Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
aliby-mirror
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Swain Lab
aliby
aliby-mirror
Commits
79675596
Commit
79675596
authored
2 years ago
by
Alán Muñoz
Browse files
Options
Downloads
Patches
Plain Diff
feat(aliby): add vis_tools
parent
6635097d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/aliby/utils/vis_tools.py
+141
-0
141 additions, 0 deletions
src/aliby/utils/vis_tools.py
with
141 additions
and
0 deletions
src/aliby/utils/vis_tools.py
0 → 100644
+
141
−
0
View file @
79675596
#!/usr/bin/env jupyter
"""
Visualisation tools useful to generate figures cell pictures and figures from scripts.
"""
import
typing
as
t
import
numpy
as
np
from
agora.io.cells
import
Cells
from
aliby.io.image
import
instatiate_image
from
aliby.tile.tiler
import
Tiler
,
TilerParameters
def
fetch_tc
(
image_path
:
str
,
results_path
:
str
,
t
:
int
=
0
,
c
:
int
=
0
):
with
instatiate_image
(
image_path
)
as
iz
:
tiler
=
Tiler
.
from_h5
(
iz
,
results_path
,
TilerParameters
.
default
())
tc
=
tiler
.
get_tp_data
(
t
,
c
)
return
tc
def
get_tiles_at_times
(
image_path
:
str
,
results_path
:
str
,
timepoints
:
t
.
List
[
int
]
=
[
0
],
tile_reduction
:
t
.
Union
[
int
,
t
.
List
[
int
],
str
,
t
.
Callable
]
=
lambda
x
:
concatenate_dims
(
x
,
1
,
-
1
),
channel
:
int
=
1
,
):
"""
Use Image and tiler to get tiled position for specific time points.
Parameters
----------
image_path : str
hdf5 location
timepoints : t.List[int]
list of timepoints to fetch
tile_reduction : t.Union[int, t.List[int], str, t.Callable]
Reduce dimensionality. Generally used to collapse z-stacks into one
Examples
--------
FIXME: Add docs.
"""
# Get the correct tile in space and time
with
instatiate_image
(
image_path
)
as
image
:
tiler
=
Tiler
.
from_h5
(
image
,
results_path
,
TilerParameters
.
default
())
tp_channel_stack
=
[
_dispatch_tile_reduction
(
tile_reduction
)(
tiler
.
get_tp_data
(
tp
,
channel
)
)
for
tp
in
timepoints
]
return
tp_channel_stack
def
get_cellmasks_at_times
(
results_path
:
str
,
timepoints
:
t
.
List
[
int
]
=
[
0
]):
return
Cells
(
results_path
).
at_times
(
timepoints
)
def
concatenate_dims
(
ndarray
,
axis1
:
int
,
axis2
:
int
):
return
np
.
concatenate
(
np
.
moveaxis
(
ndarray
,
axis1
,
0
),
axis
=
axis2
)
def
get_tile_mask_pairs
(
image_path
:
str
,
results_path
:
str
,
timepoints
:
t
.
List
[
int
]
=
[
0
],
tile_reduction
=
lambda
x
:
concatenate_dims
(
x
,
1
,
-
1
),
)
->
t
.
Tuple
[
np
.
ndarray
,
t
.
List
[
t
.
List
[
np
.
ndarray
]]]:
return
(
get_tiles_at_times
(
image_path
,
results_path
,
timepoints
,
tile_reduction
),
get_cellmasks_at_times
(
results_path
,
timepoints
),
)
def
_dispatch_tile_reduction
(
how
:
t
.
Union
[
int
,
str
,
t
.
List
[
int
]],
axis
=
1
):
"""
Return an appropriate dimensional reduction based on the input on a specified axis.
If
"
how
"
is a string, it operates in dimension 1 (to match tile dimension standard Tile, Z, Y, X)
how: int, str or list of int
if int or list of int those numbers are indexed;
if str it assumes it is a numpy function such as np max.
if it is a callable it applies that operation to the array.
if None it returns the result as-is
axis: Only used when
"
how
"
is string. Determines the dimension to which the
standard operation is applied.
"""
# FUTURE use match case when migrating to python 3.10
if
how
is
None
:
return
lambda
x
:
x
elif
isinstance
(
how
,
(
int
,
list
)):
return
lambda
x
:
x
.
take
(
how
,
axis
=
axis
)
elif
isinstance
(
how
,
str
):
return
lambda
x
:
getattr
(
x
,
how
)(
axis
=
axis
)
elif
isinstance
(
how
,
t
.
Callable
):
return
lambda
x
:
how
(
x
)
else
:
raise
Exception
(
f
"
Invalid reduction
{
how
}
"
)
def
tile_like
(
arr1
,
arr2
):
"""
Tile the first two dimensions of arr1 (ND) to match arr2 (2D)
"""
result
=
arr1
ratio
=
np
.
divide
(
arr2
.
shape
,
arr1
.
shape
[
-
2
:]).
astype
(
int
)
if
reps
:
=
max
(
ratio
-
1
):
tile_
=
(
lambda
x
,
n
:
np
.
tile
(
x
,
n
)
if
ratio
.
argmax
()
else
np
.
tile
(
x
.
T
,
n
+
1
).
T
)
result
=
np
.
stack
([
tile_
(
mask
,
reps
+
1
)
for
mask
in
arr1
])
return
result
def
centre_mask
(
image
:
np
.
ndarray
,
mask
:
np
.
ndarray
):
"""
Roll image to the centre of the image based on a mask of equal size
"""
cell_centroid
=
(
np
.
max
(
np
.
where
(
mask
),
axis
=
1
)
+
np
.
min
(
np
.
where
(
mask
),
axis
=
1
)
)
//
2
tile_centre
=
np
.
array
(
image
.
shape
)
//
2
return
np
.
roll
(
image
,
(
tile_centre
-
cell_centroid
),
(
0
,
1
))
def
long_side_vertical
(
arr
):
result
=
arr
if
np
.
subtract
(
*
arr
.
shape
):
result
=
arr
.
T
return
result
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment