Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
alibylite
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Swain Lab
aliby
alibylite
Commits
f65a0f5b
Commit
f65a0f5b
authored
2 years ago
by
Alán Muñoz
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' into dev
parents
8fd5ba9a
f1c29ec5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
io/cells.py
+81
-1
81 additions, 1 deletion
io/cells.py
with
81 additions
and
1 deletion
io/cells.py
+
81
−
1
View file @
f65a0f5b
...
...
@@ -3,6 +3,7 @@ import typing as t
from
collections.abc
import
Iterable
from
itertools
import
groupby
from
pathlib
import
Path
,
PosixPath
from
functools
import
lru_cache
import
h5py
import
numpy
as
np
...
...
@@ -55,7 +56,11 @@ class Cells:
@property
def
max_labels
(
self
)
->
t
.
List
[
int
]:
return
[
max
(
self
.
labels_in_trap
(
i
))
for
i
in
range
(
self
.
ntraps
)]
return
[
max
((
0
,
*
self
.
labels_in_trap
(
i
)))
for
i
in
range
(
self
.
ntraps
)]
@property
def
max_label
(
self
)
->
int
:
return
sum
(
self
.
max_labels
)
@property
def
ntraps
(
self
)
->
int
:
...
...
@@ -102,6 +107,16 @@ class Cells:
"""
return
[
self
.
labels_in_trap
(
trap
)
for
trap
in
range
(
self
.
ntraps
)]
def
max_labels_in_frame
(
self
,
frame
:
int
)
->
t
.
List
[
int
]:
# Return the maximum label for each trap in the given frame
max_labels
=
[
self
[
"
cell_label
"
][
(
self
[
"
timepoint
"
]
<=
frame
)
&
(
self
[
"
trap
"
]
==
trap_id
)
]
for
trap_id
in
range
(
self
.
ntraps
)
]
return
[
max
([
0
,
*
labels
])
for
labels
in
max_labels
]
def
where
(
self
,
cell_id
:
int
,
trap_id
:
int
):
"""
Parameters
...
...
@@ -321,3 +336,68 @@ class Cells:
nested_massign
=
[
d
.
get
(
i
,
[])
for
i
in
range
(
ntraps
)]
return
nested_massign
@lru_cache
(
maxsize
=
200
)
def
labelled_in_frame
(
self
,
frame
:
int
,
global_id
=
False
)
->
np
.
ndarray
:
"""
Return labels in a ndarray with the global ids
with shape (ntraps, max_nlabels, ysize, xsize)
at a given frame.
max_nlabels is specific for this frame, not
the entire experiment.
"""
labels_in_frame
=
self
.
labels_at_time
(
frame
)
n_labels
=
[
len
(
labels_in_frame
.
get
(
trap_id
,
[]))
for
trap_id
in
range
(
self
.
ntraps
)
]
# maxes = self.max_labels_in_frame(frame)
stacks_in_frame
=
self
.
get_stacks_in_frame
(
frame
,
self
.
tile_size
)
first_id
=
np
.
cumsum
([
0
,
*
n_labels
])
labels_mat
=
np
.
zeros
(
(
self
.
ntraps
,
max
(
n_labels
),
*
self
.
tile_size
,
),
dtype
=
int
,
)
for
trap_id
,
masks
in
enumerate
(
stacks_in_frame
):
# new_axis = np.pad(
if
trap_id
in
labels_in_frame
:
new_axis
=
np
.
array
(
labels_in_frame
[
trap_id
],
dtype
=
int
)[
:,
np
.
newaxis
,
np
.
newaxis
]
global_id_masks
=
new_axis
*
masks
if
global_id
:
global_id_masks
+=
first_id
[
trap_id
]
*
masks
global_id_masks
=
np
.
pad
(
global_id_masks
,
pad_width
=
(
(
0
,
labels_mat
.
shape
[
1
]
-
global_id_masks
.
shape
[
0
]),
(
0
,
0
),
(
0
,
0
),
),
)
labels_mat
[
trap_id
]
+=
global_id_masks
return
labels_mat
def
get_stacks_in_frame
(
self
,
frame
:
int
,
tile_shape
:
t
.
Tuple
[
int
]):
# Stack all cells in a trap-wise manner
masks
=
self
.
at_time
(
frame
)
return
[
stack_masks_in_trap
(
masks
.
get
(
trap_id
,
np
.
array
([],
dtype
=
bool
)),
tile_shape
)
for
trap_id
in
range
(
self
.
ntraps
)
]
def
stack_masks_in_trap
(
masks
:
t
.
List
[
np
.
ndarray
],
tile_shape
:
t
.
Tuple
[
int
]
)
->
np
.
ndarray
:
# Stack all masks in a trap padding accordingly if no outlines found
result
=
np
.
zeros
((
0
,
*
tile_shape
),
dtype
=
bool
)
if
len
(
masks
):
result
=
np
.
array
(
masks
)
return
result
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment