Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
alibylite
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Swain Lab
aliby
alibylite
Commits
05629802
Commit
05629802
authored
3 years ago
by
Alán Muñoz
Browse files
Options
Downloads
Patches
Plain Diff
add improve_tiler tests
parent
c4fdb38f
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/improve_tiler.py
+187
-0
187 additions, 0 deletions
scripts/improve_tiler.py
with
187 additions
and
0 deletions
scripts/improve_tiler.py
0 → 100644
+
187
−
0
View file @
05629802
#!/usr/bin/env python3
expts
=
[
18616
,
19232
,
19995
,
19993
,
20191
,
19831
]
# fetch images
test_imgs
=
[]
for
e
in
expts
:
with
Dataset
(
int
(
e
))
as
conn
:
image_ids
=
conn
.
get_images
()
for
im_id
in
image_ids
.
values
():
with
Image
(
im_id
)
as
image
:
dimg
=
image
.
data
print
(
"
computing
"
)
img
=
dimg
[
0
,
image
.
metadata
[
"
channels
"
].
index
(
"
Brightfield
"
),
2
,
...
].
compute
()
test_imgs
.
append
(
img
)
from
numpy
import
save
,
load
# save
for
i
,
nd
in
enumerate
(
test_imgs
):
save
(
"
raw_
"
+
str
(
i
)
+
"
.png
"
,
nd
)
# load
def
stretch_image
(
image
):
image
=
((
image
-
image
.
min
())
/
(
image
.
max
()
-
image
.
min
()))
*
255
minval
=
np
.
percentile
(
image
,
2
)
maxval
=
np
.
percentile
(
image
,
98
)
image
=
np
.
clip
(
image
,
minval
,
maxval
)
image
=
(
image
-
minval
)
/
(
maxval
-
minval
)
return
image
def
segment_traps
(
image
,
tile_size
,
downscale
=
0.4
):
# Make image go between 0 and 255
img
=
image
# Keep a memory of image in case need to re-run
stretched
=
stretch_image
(
image
)
img
=
stretch_image
(
image
)
# TODO Optimise the hyperparameters
disk_radius
=
int
(
min
([
0.01
*
x
for
x
in
img
.
shape
]))
min_area
=
0.2
*
(
tile_size
**
2
)
if
downscale
!=
1
:
img
=
transform
.
rescale
(
image
,
downscale
)
entropy_image
=
entropy
(
img
,
disk
(
disk_radius
))
if
downscale
!=
1
:
entropy_image
=
transform
.
rescale
(
entropy_image
,
1
/
downscale
)
# apply threshold
thresh
=
threshold_otsu
(
entropy_image
)
bw
=
closing
(
entropy_image
>
thresh
,
square
(
3
))
# remove artifacts connected to image border
cleared
=
clear_border
(
bw
)
# label image regions
label_image
=
label
(
cleared
)
areas
=
[
region
.
area
for
region
in
regionprops
(
label_image
)
if
region
.
area
>
min_area
and
region
.
area
<
tile_size
**
2
*
0.8
]
traps
=
(
np
.
array
(
[
region
.
centroid
for
region
in
regionprops
(
label_image
)
if
region
.
area
>
min_area
and
region
.
area
<
tile_size
**
2
*
0.8
]
)
.
round
()
.
astype
(
int
)
)
rprops
=
regionprops_table
(
label_image
,
properties
=
[
"
area
"
,
"
eccentricity
"
,
"
convex_area
"
,
"
feret_diameter_max
"
,
"
orientation
"
,
"
solidity
"
,
"
minor_axis_length
"
,
],
)
trapmask
=
(
rprops
[
"
area
"
]
>
min_area
)
&
(
rprops
[
"
area
"
]
<
tile_size
**
2
*
0.8
)
candidates
=
[
stretched
[
x
-
tile_size
//
2
:
x
+
tile_size
//
2
,
y
-
tile_size
//
2
:
y
+
tile_size
//
2
,
]
for
x
,
y
in
np
.
array
(
traps
).
round
().
astype
(
int
)
]
# valleys = [find_valley(c) for c in candidates]
from
copy
import
copy
bak
=
copy
(
candidates
)
candidates
=
[
bak
[
x
]
for
x
in
np
.
argsort
(
rprops
[
"
minor_axis_length
"
][
trapmask
])]
return
candidates
[:
5
]
# fig, axes = plt.subplots(5, 8)
# indices = np.concatenate((np.arange(20), -np.arange(1, 21)[::-1]))
# for i in range(5):
# for j in range(8):
# if i * 8 + j < len(candidates):
# # axes[i, j].imshow(candidates[i * 8 + j])
# axes[i, j].imshow(candidates[indices[i * 8 + j]])
# plt.show()
# chosen_trap_coords = np.round(traps[np.argsort(area)[len(area) // 2]]).astype(int)
# chosen_trap_coords = np.round(traps[np.argsort(ma)[len(ma) // 2]]).astype(int)
x
,
y
=
chosen_trap_coords
template
=
image
[
x
-
tile_size
//
2
:
x
+
tile_size
//
2
,
y
-
tile_size
//
2
:
y
+
tile_size
//
2
]
return
template
new_coords
=
identify_trap_locations
(
image
,
template
)
# def get_tile(tile_size=117):
# tile = np.ones((tile_size, tile_size))
# tile[1:-1, 1:-1] = False
# return tile
# tile = get_tile(tile_size)
# # tmp
# mask = np.zeros_like(image, dtype="bool")
# # for x, y in np.array(traps).round().astype(int):
# for x, y in new_coords:
# dist = int(tile_size / 2)
# size_okay = (
# np.array(mask[x - dist : x + dist + 1, y - dist : y + dist + 1].shape)
# == np.array(tile.shape)
# ).all()
# if size_okay:
# maxes = np.maximum.reduce(
# (mask[x - dist : x + dist + 1, y - dist : y + dist + 1], tile)
# )
# mask[x - dist : x + dist + 1, y - dist : y + dist + 1] = maxes
# from skimage.color import label2rgb
# traps_img = label2rgb(mask, image=stretched, bg_label=0, alpha=0.5)
if
len
(
traps
)
<
10
and
downscale
!=
1
:
print
(
"
Trying again.
"
)
return
segment_traps
(
image
,
tile_size
,
downscale
=
1
)
# return traps
return
traps_img
ncols
=
10
rands
=
np
.
random
.
randint
(
0
,
138
,
ncols
)
top_cands
=
[
segment_traps
(
test_imgs
[
r
],
tile_size
=
117
)
for
r
in
rands
]
fig
,
axes
=
plt
.
subplots
(
5
,
ncols
)
for
i
in
range
(
ncols
):
for
j
in
range
(
5
):
axes
[
j
,
i
].
imshow
(
top_cands
[
i
][
j
])
plt
.
show
()
# res = [segment_traps(im, tile_size=117) for im in test_imgs[rands]]
from
scipy.signal
import
find_peaks
def
find_valley
(
template
):
template
=
((
template
-
template
.
min
())
/
(
template
.
max
()
-
template
.
min
()))
*
255
summed
=
template
.
sum
(
axis
=
1
)
norm
=
summed
/
summed
.
max
()
find_peaks
(
norm
[
20
:
-
20
])
max1
,
max2
=
np
.
argsort
(
norm
[
peaks
[
0
]])[:
2
]
if
max2
<
max1
:
tmp
=
max2
max2
=
max1
max1
=
tmp
return
norm
[
max1
:
max2
].
min
()
for
i
,
im
in
enumerate
(
res
):
plt
.
imshow
(
im
)
plt
.
axis
(
"
off
"
)
plt
.
savefig
(
"
tiles
"
+
str
(
i
),
dpi
=
400
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment