Forked from
Swain Lab / aliby / aliby-mirror
7 commits behind, 45 commits ahead of the upstream repository.
cell.py 6.50 KiB
"""
Base functions to extract information from a single cell.
These functions are automatically read by extractor.py, and
so can only have the cell_mask and trap_image as inputs. They
must return only one value.
They assume that there are no NaNs in the image.
We use the module bottleneck when it performs faster than numpy:
- Median
- values containing NaNs (but we make sure this does not happen)
"""
import math
import typing as t
import bottleneck as bn
import numpy as np
from scipy import ndimage
def area(cell_mask) -> int:
"""
Find the area of a cell mask.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
"""
return np.sum(cell_mask)
def eccentricity(cell_mask) -> float:
"""
Find the eccentricity using the approximate major and minor axes.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
"""
min_ax, maj_ax = min_maj_approximation(cell_mask)
return np.sqrt(maj_ax**2 - min_ax**2) / maj_ax
def mean(cell_mask, trap_image) -> float:
"""
Find the mean of the pixels in the cell.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
trap_image: 2d array
"""
return np.mean(trap_image[cell_mask])
def median(cell_mask, trap_image) -> int:
"""
Find the median of the pixels in the cell.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
trap_image: 2d array
"""
return bn.median(trap_image[cell_mask])
def max2p5pc(cell_mask, trap_image) -> float:
"""
Find the mean of the brightest 2.5% of pixels in the cell.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
trap_image: 2d array
"""
# number of pixels in mask
npixels = np.sum(cell_mask)
n_top = int(np.ceil(npixels * 0.025))
# sort pixels in cell and find highest 2.5%
pixels = trap_image[cell_mask]
top_values = bn.partition(pixels, len(pixels) - n_top)[-n_top:]
# find mean of these highest pixels
return np.mean(top_values)
def max5px(cell_mask, trap_image) -> float:
"""
Find the mean of the five brightest pixels in the cell.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
trap_image: 2d array
"""
# sort pixels in cell
pixels = trap_image[cell_mask]
top_values = bn.partition(pixels, len(pixels) - 5)[-5:]
# find mean of five brightest pixels
max5px = np.mean(top_values)
return max5px
def std(cell_mask, trap_image):
"""
Find the standard deviation of the values of the pixels in the cell.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
trap_image: 2d array
"""
return np.std(trap_image[cell_mask])
def volume(cell_mask) -> float:
"""
Estimate the volume of the cell.
Assumes the cell is an ellipsoid with the mask providing
a cross-section through its median plane.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell.
"""
min_ax, maj_ax = min_maj_approximation(cell_mask)
return (4 * np.pi * min_ax**2 * maj_ax) / 3
def conical_volume(cell_mask):
"""
Estimate the volume of the cell.
Parameters
----------
cell_mask: 2D array
Segmentation mask for the cell
"""
padded = np.pad(cell_mask, 1, mode="constant", constant_values=0)
nearest_neighbor = (
ndimage.morphology.distance_transform_edt(padded == 1) * padded
)
return 4 * np.sum(nearest_neighbor)
def spherical_volume(cell_mask):
"""
Estimate the volume of the cell.
Assumes the cell is a sphere with the mask providing
a cross-section through its median plane.
Parameters
----------
cell_mask: 2d array
Segmentation mask for the cell
"""
total_area = area(cell_mask)
r = math.sqrt(total_area / np.pi)
return (4 * np.pi * r**3) / 3
def min_maj_approximation(cell_mask) -> t.Tuple[int]:
"""
Find the lengths of the minor and major axes of an ellipse from a cell mask.
Parameters
----------
cell_mask: 3d array
Segmentation masks for cells
"""
# pad outside with zeros so that the distance transforms have no edge artifacts
padded = np.pad(cell_mask, 1, mode="constant", constant_values=0)
# get the distance from the edge, masked
nn = ndimage.morphology.distance_transform_edt(padded == 1) * padded
# get the distance from the top of the cone, masked
dn = ndimage.morphology.distance_transform_edt(nn - nn.max()) * padded
# get the size of the top of the cone (points that are equally maximal)
cone_top = ndimage.morphology.distance_transform_edt(dn == 0) * padded
# minor axis = largest distance from the edge of the ellipse
min_ax = np.round(np.max(nn))
# major axis = largest distance from the cone top
# + distance from the center of cone top to edge of cone top
maj_ax = np.round(np.max(dn) + np.sum(cone_top) / 2)
return min_ax, maj_ax
def moment_of_inertia(cell_mask, trap_image):
"""
Find moment of inertia - a measure of homogeneity.
From iopscience.iop.org/article/10.1088/1742-6596/1962/1/012028
which cites ieeexplore.ieee.org/document/1057692.
"""
# set pixels not in cell to zero
trap_image[~cell_mask] = 0
x = trap_image
if np.any(x):
# x-axis : column=x-axis
columnvec = np.arange(1, x.shape[1] + 1, 1)[:, None].T
# y-axis : row=y-axis
rowvec = np.arange(1, x.shape[0] + 1, 1)[:, None]
# find raw moments
M00 = np.sum(x)
M10 = np.sum(np.multiply(x, columnvec))
M01 = np.sum(np.multiply(x, rowvec))
# find centroid
Xm = M10 / M00
Ym = M01 / M00
# find central moments
Mu00 = M00
Mu20 = np.sum(np.multiply(x, (columnvec - Xm) ** 2))
Mu02 = np.sum(np.multiply(x, (rowvec - Ym) ** 2))
# find invariants
Eta20 = Mu20 / Mu00 ** (1 + (2 + 0) / 2)
Eta02 = Mu02 / Mu00 ** (1 + (0 + 2) / 2)
# find moments of inertia
moi = Eta20 + Eta02
return moi
else:
return np.nan
def ratio(cell_mask, trap_image):
"""Find the median ratio between two fluorescence channels."""
if trap_image.ndim == 3 and trap_image.shape[-1] == 2:
fl_1 = trap_image[..., 0][cell_mask]
fl_2 = trap_image[..., 1][cell_mask]
div = np.median(fl_1 / fl_2)
else:
div = np.nan
return div