Skip to content
Snippets Groups Projects
Commit 70c99a84 authored by Alán Muñoz's avatar Alán Muñoz
Browse files

specify submodules called

parent 8cb8a082
No related branches found
No related tags found
No related merge requests found
......@@ -6,7 +6,7 @@ Especially lines 342 to 399.
This part only replicates the method to get the nuc_est_conv values
"""
import numpy as np
import scipy
from scipy import signal, stats
import skimage
......@@ -59,11 +59,11 @@ def small_peaks_conv(cell_mask, trap_image):
# expect the size of the nucleus to be.
# TODO directly get a disk of that size?
# new_shape = tuple(x * ratio_overlap / 5 for x in conv_matrix.shape)
# conv_matrix = scipy.misc.imresize(conv_matrix, new_shape)
# conv_matrix = misc.imresize(conv_matrix, new_shape)
conv_matrix = skimage.morphology.disk(3 * ratio_overlap / 5)
# Apply convolution to the image
# TODO maybe rename 'conv_matrix' to 'kernel'
fluo_peaks = scipy.signal.convolve(trap_image, conv_matrix, "same")
fluo_peaks = signal.convolve(trap_image, conv_matrix, "same")
fluo_peaks = fluo_peaks[cell_mask]
small_peak_conv = np.max(fluo_peaks)
return small_peak_conv
......@@ -82,7 +82,7 @@ def nuc_est_conv(cell_mask, trap_image):
# Nuc Est Conv
alpha = 0.95
approx_nuc_radius = np.sqrt(0.085 * num_cell_fluo / np.pi)
chi2inv = scipy.stats.distributions.chi2.ppf(alpha, df=2)
chi2inv = stats.distributions.chi2.ppf(alpha, df=2)
sd_est = approx_nuc_radius / np.sqrt(chi2inv)
nuc_filt_hw = np.ceil(2 * approx_nuc_radius)
......@@ -91,7 +91,7 @@ def nuc_est_conv(cell_mask, trap_image):
cell_image = trap_image - np.median(cell_fluo)
cell_image[~cell_loc] = 0
nuc_conv = scipy.signal.convolve(cell_image, nuc_filter, "same")
nuc_conv = signal.convolve(cell_image, nuc_filter, "same")
nuc_est_conv = np.max(nuc_conv)
nuc_est_conv /= np.sum(nuc_filter ** 2) * alpha * np.pi * chi2inv * sd_est ** 2
return nuc_est_conv
......@@ -105,13 +105,13 @@ def nuc_conv_3d(cell_mask, trap_image, pixel_size=0.23, spacing=0.6):
# Nuc Est Conv
alpha = 0.95
approx_nuc_radius = np.sqrt(0.085 * num_cell_fluo / np.pi)
chi2inv = scipy.stats.distributions.chi2.ppf(alpha, df=2)
chi2inv = stats.distributions.chi2.ppf(alpha, df=2)
sd_est = approx_nuc_radius / np.sqrt(chi2inv)
nuc_filt_hw = np.ceil(2 * approx_nuc_radius)
nuc_filter = gauss3D((2 * nuc_filt_hw + 1,) * 3, (sd_est, sd_est, sd_est * ratio))
cell_image = trap_image - np.median(cell_fluo)
cell_image[~cell_mask] = 0
nuc_conv = scipy.signal.convolve(cell_image, nuc_filter, "same")
nuc_conv = signal.convolve(cell_image, nuc_filter, "same")
nuc_est_conv = np.max(nuc_conv)
nuc_est_conv /= np.sum(nuc_filter ** 2) * alpha * np.pi * chi2inv * sd_est ** 2
return nuc_est_conv
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment