Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
import matplotlib.pylab as plt
import seaborn as sns
from wela.dataloader import dataloader
from wela.imageviewer import ImageViewer, get_h5files
from wela.plotting import kymograph
from wela.sorting import sort_by_budding
h5dir = "/Users/pswain/wip/aliby_output/ribosomes/"
omids = [
"1999_2024_01_14_Rpl3_glc_raf_00",
"2003_2024_01_29_2pc_switch_00",
"2008_2024_02_12_Rpl3_glc_raf_switching_00",
]
# FILL IN
server_info = {
"host": "staffa.bio.ed.ac.uk",
"username": "",
"password": "",
}
view = True
# pick the experiment to analyse
omid = 2008
# 1. Run with view=True to check visually that aliby has worked correctly.
# 2. Set key_index, the signal you are most interested in.
# 3. Run with view=False to run dataloader and save a tsv file.
if view:
omero_name = [om for om in omids if str(omid) in om][0]
h5files = get_h5files(h5dir, omero_name)
position = h5files[0]
h5file = f"{h5dir}{omero_name}/{position}"
iv = ImageViewer.remote(h5file, server_info, omid)
tpt_end = 10
no_cells = 6
iv.view(
trap_ids=iv.sample_traps_with_cells(
tpt_end=tpt_end, no_cells=no_cells
),
tpt_end=tpt_end,
channels_to_skip=["cy5"],
no_rows=2,
)
sys.exit(0)
expt = [omid_full for omid_full in omids if str(omid) in omid_full][0]
dl.load(expt, key_index=key_index, cutoff=0.9)
dl.save()
# plot kymographs
groups = dl.df.group.unique()
for group in groups:
_, buddings = dl.get_time_series("buddings", group=group)
sort_order = sort_by_budding(buddings)
kymograph(
dl.df[dl.df.group == group],
hue=key_index,
title=group,
sort_order=sort_order,
)
# plot means
sns.relplot(data=dl.df, x="time", y=key_index, kind="line", hue="group")
plt.show()