Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
aliby-mirror
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Swain Lab
aliby
aliby-mirror
Commits
bbf30f85
Commit
bbf30f85
authored
2 years ago
by
Alán Muñoz
Browse files
Options
Downloads
Patches
Plain Diff
[WIP]fix(chainer): refresh standard processing
parent
e1c36f24
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/agora/io/signal.py
+26
-15
26 additions, 15 deletions
src/agora/io/signal.py
src/agora/utils/kymograph.py
+65
-0
65 additions, 0 deletions
src/agora/utils/kymograph.py
with
91 additions
and
15 deletions
src/agora/io/signal.py
+
26
−
15
View file @
bbf30f85
...
@@ -47,20 +47,25 @@ class Signal(BridgeH5):
...
@@ -47,20 +47,25 @@ class Signal(BridgeH5):
def
__getitem__
(
self
,
dsets
:
t
.
Union
[
str
,
t
.
Collection
]):
def
__getitem__
(
self
,
dsets
:
t
.
Union
[
str
,
t
.
Collection
]):
"""
Get and potentially pre-process data from h5 file and return as a dataframe.
"""
"""
Get and potentially pre-process data from h5 file and return as a dataframe.
"""
if
isinstance
(
dsets
,
str
):
# no pre-processing
if
isinstance
(
dsets
,
str
):
# no pre-processing
df
=
self
.
apply_prepost
(
dsets
)
return
self
.
get
(
dsets
)
return
self
.
add_name
(
df
,
dsets
)
elif
isinstance
(
dsets
,
list
):
# pre-processing
elif
isinstance
(
dsets
,
list
):
# pre-processing
is_bgd
=
[
dset
.
endswith
(
"
imBackground
"
)
for
dset
in
dsets
]
is_bgd
=
[
dset
.
endswith
(
"
imBackground
"
)
for
dset
in
dsets
]
# Check we are not comparing tile-indexed and cell-indexed data
# Check we are not comparing tile-indexed and cell-indexed data
assert
sum
(
is_bgd
)
==
0
or
sum
(
is_bgd
)
==
len
(
assert
sum
(
is_bgd
)
==
0
or
sum
(
is_bgd
)
==
len
(
dsets
dsets
),
"
Tile data and cell data can
'
t be mixed
"
),
"
Tile data and cell data can
'
t be mixed
"
return
[
return
[
self
.
get
(
dset
)
for
dset
in
dsets
]
self
.
add_name
(
self
.
apply_prepost
(
dset
),
dset
)
for
dset
in
dsets
]
else
:
else
:
raise
Exception
(
f
"
Invalid type
{
type
(
dsets
)
}
to get datasets
"
)
raise
Exception
(
f
"
Invalid type
{
type
(
dsets
)
}
to get datasets
"
)
def
get
(
self
,
dsets
:
t
.
Union
[
str
,
t
.
Collection
],
**
kwargs
):
"""
Get and potentially pre-process data from h5 file and return as a dataframe.
"""
if
isinstance
(
dsets
,
str
):
# no pre-processing
df
=
get_raw
(
dsets
,
**
kwargs
)
prepost_applied
=
self
.
apply_prepost
(
dsets
,
**
kwargs
)
return
self
.
add_name
(
prepost_applied
,
dsets
)
@staticmethod
@staticmethod
def
add_name
(
df
,
name
):
def
add_name
(
df
,
name
):
"""
Add column of identical strings to a dataframe.
"""
"""
Add column of identical strings to a dataframe.
"""
...
@@ -129,18 +134,24 @@ class Signal(BridgeH5):
...
@@ -129,18 +134,24 @@ class Signal(BridgeH5):
Returns an array with three columns: the tile id, the mother label, and the daughter label.
Returns an array with three columns: the tile id, the mother label, and the daughter label.
"""
"""
if
lineage_location
is
None
:
if
lineage_location
is
None
:
lineage_location
=
"
postprocessing
/lineage_merged
"
lineage_location
=
"
modifiers
/lineage_merged
"
with
h5py
.
File
(
self
.
filename
,
"
r
"
)
as
f
:
with
h5py
.
File
(
self
.
filename
,
"
r
"
)
as
f
:
# if lineage_location not in f:
# lineage_location = lineage_location.split("_")[0]
if
lineage_location
not
in
f
:
if
lineage_location
not
in
f
:
lineage_location
=
f
[
lineage_location
.
split
(
"
_
"
)[
0
]]
lineage_location
=
"
postprocessor/lineage
"
tile_mo_da
=
f
[
lineage_location
.
split
(
"
_
"
)[
0
]]
tile_mo_da
=
f
[
lineage_location
]
lineage
=
np
.
array
(
(
if
isinstance
(
tile_mo_da
,
h5py
.
Dataset
):
tile_mo_da
[
"
trap
"
],
lineage
=
tile_mo_da
[()]
tile_mo_da
[
"
mother_label
"
],
else
:
tile_mo_da
[
"
daughter_label
"
],
lineage
=
np
.
array
(
)
(
).
T
tile_mo_da
[
"
trap
"
],
tile_mo_da
[
"
mother_label
"
],
tile_mo_da
[
"
daughter_label
"
],
)
).
T
return
lineage
return
lineage
@_first_arg_str_to_df
@_first_arg_str_to_df
...
...
This diff is collapsed.
Click to expand it.
src/agora/utils/kymograph.py
+
65
−
0
View file @
bbf30f85
...
@@ -5,6 +5,7 @@ from copy import copy
...
@@ -5,6 +5,7 @@ from copy import copy
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
from
sklearn.cluster
import
KMeans
from
sklearn.cluster
import
KMeans
from
agora.utils.indexing
import
validate_association
index_row
=
t
.
Tuple
[
str
,
str
,
int
,
int
]
index_row
=
t
.
Tuple
[
str
,
str
,
int
,
int
]
...
@@ -175,3 +176,67 @@ def drop_mother_label(index: pd.MultiIndex) -> np.ndarray:
...
@@ -175,3 +176,67 @@ def drop_mother_label(index: pd.MultiIndex) -> np.ndarray:
def
get_index_as_np
(
signal
:
pd
.
DataFrame
):
def
get_index_as_np
(
signal
:
pd
.
DataFrame
):
# Get mother labels from multiindex dataframe
# Get mother labels from multiindex dataframe
return
np
.
array
(
signal
.
index
.
to_list
())
return
np
.
array
(
signal
.
index
.
to_list
())
def
standard_filtering
(
raw
:
pd
.
DataFrame
,
lin
:
np
.
ndarray
,
presence_high
:
float
=
0.8
,
presence_low
:
int
=
7
,
):
# Get all mothers
_
,
valid_indices
=
validate_association
(
lin
,
np
.
array
(
raw
.
index
.
to_list
()),
match_column
=
0
)
in_lineage
=
raw
.
loc
[
valid_indices
]
# Filter mothers by presence
present
=
in_lineage
.
loc
[
in_lineage
.
notna
().
sum
(
axis
=
1
)
>
(
in_lineage
.
shape
[
1
]
*
presence_high
)
]
# Get indices
indices
=
np
.
array
(
present
.
index
.
to_list
())
to_cast
=
np
.
stack
((
lin
[:,
:
2
],
lin
[:,
[
0
,
2
]]),
axis
=
1
)
ndin
=
to_cast
[...,
None
]
==
indices
.
T
[
None
,
...]
# use indices to fetch all daughters
valid_association
=
ndin
.
all
(
axis
=
2
)[:,
0
].
any
(
axis
=-
1
)
# Remove repeats
mothers
,
daughters
=
np
.
split
(
to_cast
[
valid_association
],
2
,
axis
=
1
)
mothers
=
mothers
[:,
0
]
daughters
=
daughters
[:,
0
]
d_m_dict
=
{
tuple
(
d
):
m
[
-
1
]
for
m
,
d
in
zip
(
mothers
,
daughters
)}
# assuming unique sorts
raw_mothers
=
raw
.
loc
[
_as_tuples
(
mothers
)]
raw_mothers
[
"
mother_label
"
]
=
0
raw_daughters
=
raw
.
loc
[
_as_tuples
(
daughters
)]
raw_daughters
[
"
mother_label
"
]
=
d_m_dict
.
values
()
concat
=
pd
.
concat
((
raw_mothers
,
raw_daughters
)).
sort_index
()
concat
.
set_index
(
"
mother_label
"
,
append
=
True
,
inplace
=
True
)
# Last filter to remove tracklets that are too short
removed_buds
=
concat
.
notna
().
sum
(
axis
=
1
)
<=
presence_low
filt
=
concat
.
loc
[
~
removed_buds
]
# We check that no mothers are left child-less
m_d_dict
=
{
tuple
(
m
):
[]
for
m
in
mothers
}
for
(
trap
,
d
),
m
in
d_m_dict
.
items
():
m_d_dict
[(
trap
,
m
)].
append
(
d
)
for
trap
,
daughter
,
mother
in
concat
.
index
[
removed_buds
]:
idx_to_delete
=
m_d_dict
[(
trap
,
mother
)].
index
(
daughter
)
del
m_d_dict
[(
trap
,
mother
)][
idx_to_delete
]
bud_free
=
[]
for
m
,
d
in
m_d_dict
.
items
():
if
not
d
:
bud_free
.
append
(
m
)
final_result
=
filt
.
drop
(
bud_free
)
# In the end, we get the mothers present for more than {presence_lineage1}% of the experiment
# and their tracklets present for more than {presence_lineage2} time-points
return
final_result
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment