Skip to content
Snippets Groups Projects
Commit 6feffce2 authored by pswain's avatar pswain
Browse files

more on writer

parent 5ada8e0b
No related branches found
No related tags found
No related merge requests found
......@@ -103,7 +103,6 @@ class DynamicWriter:
# write all data, signified by the empty tuple
hgroup[key][()] = data
def _overwrite(self, data, key, hgroup):
"""
Delete and then replace existing dataset in h5 file.
......@@ -125,7 +124,10 @@ class DynamicWriter:
del hgroup[key]
# write new data
hgroup.require_dataset(
key, shape=data_shape, dtype=dtype, compression=self.compression,
key,
shape=data_shape,
dtype=dtype,
compression=self.compression,
)
# write all data, signified by the empty tuple
hgroup[key][()] = data
......@@ -153,9 +155,9 @@ class DynamicWriter:
# write data
for key, value in data.items():
# only save data with a pre-defined data-type
if key not in self.datatypes:
raise KeyError(f"No defined data type for key {key}")
else:
if key not in self.datatypes:
raise KeyError(f"No defined data type for key {key}")
else:
try:
if key.startswith("attrs/"):
# metadata
......@@ -216,8 +218,6 @@ class TilerWriter(DynamicWriter):
if not skip:
super().write(data=data, overwrite=overwrite, meta=meta)
# Alan: why's this here?
tile_size = 117
# Alan: we use complex numbers because...
@timed()
......@@ -255,7 +255,10 @@ class BabyWriter(DynamicWriter):
"position": ((None,), np.uint16),
"angles": ((None,), h5py.vlen_dtype(np.float32)),
"radii": ((None,), h5py.vlen_dtype(np.float32)),
"edgemasks": ((max_ncells, max_tps, tile_size, tile_size), bool),
"edgemasks": (
(max_ncells, max_tps, default_tile_size, default_tile_size),
bool,
),
"ellipse_dims": ((None, 2), np.float32),
"cell_label": ((None,), np.uint16),
"trap": ((None,), np.uint16),
......@@ -324,7 +327,9 @@ class BabyWriter(DynamicWriter):
n_tps = val_dset.shape[1] + 1
n_add_cells = len(missing)
# resize dataset for Time and Cells
new_shape = (val_dset.shape[0] + n_add_cells, n_tps) + val_dset.shape[2:]
new_shape = (val_dset.shape[0] + n_add_cells, n_tps) + val_dset.shape[
2:
]
val_dset.resize(new_shape)
logging.debug(f"Timing:resizing:{perf_counter() - debug_t}")
# write data
......@@ -369,7 +374,9 @@ class BabyWriter(DynamicWriter):
else:
self.__append_edgemasks(hgroup, edgemasks, current_indices)
def write(self, data: dict, overwrite: list, tp: int = None, meta: dict = {}):
def write(
self, data: dict, overwrite: list, tp: int = None, meta: dict = {}
):
"""
Write data from a Baby instance, including edgemasks.
......@@ -389,7 +396,9 @@ class BabyWriter(DynamicWriter):
# write data
for key, value in data.items():
if key not in self.datatypes:
raise KeyError(f"BabyWriter: No defined data type for key {key}")
raise KeyError(
f"BabyWriter: No defined data type for key {key}"
)
else:
try:
if key.startswith("attrs/"):
......@@ -408,7 +417,9 @@ class BabyWriter(DynamicWriter):
and tp < edgemask_dset[()].shape[1]
):
# data already exists
print(f"BabyWriter: Skipping edgemasks in tp {tp}")
print(
f"BabyWriter: Skipping edgemasks in tp {tp}"
)
else:
self.write_edgemasks(value, keys, hgroup)
else:
......@@ -431,12 +442,13 @@ class LinearBabyWriter(DynamicWriter):
# TODO make this YAML: Alan: why?
compression = "gzip"
_default_tile_size = 117
datatypes = {
"centres": ((None, 2), np.uint16),
"position": ((None,), np.uint16),
"angles": ((None,), h5py.vlen_dtype(np.float32)),
"radii": ((None,), h5py.vlen_dtype(np.float32)),
"edgemasks": ((None, tile_size, tile_size), bool),
"edgemasks": ((None, _default_tile_size, _default_tile_size), bool),
"ellipse_dims": ((None, 2), np.float32),
"cell_label": ((None,), np.uint16),
"trap": ((None,), np.uint16),
......@@ -447,7 +459,9 @@ class LinearBabyWriter(DynamicWriter):
}
group = "cell_info"
def write(self, data: dict, overwrite: list, tp: int = None, meta: dict = {}):
def write(
self, data: dict, overwrite: list, tp: int = None, meta: dict = {}
):
"""
Check data does not exist before writing.
......@@ -477,22 +491,31 @@ class LinearBabyWriter(DynamicWriter):
class StateWriter(DynamicWriter):
"""Write information summarising the current state of the pipeline - the 'last_state' dataset in the h5 file"""
"""
Write information summarising the current state of the pipeline - the 'last_state' dataset in the h5 file.
MOVEDatatypes are specified with the first variable specifying the number of traps and the other specifying the shape of the object.
"""
datatypes = {
# the highest cell label assigned for each time point
"max_lbl": ((None, 1), np.uint16),
# how far back we go for tracking
"tp_back": ((None, 1), np.uint16),
# trap labels
"trap": ((None, 1), np.int16),
# cell labels
"cell_lbls": ((None, 1), np.uint16),
# previous cell features for tracking
"prev_feats": ((None, None), np.float32),
# number of images for which a cell has been present
"lifetime": ((None, 2), np.uint16),
# probability of being a bud
# probability of a mother-bud relationship given a bud
"p_was_bud": ((None, 2), np.float32),
# probability of being a mother
# probability of a mother-bud relationship given a mother
"p_is_mother": ((None, 2), np.float32),
# cumulative matrix, over time, of bud assignments
"ba_cum": ((None, None), np.float32),
}
group = "last_state"
......@@ -506,21 +529,27 @@ class StateWriter(DynamicWriter):
@staticmethod
def format_values_tpback(states: list, val_name: str):
"""Unpacks a dict of state data into tp_back, trap, value."""
# initialise as empty lists
# Alan: is this initialisation necessary?
tp_back, trap, value = [
[[] for _ in states[0][val_name]] for _ in range(3)
]
# store results as a list of tuples
lbl_tuples = [
(tp_back, trap, cell_label)
for trap, state in enumerate(states)
for tp_back, value in enumerate(state[val_name])
for cell_label in value
]
# unpack list of tuples to define variables
if len(lbl_tuples):
tp_back, trap, value = zip(*lbl_tuples)
return tp_back, trap, value
@staticmethod
def format_values_traps(states: list, val_name: str):
"""Format either lifetime, p_was_bud, or p_is_mother variables as a list."""
formatted = np.array(
[
(trap, clabel_val)
......@@ -532,19 +561,20 @@ class StateWriter(DynamicWriter):
@staticmethod
def pad_if_needed(array: np.ndarray, pad_size: int):
"""Pad a 2D array with zeros."""
"""Pad a 2D array with zeros for large indices."""
padded = np.zeros((pad_size, pad_size)).astype(float)
length = len(array)
padded[:length, :length] = array
return padded
def format_states(self, states: list):
"""Re-format state data into a dict of lists, with one element per per list per state."""
formatted_state = {"max_lbl": [state["max_lbl"] for state in states]}
tp_back, trap, cell_label = self.format_values_tpback(
states, "cell_lbls"
)
_, _, prev_feats = self.format_values_tpback(states, "prev_feats")
# heterogeneous datasets
# store lists in a dict
formatted_state["tp_back"] = tp_back
formatted_state["trap"] = trap
formatted_state["cell_lbls"] = cell_label
......@@ -563,23 +593,21 @@ class StateWriter(DynamicWriter):
)
return formatted_state
def write(self, data: dict, overwrite: list, tp: int = None):
"""Write."""
def write(self, data: dict, overwrite: list, tp: int = 0):
"""Write the current state of the pipeline."""
if len(data):
last_tp = 0
if tp is None:
tp = 0
try:
with h5py.File(self.file, "r") as f:
gr = f.get(self.group, None)
if gr:
last_tp = gr.attrs.get("tp", 0)
# print(f"{ self.file } - tp: {tp}, last_tp: {last_tp}")
if tp == 0 or tp > last_tp:
# write
formatted_data = self.format_states(data)
super().write(data=formatted_data, overwrite=overwrite)
with h5py.File(self.file, "a") as f:
# record that data for the timepoint has been written
f[self.group].attrs["tp"] = tp
elif tp > 0 and tp <= last_tp:
# data already present
......@@ -593,7 +621,7 @@ class StateWriter(DynamicWriter):
#################### Extraction version ###############################
class Writer(BridgeH5):
"""
Class in charge of transforming data into compatible formats.
Class in charge of transforming data into compatible structures.
Decoupling interface from implementation!
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment