Skip to content
Snippets Groups Projects
Commit 3164db4e authored by Alán Muñoz's avatar Alán Muñoz
Browse files

refactor(picker/cells): Lineage methods to cells

parent a37cdfd6
No related branches found
No related tags found
No related merge requests found
...@@ -298,128 +298,88 @@ class CellsLinear(CellsHDF): ...@@ -298,128 +298,88 @@ class CellsLinear(CellsHDF):
rand = np.random.randint(mat.sum()) rand = np.random.randint(mat.sum())
return (traps[rand], tps[rand]) return (traps[rand], tps[rand])
def mothers_in_trap(self, trap_id: int):
return self.mothers[trap_id]
# class CellsMat(Cells): @property
# def __init__(self, mat_object): def mothers(self):
# super(CellsMat, self).__init__() """
# # TODO add __contains__ to the matObject Return nested list with final prediction of mother id for each cell
# timelapse_traps = mat_object.get( """
# "timelapseTrapsOmero", mat_object.get("timelapseTraps", None) with h5py.File(self.filename, "r") as f:
# )
# if timelapse_traps is None: return self.mother_assign_from_dynamic(
# raise NotImplementedError( self["mother_assign_dynamic"],
# "Could not find a timelapseTraps or " self["cell_label"],
# "timelapseTrapsOmero object. Cells " self["trap"],
# "from cellResults not implemented" self.ntraps,
# ) )
# else:
# self.trap_info = timelapse_traps["cTimepoint"]["trapInfo"] @property
def mothers_daughters(self):
# if isinstance(self.trap_info, list): nested_massign = self.mothers
# self.trap_info = {
# k: list([res.get(k, []) for res in self.trap_info]) if sum([x for y in nested_massign for x in y]):
# for k in self.trap_info[0].keys()
# } idx = set(
[
# def where(self, cell_id, trap_id): (tid, i + 1)
# times, indices = zip( for tid, x in enumerate(nested_massign)
# *[ for i in range(len(x))
# (tp, np.where(cell_id == x)[0][0]) ]
# for tp, x in enumerate(self.trap_info["cellLabel"][:, trap_id].tolist()) )
# if np.any(cell_id == x) mothers, daughters = zip(
# ] *[
# ) ((tid, m), (tid, d))
# return times, indices for tid, trapcells in enumerate(nested_massign)
for d, m in enumerate(trapcells, 1)
# def outline(self, cell_id, trap_id): if m
# times, indices = self.where(cell_id, trap_id) ]
# info = self.trap_info["cell"][times, trap_id] )
else:
# def get_segmented(cell, index): mothers, daughters = ([], [])
# if cell["segmented"].ndim == 0: # print("Warning:Cells: No mother-daughters assigned")
# return cell["segmented"][()].todense()
# else: return mothers, daughters
# return cell["segmented"][index].todense()
@staticmethod
# segmentation_outline = [ def mother_assign_to_mb_matrix(ma: t.List[np.array]):
# get_segmented(cell, idx) for idx, cell in zip(indices, info) # Convert from list of lists to mother_bud sparse matrix
# ] ncells = sum([len(t) for t in ma])
# return times, np.array(segmentation_outline) mb_matrix = np.zeros((ncells, ncells), dtype=bool)
c = 0
# def mask(self, cell_id, trap_id): for cells in ma:
# times, outlines = self.outline(cell_id, trap_id) for d, m in enumerate(cells):
# return times, np.array( if m:
# [ndimage.morphology.binary_fill_holes(o) for o in outlines] mb_matrix[c + d, c + m - 1] = True
# )
c += len(cells)
# def at_time(self, timepoint, kind="outline"):
return mb_matrix
# """Returns the segmentations for all the cells at a given timepoint.
@staticmethod
# FIXME: this is extremely hacky and accounts for differently saved def mother_assign_from_dynamic(
# results in the matlab object. Deprecate ASAP. ma, cell_label: t.List[int], trap: t.List[int], ntraps: int
# """ ):
# # Case 1: only one cell per trap: trap_info['cell'][timepoint] is a """
# # structured array Interpolate the list of lists containing the associated mothers from the mother_assign_dynamic feature
# if isinstance(self.trap_info["cell"][timepoint], dict): """
# segmentations = [ idlist = list(zip(trap, cell_label))
# self._astype(x, "outline") cell_gid = np.unique(idlist, axis=0)
# for x in self.trap_info["cell"][timepoint]["segmented"]
# ] last_lin_preds = [
# # Case 2: Multiple cells per trap: it becomes a list of arrays or find_1st(
# # dictionaries, one for each trap ((cell_label[::-1] == lbl) & (trap[::-1] == tr)),
# # Case 2.1 : it's a dictionary True,
# elif isinstance(self.trap_info["cell"][timepoint][0], dict): cmp_equal,
# segmentations = [] )
# for x in self.trap_info["cell"][timepoint]: for tr, lbl in cell_gid
# seg = x["segmented"] ]
# if not isinstance(seg, np.ndarray): mother_assign_sorted = ma[::-1][last_lin_preds]
# seg = [seg]
# segmentations.append([self._astype(y, "outline") for y in seg]) traps = cell_gid[:, 0]
# # Case 2.2 : it's an array iterator = groupby(zip(traps, mother_assign_sorted), lambda x: x[0])
# else: d = {key: [x[1] for x in group] for key, group in iterator}
# segmentations = [ nested_massign = [d.get(i, []) for i in range(ntraps)]
# [self._astype(y, type) for y in x["segmented"]] if x.ndim != 0 else []
# for x in self.trap_info["cell"][timepoint] return nested_massign
# ]
# # Return dict for compatibility with hdf5 output
# return {i: v for i, v in enumerate(segmentations)}
# def labels_at_time(self, tp):
# labels = self.trap_info["cellLabel"]
# labels = [_aslist(x) for x in labels[tp]]
# labels = {i: [lbl for lbl in lblset] for i, lblset in enumerate(labels)}
# return labels
# @property
# def ntraps(self):
# return len(self.trap_info["cellLabel"][0])
# @property
# def tile_size(self):
# pass
# class ExtractionRunner:
# """An object to run extraction of fluorescence, and general data out of
# segmented data.
# Configure with what extraction we want to run.
# Cell selection criteria.
# Filtering criteria.
# """
# def __init__(self, tiler, cells):
# pass
# def run(self, keys, store, **kwargs):
# pass
# def _aslist(x):
# if isinstance(x, Iterable):
# if hasattr(x, "tolist"):
# x = x.tolist()
# else:
# x = [x]
# return x
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment