Skip to content
Snippets Groups Projects
Commit 13e49faa authored by Alán Muñoz's avatar Alán Muñoz
Browse files

refactor(chainer): Integrate brfilter

parent 4b245781
No related branches found
No related tags found
No related merge requests found
......@@ -58,3 +58,66 @@ def intersection_matrix(
index2 = np.array(index2.to_list())
return (index1[..., None] == index2.T).all(axis=1)
def get_mother_ilocs_from_daughters(df: pd.DataFrame) -> np.ndarray:
"""
Fetch mother locations in the index of df for all daughters in df.
"""
daughter_ids = df.index[df.index.get_level_values("mother_label") > 0]
mother_ilocs = intersection_matrix(
daughter_ids.droplevel("cell_label"),
drop_level(df, "mother_label", as_list=False),
).any(axis=0)
return mother_ilocs
def get_mothers_from_another_df(whole_df: pd.DataFrame, da_df: pd.DataFrame):
daughter_ids = da_df.index[
da_df.index.get_level_values("mother_label") > 0
]
mother_ilocs = intersection_matrix(
daughter_ids.droplevel("cell_label"),
drop_level(whole_df, "mother_label", as_list=False),
).any(axis=0)
return mother_ilocs
def bidirectional_retainment_filter(
df: pd.DataFrame, mothers_thresh: float = 0.8, daughters_thresh: int = 7
):
"""
Retrieve families where mothers are present for more than a fraction of the experiment, and daughters for longer than some number of time-points.
"""
all_daughters = df.loc[df.index.get_level_values("mother_label") > 0]
# Filter daughters
retained_daughters = all_daughters.loc[
all_daughters.notna().sum(axis=1) > daughters_thresh
]
# Fectch mother using existing daughters
mothers = df.loc[get_mothers_from_another_df(df, retained_daughters)]
# Get mothers
retained_mothers = mothers.loc[
mothers.notna().sum(axis=1) > mothers.shape[1] * mothers_thresh
]
# Filter-out daughters with no valid mothers
final_da_mask = intersection_matrix(
drop_level(retained_daughters, "cell_label", as_list=False),
drop_level(retained_mothers, "mother_label", as_list=False),
)
final_daughters = retained_daughters.loc[final_da_mask.any(axis=1)]
# Join mothers and daughters and sort index
#
return pd.concat((final_daughters, retained_mothers), axis=0).sort_index()
def melt_reset(df: pd.DataFrame, additional_ids: t.Dict[str, pd.Series] = {}):
new_df = add_index_levels(df, additional_ids)
return new_df.melt(ignore_index=False).reset_index()
#!/usr/bin/env jupyter
import re
import typing as t
from copy import copy
......@@ -7,11 +8,10 @@ import numpy as np
import pandas as pd
from agora.io.signal import Signal
from agora.utils.association import validate_association
from agora.utils.kymograph import bidirectional_retainment_filter
from postprocessor.core.abc import get_parameters, get_process
from postprocessor.core.lineageprocess import LineageProcessParameters
from agora.utils.association import validate_association
import re
class Chainer(Signal):
......@@ -119,7 +119,7 @@ class Chainer(Signal):
self._intermediate_steps = []
for process in chain:
if process == "standard":
result = standard_filtering(result, self.lineage())
result = bidirectional_retainment_filter(result)
else:
params = kwargs.get(process, {})
process_cls = get_process(process)
......@@ -127,129 +127,9 @@ class Chainer(Signal):
process_type = process_cls.__module__.split(".")[-2]
if process_type == "reshapers":
if process == "merger":
raise (NotImplementedError)
merges = process.as_function(result, **params)
result = self.apply_merges(result, merges)
self._intermediate_steps.append(result)
return result
# def standard(
# raw: pd.DataFrame,
# lin: np.ndarray,
# presence_filter_min: int = 7,
# presence_filter_mothers: float = 0.8,
# ):
# """
# This requires a double-check that mothers-that-are-daughters still are accounted for after
# filtering daughters by the minimal threshold.
# """
# raw = raw.loc[raw.notna().sum(axis=1) > presence_filter_min].sort_index()
# indices = np.array(raw.index.to_list())
# # Get remaining full families
# valid_lineages, valid_indices = validate_association(lin, indices)
# daughters = lin[valid_lineages][:, [0, 2]]
# mothers = lin[valid_lineages][:, :2]
# in_lineage = raw.loc[valid_indices].copy()
# mother_label = np.repeat(0, in_lineage.shape[0])
# daughter_ids = (
# (
# np.array(in_lineage.index.to_list())
# == np.unique(daughters, axis=0)[:, None]
# )
# .all(axis=2)
# .any(axis=0)
# )
# mother_label[daughter_ids] = mothers[:, 1]
# # Filter mothers by presence
# in_lineage["mother_label"] = mother_label
# present = in_lineage.loc[
# (
# in_lineage.iloc[:, :-1].notna().sum(axis=1)
# > ((in_lineage.shape[1] - 1) * presence_filter_mothers)
# )
# | mother_label
# ]
# present.set_index("mother_label", append=True, inplace=True)
# # Finally, check full families again
# final_indices = np.array(present.index.to_list())
# _, final_mask = validate_association(
# np.array([tuple(x) for x in present.index.swaplevel(1, 2)]),
# final_indices[:, :2],
# )
# return present.loc[final_mask]
# # In the end, we get the mothers present for more than {presence_lineage1}% of the experiment
# # and their tracklets present for more than {presence_lineage2} time-points
# return present
def standard_filtering(
raw: pd.DataFrame,
lin: np.ndarray,
presence_high: float = 0.8,
presence_low: int = 7,
):
# Get all mothers
_, valid_indices = validate_association(
lin, np.array(raw.index.to_list()), match_column=0
)
in_lineage = raw.loc[valid_indices]
# Filter mothers by presence
present = in_lineage.loc[
in_lineage.notna().sum(axis=1) > (in_lineage.shape[1] * presence_high)
]
# Get indices
indices = np.array(present.index.to_list())
to_cast = np.stack((lin[:, :2], lin[:, [0, 2]]), axis=1)
ndin = to_cast[..., None] == indices.T[None, ...]
# use indices to fetch all daughters
valid_association = ndin.all(axis=2)[:, 0].any(axis=-1)
# Remove repeats
mothers, daughters = np.split(to_cast[valid_association], 2, axis=1)
mothers = mothers[:, 0]
daughters = daughters[:, 0]
d_m_dict = {tuple(d): m[-1] for m, d in zip(mothers, daughters)}
# assuming unique sorts
raw_mothers = raw.loc[_as_tuples(mothers)]
raw_mothers["mother_label"] = 0
raw_daughters = raw.loc[_as_tuples(daughters)]
raw_daughters["mother_label"] = d_m_dict.values()
concat = pd.concat((raw_mothers, raw_daughters)).sort_index()
concat.set_index("mother_label", append=True, inplace=True)
# Last filter to remove tracklets that are too short
removed_buds = concat.notna().sum(axis=1) <= presence_low
filt = concat.loc[~removed_buds]
# We check that no mothers are left child-less
m_d_dict = {tuple(m): [] for m in mothers}
for (trap, d), m in d_m_dict.items():
m_d_dict[(trap, m)].append(d)
for trap, daughter, mother in concat.index[removed_buds]:
idx_to_delete = m_d_dict[(trap, mother)].index(daughter)
del m_d_dict[(trap, mother)][idx_to_delete]
bud_free = []
for m, d in m_d_dict.items():
if not d:
bud_free.append(m)
final_result = filt.drop(bud_free)
# In the end, we get the mothers present for more than {presence_lineage1}% of the experiment
# and their tracklets present for more than {presence_lineage2} time-points
return final_result
def _as_tuples(array: t.Collection) -> t.List[t.Tuple[int, int]]:
return [tuple(x) for x in np.unique(array, axis=0)]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment