Newer
Older
from pathlib import Path
import aliby.global_parameters as global_parameters
from agora.abc import ParametersABC, StepABC
from agora.io.cells import Cells
from agora.io.writer import Writer, load_meta
from aliby.tile.tiler import Tiler, find_channel_name
from extraction.core.functions.distributors import reduce_z, trap_apply
from extraction.core.functions.loaders import (
load_custom_args,
load_funs,
load_redfuns,
reduction_method = t.Union[t.Callable, str, None]
extraction_tree = t.Dict[
str, t.Dict[reduction_method, t.Dict[str, t.Collection]]
]
extraction_result = t.Dict[
str, t.Dict[reduction_method, t.Dict[str, t.Dict[str, pd.Series]]]
]
# Global variables used to load functions that either analyse cells
# or their background. These global variables both allow the functions
# to be stored in a dictionary for access only on demand and to be
# defined simply in extraction/core/functions.
REDUCTION_FUNS = load_redfuns()
def extraction_params_from_meta(
meta: t.Union[dict, Path, str], extras: t.Collection[str] = ["ph"]
):
"""Obtain parameters for extraction from meta data."""
if not isinstance(meta, dict):
# load meta data
with h5py.File(meta, "r") as f:
meta = dict(f["/"].attrs.items())
base = {
"tree": {"general": {"None": ["area", "volume", "eccentricity"]}},
"multichannel_ops": {},
}
candidate_channels = set(global_parameters.possible_imaging_channels)
default_reductions = {"max"}
default_metrics = set(global_parameters.fluorescence_functions)
default_reduction_metrics = {
r: default_metrics for r in default_reductions
}
# default_rm["None"] = ["nuc_conv_3d"] # Uncomment this to add nuc_conv_3d (slow)
extant_fluorescence_ch = []
for av_channel in candidate_channels:
# find matching channels in metadata
found_channel = find_channel_name(meta.get("channels", []), av_channel)
if found_channel is not None:
extant_fluorescence_ch.append(found_channel)
for ch in extant_fluorescence_ch:
base["tree"][ch] = default_reduction_metrics
base["sub_bg"] = extant_fluorescence_ch
return base
"""Base class to define parameters for extraction."""
Parameters
----------
tree: dict
Nested dictionary indicating channels, reduction functions and
metrics to be used.
str channel -> U(function, None) reduction -> str metric
If not of depth three, tree will be filled with None.
self.sub_bg = sub_bg
self.multichannel_ops = multichannel_ops
@classmethod
def default(cls):
return cls({})
@classmethod
def from_meta(cls, meta):
"""Instantiate from the meta data; used by Pipeline."""
return cls(**extraction_params_from_meta(meta))
class Extractor(StepABC):
Apply a metric to cells identified in the tiles.
Using the cell masks, the Extractor applies a metric, such as
area or median, to cells identified in the image tiles.
Its methods require both tile images and masks.
Usually the metric is applied to only a tile's masked area, but
some metrics depend on the whole tile.
Extraction follows a three-level tree structure. Channels, such
as GFP, are the root level; the reduction algorithm, such as
maximum projection, is the second level; the specific metric,
or operation, to apply to the masks, such as mean, is the third
or leaf level.
default_meta = global_parameters.imaging_specifications
self,
parameters: ExtractorParameters,
store: t.Optional[str] = None,
tiler: t.Optional[Tiler] = None,
parameters: core.extractor Parameters
Parameters that include the channels, reduction and
extraction functions.
Path to the h5 file containing the cell masks.
tiler: pipeline-core.core.segmentation tiler
Class that contains or fetches the images used for
segmentation.
self.h5path = store
self.meta = load_meta(self.h5path)
self.meta = {"channel": parameters.to_dict()["tree"].keys()}
if tiler:
self.tiler = tiler
available_channels = set((*tiler.channels, "general"))
# only extract for channels available
self.params.tree = {
k: v
for k, v in self.params.tree.items()
if k in available_channels
}
self.params.sub_bg = available_channels.intersection(
self.params.sub_bg
)
# add background subtracted channels to those available
available_channels_bgsub = available_channels.union(
[c + "_bgsub" for c in self.params.sub_bg]
)
# remove any multichannel operations requiring a missing channel
for op, (input_ch, _, _) in self.params.multichannel_ops.items():
if not set(input_ch).issubset(available_channels_bgsub):
self.params.multichannel_ops.pop(op)
cls,
parameters: ExtractorParameters,
store: str,
tiler: Tiler,
"""Initiate from a tiler instance."""
return cls(parameters, store=store, tiler=tiler)
@classmethod
cls,
parameters: ExtractorParameters,
store: str,
img_meta: tuple,
return cls(parameters, store=store, tiler=Tiler(*img_meta))
@property
def channels(self):
"""Get a tuple of the available channels."""
if not hasattr(self, "_channels"):
if type(self.params.tree) is dict:
self._channels = tuple(self.params.tree.keys())
return self._channels
@property
def current_position(self):
"""Return position being analysed."""
return str(self.h5path).split("/")[-1][:-3]
"""Return out path to write in the h5 file."""
if not hasattr(self, "_out_path"):
self._group = "/extraction/"
return self._group
def load_funs(self):
"""Define all functions, including custom ones."""
self.load_custom_funs()
self.all_cell_funs = set(self.custom_funs.keys()).union(CELL_FUNS)
# merge the two dicts
self.all_funs = {**self.custom_funs, **ALL_FUNS}
Incorporate extra arguments of custom functions into their definitions.
Normal functions only have cell_masks and trap_image as their
arguments, and here custom functions are made the same by
setting the values of their extra arguments.
Any other parameters are taken from the experiment's metadata
and automatically applied. These parameters therefore must be
loaded within an Extractor instance.
for channel in self.params.tree.values()
for reduction in channel.values()
for fun in reduction
self.custom_arg_vals = {
k: {k2: self.get_meta(k2) for k2 in v}
for k, v in CUSTOM_ARGS.items()
self.custom_funs = {}
for k, f in CUSTOM_FUNS.items():
def tmp(f):
# return a function of cell_masks and trap_image
f,
cell_masks,
trap_image,
**self.custom_arg_vals.get(k, {}),
self.custom_funs[k] = tmp(f)
channels: t.Optional[t.List[t.Union[str, int]]] = None,
z: t.Optional[t.List[str]] = None,
) -> t.Optional[np.ndarray]:
Find tiles for a given time point, channels, and z-stacks.
Any additional keyword arguments are passed to
tiler.get_tiles_timepoint
Indices for the z-stacks of interest.
channel_ids = list(range(len(self.tiler.channels)))
elif len(channels):
channel_ids = [self.tiler.get_channel_index(ch) for ch in channels]
else:
z = list(range(self.tiler.shape[-3]))
self.tiler.get_tiles_timepoint(tp, channels=channel_ids, z=z)
# tiles has dimensions (tiles, channels, 1, Z, X, Y)
return tiles
traps: t.List[np.ndarray],
masks: t.List[np.ndarray],
) -> t.Tuple[t.Union[t.Tuple[float], t.Tuple[t.Tuple[int]]]]:
Apply a cell function to all cells at all traps for one time point.
cell_function: str
Function to apply.
A dict with trap_ids as keys and a list of cell labels as
values.
A two-tuple comprising a tuple of results and a tuple of
the tile_id and cell labels
if cell_labels is None:
self._log("No cell labels given. Sorting cells using index.")
cell_fun = True if cell_function in self.all_cell_funs else False
for trap_id, (mask_set, trap, local_cell_labels) in enumerate(
result = self.all_funs[cell_function](mask_set, trap)
for cell_label, val in zip(local_cell_labels, result):
def apply_cell_funs(
tiles: t.List[np.array],
cell_funs: t.List[str],
) -> t.Dict[str, pd.Series]:
Return dict with cell_funs as keys and the corresponding results as values.
Data from one time point is used.
cell_fun: self.apply_cell_function(
traps=tiles, masks=masks, cell_function=cell_fun, **kwargs
for cell_fun in cell_funs
tiles: np.ndarray,
reduction_cell_funs: t.Dict[reduction_method, t.Collection[str]],
) -> t.Dict[str, t.Dict[reduction_method, t.Dict[str, pd.Series]]]:
Reduce to a 2D image and then extract.
An array of image data arranged as (tiles, X, Y, Z)
masks: list of arrays
An array of masks for each trap: one per cell at the trap
reduction_cell_funs: dict
An upper branch of the extraction tree: a dict for which
keys are reduction functions and values are either a list
or a set of strings giving the cell functions to apply.
All other arguments passed to Extractor.apply_cell_funs.
Dict of dataframes with the corresponding reductions and metrics nested.
# create dict with keys naming the reduction in the z-direction
# and the reduced data as values
if tiles is not None:
for reduction in reduction_cell_funs.keys():
reduced_tiles[reduction] = [
self.reduce_dims(
tile_data, method=REDUCTION_FUNS[reduction]
)
for tile_data in tiles
reduction: self.apply_cell_funs(
tiles=reduced_tiles.get(reduction, [None for _ in masks]),
cell_funs=cell_funs,
for reduction, cell_funs in reduction_cell_funs.items()
def reduce_dims(
self, img: np.ndarray, method: reduction_method = None
) -> np.ndarray:
If method is None, return the original data.
Parameters
----------
img: array
An array of the image data arranged as (X, Y, Z).
reduced = img
if method is not None:
reduced = reduce_z(img, method)
return reduced
def make_tree_dict(self, tree: extraction_tree):
"""Put extraction tree into a dict."""
tree = self.params.tree
tree_dict = {
# the whole extraction tree
# the extraction tree for fluorescence channels
"channels_tree": {
ch: v for ch, v in tree.items() if ch != "general"
},
}
# tuple of the fluorescence channels
tree_dict["channels"] = (*tree_dict["channels_tree"],)
return tree_dict
def get_masks(self, tp, masks, cells):
"""Get the masks as a list with an array of masks for each trap."""
# find the cell masks for a given trap as a dict with trap_ids as keys
if masks is None:
raw_masks = cells.at_time(tp, kind="mask")
masks = {trap_id: [] for trap_id in range(cells.ntraps)}
for trap_id, cells in raw_masks.items():
if len(cells):
masks[trap_id] = np.stack(np.array(cells)).astype(bool)
# one array of size (no cells, tile_size, tile_size) per trap
return masks
def get_cell_labels(self, tp, cell_labels, cells):
"""Get the cell labels per trap as a dict with trap_ids as keys."""
if cell_labels is None:
raw_cell_labels = cells.labels_at_time(tp)
cell_labels = {
trap_id: raw_cell_labels.get(trap_id, [])
for trap_id in range(cells.ntraps)
}
return cell_labels
def get_background_masks(self, masks, tile_size):
"""
Generate boolean background masks.
Combine masks per trap and then take the logical inverse.
"""
bgs = ~np.array(
list(
map(
lambda x: np.sum(x, axis=0)
if np.any(x)
else np.zeros((tile_size, tile_size)),
masks,
)
)
).astype(bool)
else:
bgs = np.array([])
return bgs
def extract_one_channel(
self, tree_dict, cell_labels, img, img_bgsub, masks, **kwargs
"""Extract as dict all metrics requiring only a single channel."""
for ch, reduction_cell_funs in tree_dict["tree"].items():
# extract from all images including bright field
# use None for "general"; no fluorescence image
tiles=img.get(ch, None),
reduction_cell_funs=reduction_cell_funs,
if ch != "general":
# extract from background-corrected fluorescence images
d[ch + "_bgsub"] = self.reduce_extract(
reduction_cell_funs=reduction_cell_funs,
def extract_multiple_channels(self, cell_labels, img, img_bgsub, masks):
"""Extract as a dict all metrics requiring multiple channels."""
# NB multichannel functions do not use tree_dict
available_channels = set(list(img.keys()) + list(img_bgsub.keys()))
for multichannel_fun_name, (
channels,
reduction,
multichannel_function,
) in self.params.multichannel_ops.items():
common_channels = set(channels).intersection(available_channels)
# all required channels should be available
if len(common_channels) == len(channels):
for images, suffix in zip([img, img_bgsub], ["", "_bgsub"]):
# channels
channels_stack = np.stack(
[images[ch + suffix] for ch in channels],
axis=-1,
)
# reduce in Z
tiles = REDUCTION_FUNS[reduction](channels_stack, axis=1)
# set up dict
if multichannel_fun_name not in d:
d[multichannel_fun_name] = {}
if reduction not in d[multichannel_fun_name]:
d[multichannel_fun_name][reduction] = {}
# apply multichannel function
d[multichannel_fun_name][reduction][
multichannel_function + suffix
] = self.apply_cell_function(
tiles,
masks,
multichannel_function,
cell_labels,
)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
def extract_tp(
self,
tp: int,
tree: t.Optional[extraction_tree] = None,
tile_size: int = 117,
masks: t.Optional[t.List[np.ndarray]] = None,
cell_labels: t.Optional[t.List[int]] = None,
**kwargs,
) -> t.Dict[str, t.Dict[str, t.Dict[str, tuple]]]:
"""
Extract for an individual time point.
Parameters
----------
tp : int
Time point being analysed.
tree : dict
Nested dictionary indicating channels, reduction functions
and metrics to be used.
For example: {'general': {'None': ['area', 'volume', 'eccentricity']}}
tile_size : int
Size of the tile to be extracted.
masks : list of arrays
A list of masks per trap with each mask having dimensions
(ncells, tile_size, tile_size) and with one mask per cell.
cell_labels : dict
A dictionary with trap_ids as keys and cell_labels as values.
**kwargs : keyword arguments
Passed to extractor.reduce_extract.
Returns
-------
d: dict
Dictionary of the results with three levels of dictionaries.
The first level has channels as keys.
The second level has reduction metrics as keys.
The third level has cell or background metrics as keys and a
two-tuple as values.
The first tuple is the result of applying the metrics to a
particular cell or trap; the second tuple is either
(trap_id, cell_label) for a metric applied to a cell or a
trap_id for a metric applied to a trap.
An example is d["GFP"]["np_max"]["mean"][0], which gives a tuple
of the calculated mean GFP fluorescence for all cells.
"""
# dict of information from extraction tree
tree_dict = self.make_tree_dict(tree)
# create a Cells object to extract information from the h5 file
cells = Cells(self.h5path)
# find the cell labels as dict with trap_ids as keys
cell_labels = self.get_cell_labels(tp, cell_labels, cells)
# get masks one per cell per trap
masks = self.get_masks(tp, masks, cells)
# find image data for all traps at the time point
# stored as an array arranged as (traps, channels, 1, Z, X, Y)
tiles = self.get_tiles(tp, channels=tree_dict["channels"])
# generate boolean masks for background for each trap
bgs = self.get_background_masks(masks, tile_size)
# get images and background corrected images as dicts
# with fluorescnce channels as keys
img, img_bgsub = self.get_imgs_background_subtract(
tree_dict, tiles, bgs
)
res_one = self.extract_one_channel(
tree_dict, cell_labels, img, img_bgsub, masks, **kwargs
res_multiple = self.extract_multiple_channels(
res = {**res_one, **res_multiple}
def get_imgs_background_subtract(self, tree_dict, tiles, bgs):
"""
Get two dicts of fluorescence images.
Return images and background subtracted image for all traps
for one time point.
"""
img = {}
img_bgsub = {}
for ch, _ in tree_dict["channels_tree"].items():
if tiles is not None and len(tiles):
# image data for all traps for a particular channel and
# time point arranged as (traps, Z, X, Y)
# we use 0 here to access the single time point available
img[ch] = tiles[:, tree_dict["channels"].index(ch), 0]
if (
bgs.any()
and ch in self.params.sub_bg
):
# subtract median background
bgsub_mapping = map(
# move Z to last column to allow subtraction
lambda img, bgs: np.moveaxis(img, 0, -1)
# median of background over all pixels for each Z section
- bn.median(img[:, bgs], axis=1),
bgs,
)
# apply map and convert to array
mapping_result = np.stack(list(bgsub_mapping))
# move Z axis back to the second column
img_bgsub[ch + "_bgsub"] = np.moveaxis(
mapping_result, -1, 1
)
else:
img[ch] = None
img_bgsub[ch] = None
return img, img_bgsub
def get_imgs_old(self, channel: t.Optional[str], tiles, channels=None):
Return image from a correct source, either raw or bgsub.
Parameters
----------
channel: str
Name of channel to get.
An array of the image data having dimensions of
(tile_id, channel, tp, tile_size, tile_size, n_zstacks).
An array of image data with dimensions
(no tiles, X, Y, no Z channels)
if channels is None:
channels = (*self.params.tree,)
if channel in channels: # TODO start here to fetch channel using regex
return tiles[:, channels.index(channel), 0]
elif channel in self.img_bgsub:
return self.img_bgsub[channel]
Run extraction for one position and for the specified time points.
Save the results to a h5 file.
tps: list of int (optional)
Time points to include.
tree: dict (optional)
Nested dictionary indicating channels, reduction functions and
metrics to be used.
For example: {'general': {'None': ['area', 'volume', 'eccentricity']}}
save: boolean (optional)
If True, save results to h5 file.
kwargs: keyword arguments (optional)
Passed to extract_tp.
A dict of the extracted data for one position with a concatenated
string of channel, reduction metric, and cell metric as keys and
pd.DataFrame of the extracted data for all time points as values.
if tree is None:
tree = self.params.tree
if tps is None:
tps = list(range(self.meta["time_settings/ntimepoints"][0]))
elif isinstance(tps, int):
tps = [tps]
# extract for each time point and convert to dict of pd.Series
new = flatten_nesteddict(
self.extract_tp(tp=tp, tree=tree, **kwargs),
to="series",
tp=tp,
)
# concatenate with data extracted from earlier time points
d[k] = pd.concat((d.get(k, None), new[k]), axis=1)
# add indices to pd.Series containing the extracted data
for k in d.keys():
indices = ["experiment", "position", "trap", "cell_label"]
idx = (
indices[-d[k].index.nlevels :]
if d[k].index.nlevels > 1
else [indices[-2]]
)
d[k].index.names = idx
def save_to_h5(self, dict_series, path=None):
Save the extracted data for one position to the h5 file.
Parameters
----------
dict_series: dict
A dictionary of the extracted data, created by run.
path: Path (optional)
To the h5 file.
"""
path = self.h5path
for extract_name, series in dict_series.items():
dset_path = "/extraction/" + extract_name
self.writer.write(dset_path, series)
def get_meta(self, flds: t.Union[str, t.Collection]):
"""Obtain metadata for one or multiple fields."""
flds = [flds]
meta_short = {k.split("/")[-1]: v for k, v in self.meta.items()}
return {
f: meta_short.get(f, self.default_meta.get(f, None)) for f in flds
}
def flatten_nesteddict(
nest: dict, to="series", tp: int = None
) -> t.Dict[str, pd.Series]:
Convert a nested extraction dict into a dict of pd.Series.
Parameters
----------
nest: dict of dicts
Contains the nested results of extraction.
to: str (optional)
Specifies the format of the output, either pd.Series (default)
or a list
Time point used to name the pd.Series
A dict with a concatenated string of channel, reduction metric,
and cell metric as keys and either a pd.Series or a list of the
corresponding extracted data as values.
d = {}
for k0, v0 in nest.items():
for k1, v1 in v0.items():
for k2, v2 in v1.items():
d["/".join((k0, k1, k2))] = (
pd.Series(*v2, name=tp) if to == "series" else v2
)
return d