyter
import
re
import
typing
as
t
from
copy
import
copy
...
...
@@ -7,11 +8,10 @@ import numpy as np
import
pandas
as
pd
from
agora.io.signal
import
Signal
from
agora.utils.association
import
validate_association
from
agora.utils.kymograph
import
bidirectional_retainment_filter
from
postprocessor.core.abc
import
get_parameters
,
get_process
from
postprocessor.core.lineageprocess
import
LineageProcessParameters
from
agora.utils.association
import
validate_association
import
re
class
Chainer
(
Signal
):
...
...
@@ -119,7 +119,7 @@ class Chainer(Signal):
self
.
_intermediate_steps
=
[]
for
process
in
chain
:
if
process
==
"
standard
"
:
result
=
standard
_filter
ing
(
result
,
self
.
lineage
()
)
result
=
bidirectional_retainment
_filter
(
result
)
else
:
params
=
kwargs
.
get
(
process
,
{})
process_cls
=
get_process
(
process
)
...
...
@@ -127,129 +127,9 @@ class Chainer(Signal):
process_type
=
process_cls
.
__module__
.
split
(
"
.
"
)[
-
2
]
if
process_type
==
"
reshapers
"
:
if
process
==
"
merger
"
:
raise
(
NotImplementedError
)
merges
=
process
.
as_function
(
result
,
**
params
)
result
=
self
.
apply_merges
(
result
,
merges
)
self
.
_intermediate_steps
.
append
(
result
)
return
result
# def standard(
# raw: pd.DataFrame,
# lin: np.ndarray,
# presence_filter_min: int = 7,
# presence_filter_mothers: float = 0.8,
# ):
# """
# This requires a double-check that mothers-that-are-daughters still are accounted for after
# filtering daughters by the minimal threshold.
# """
# raw = raw.loc[raw.notna().sum(axis=1) > presence_filter_min].sort_index()
# indices = np.array(raw.index.to_list())
# # Get remaining full families
# valid_lineages, valid_indices = validate_association(lin, indices)
# daughters = lin[valid_lineages][:, [0, 2]]
# mothers = lin[valid_lineages][:, :2]
# in_lineage = raw.loc[valid_indices].copy()
# mother_label = np.repeat(0, in_lineage.shape[0])
# daughter_ids = (
# (
# np.array(in_lineage.index.to_list())
# == np.unique(daughters, axis=0)[:, None]
# )
# .all(axis=2)
# .any(axis=0)
# )
# mother_label[daughter_ids] = mothers[:, 1]
# # Filter mothers by presence
# in_lineage["mother_label"] = mother_label
# present = in_lineage.loc[
# (
# in_lineage.iloc[:, :-1].notna().sum(axis=1)
# > ((in_lineage.shape[1] - 1) * presence_filter_mothers)
# )
# | mother_label
# ]
# present.set_index("mother_label", append=True, inplace=True)
# # Finally, check full families again
# final_indices = np.array(present.index.to_list())
# _, final_mask = validate_association(
# np.array([tuple(x) for x in present.index.swaplevel(1, 2)]),
# final_indices[:, :2],
# )
# return present.loc[final_mask]
# # In the end, we get the mothers present for more than {presence_lineage1}% of the experiment
# # and their tracklets present for more than {presence_lineage2} time-points
# return present
def
standard_filtering
(
raw
:
pd
.
DataFrame
,
lin
:
np
.
ndarray
,
presence_high
:
float
=
0.8
,
presence_low
:
int
=
7
,
):
# Get all mothers
_
,
valid_indices
=
validate_association
(
lin
,
np
.
array
(
raw
.
index
.
to_list
()),
match_column
=
0
)
in_lineage
=
raw
.
loc
[
valid_indices
]
# Filter mothers by presence
present
=
in_lineage
.
loc
[
in_lineage
.
notna
().
sum
(
axis
=
1
)
>
(
in_lineage
.
shape
[
1
]
*
presence_high
)
]
# Get indices
indices
=
np
.
array
(
present
.
index
.
to_list
())
to_cast
=
np
.
stack
((
lin
[:,
:
2
],
lin
[:,
[
0
,
2
]]),
axis
=
1
)
ndin
=
to_cast
[...,
None
]
==
indices
.
T
[
None
,
...]
# use indices to fetch all daughters
valid_association
=
ndin
.
all
(
axis
=
2
)[:,
0
].
any
(
axis
=-
1
)
# Remove repeats
mothers
,
daughters
=
np
.
split
(
to_cast
[
valid_association
],
2
,
axis
=
1
)
mothers
=
mothers
[:,
0
]
daughters
=
daughters
[:,
0
]
d_m_dict
=
{
tuple
(
d
):
m
[
-
1
]
for
m
,
d
in
zip
(
mothers
,
daughters
)}
# assuming unique sorts
raw_mothers
=
raw
.
loc
[
_as_tuples
(
mothers
)]
raw_mothers
[
"
mother_label
"
]
=
0
raw_daughters
=
raw
.
loc
[
_as_tuples
(
daughters
)]
raw_daughters
[
"
mother_label
"
]
=
d_m_dict
.
values
()
concat
=
pd
.
concat
((
raw_mothers
,
raw_daughters
)).
sort_index
()
concat
.
set_index
(
"
mother_label
"
,
append
=
True
,
inplace
=
True
)
# Last filter to remove tracklets that are too short
removed_buds
=
concat
.
notna
().
sum
(
axis
=
1
)
<=
presence_low
filt
=
concat
.
loc
[
~
removed_buds
]
# We check that no mothers are left child-less
m_d_dict
=
{
tuple
(
m
):
[]
for
m
in
mothers
}
for
(
trap
,
d
),
m
in
d_m_dict
.
items
():
m_d_dict
[(
trap
,
m
)].
append
(
d
)
for
trap
,
daughter
,
mother
in
concat
.
index
[
removed_buds
]:
idx_to_delete
=
m_d_dict
[(
trap
,
mother
)].
index
(
daughter
)
del
m_d_dict
[(
trap
,
mother
)][
idx_to_delete
]
bud_free
=
[]
for
m
,
d
in
m_d_dict
.
items
():
if
not
d
:
bud_free
.
append
(
m
)
final_result
=
filt
.
drop
(
bud_free
)
# In the end, we get the mothers present for more than {presence_lineage1}% of the experiment
# and their tracklets present for more than {presence_lineage2} time-points
return
final_result
def
_as_tuples
(
array
:
t
.
Collection
)
->
t
.
List
[
t
.
Tuple
[
int
,
int
]]:
return
[
tuple
(
x
)
for
x
in
np
.
unique
(
array
,
axis
=
0
)]
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment