Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
W
wela
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Swain Lab
wela
Commits
cf8d2661
Commit
cf8d2661
authored
2 years ago
by
pswain
Browse files
Options
Downloads
Patches
Plain Diff
tidied up autocrosscorr; removed plotting
parent
d8c5e2db
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
time_series_analysis.py
+13
-101
13 additions, 101 deletions
time_series_analysis.py
with
13 additions
and
101 deletions
time_series_analysis.py
+
13
−
101
View file @
cf8d2661
import
numpy
as
np
import
numpy
as
np
import
matplotlib.pylab
as
plt
def
autocrosscorr
(
def
autocrosscorr
(
yA
,
yA
,
yB
=
None
,
yB
=
None
,
connected
=
True
,
normalised
=
True
,
normalised
=
True
,
):
):
"""
"""
...
@@ -22,14 +20,9 @@ def autocrosscorr(
...
@@ -22,14 +20,9 @@ def autocrosscorr(
yB: array (required for cross-correlation only)
yB: array (required for cross-correlation only)
An array of signal values, with each row a replicate measurement
An array of signal values, with each row a replicate measurement
and each column a time point.
and each column a time point.
connected: boolean
If True, find the connected correlation function, which measures the
correlation once the population mean has been substracted.
normalised: boolean
normalised: boolean
If True and connected is True, normalise each time point by the
If True normalise each time point by the standard deviation across
standard deviation across the replicates.
the replicates.
If True and connected is False, normalise each time by the root mean
square across replicates.
Returns
Returns
-------
-------
...
@@ -40,21 +33,16 @@ def autocrosscorr(
...
@@ -40,21 +33,16 @@ def autocrosscorr(
# number of replicates
# number of replicates
nr
=
yA
.
shape
[
0
]
nr
=
yA
.
shape
[
0
]
# number of time points
# number of time points
n
=
yA
.
shape
[
1
]
nt
=
yA
.
shape
[
1
]
# deviation from mean at each time point
# deviation from the mean, where the mean is calculated over replicates
if
connected
:
# at each time point, which allows for non-stationary behaviour
dyA
=
yA
-
np
.
nanmean
(
yA
,
axis
=
0
).
reshape
((
1
,
n
))
dyA
=
yA
-
np
.
nanmean
(
yA
,
axis
=
0
).
reshape
((
1
,
nt
))
else
:
dyA
=
yA
# standard deviation over time for each replicate
# standard deviation over time for each replicate
stdA
=
np
.
sqrt
(
np
.
nanmean
(
dyA
**
2
,
axis
=
1
).
reshape
((
nr
,
1
)))
stdA
=
np
.
sqrt
(
np
.
nanmean
(
dyA
**
2
,
axis
=
1
).
reshape
((
nr
,
1
)))
if
np
.
any
(
yB
):
if
np
.
any
(
yB
):
# cross correlation
# cross correlation
if
connected
:
dyB
=
yB
-
np
.
nanmean
(
yB
,
axis
=
1
).
reshape
((
1
,
nt
))
dyB
=
yB
-
np
.
nanmean
(
yB
,
axis
=
0
).
reshape
((
1
,
n
))
stdB
=
np
.
sqrt
(
np
.
nanmean
(
dyB
**
2
,
axis
=
1
).
reshape
((
nr
,
1
)))
else
:
dyB
=
yB
stdB
=
np
.
sqrt
(
np
.
nanmean
(
dyB
**
2
,
axis
=
0
).
reshape
((
1
,
n
)))
else
:
else
:
# auto correlation
# auto correlation
yB
=
yA
yB
=
yA
...
@@ -63,89 +51,13 @@ def autocrosscorr(
...
@@ -63,89 +51,13 @@ def autocrosscorr(
# calculate correlation
# calculate correlation
corr
=
np
.
nan
*
np
.
ones
(
yA
.
shape
)
corr
=
np
.
nan
*
np
.
ones
(
yA
.
shape
)
# lag r runs over time points
# lag r runs over time points
for
r
in
np
.
arange
(
0
,
n
):
for
r
in
np
.
arange
(
0
,
n
t
):
prods
=
[
dyA
[:,
t
]
*
dyB
[:,
t
+
r
]
for
t
in
range
(
n
-
r
)]
prods
=
[
dyA
[:,
t
]
*
dyB
[:,
t
+
r
]
for
t
in
range
(
n
t
-
r
)]
corr
[:,
r
]
=
np
.
nansum
(
prods
,
axis
=
0
)
/
(
n
-
r
)
corr
[:,
r
]
=
np
.
nansum
(
prods
,
axis
=
0
)
/
(
n
t
-
r
)
if
normalised
:
if
normalised
:
if
connected
:
# normalise by standard deviation
# normalise by standard deviation
corr
=
corr
/
stdA
/
stdB
corr
=
corr
/
stdA
/
stdB
else
:
# normalise by root mean square
corr
=
corr
/
np
.
sqrt
(
np
.
nanmean
(
yA
**
2
,
axis
=
1
).
reshape
((
nr
,
1
))
*
np
.
nanmean
(
yB
**
2
,
axis
=
1
).
reshape
((
nr
,
1
)))
return
corr
return
corr
###
###
def
plot_replicatearray
(
data
,
t
=
None
,
plotmean
=
True
,
xlabel
=
None
,
ylabel
=
None
,
title
=
None
,
grid
=
True
,
):
"""
Plots summary statistics versus axis 1 for an array of replicates.
Parameters
----------
data: array
An array of signal values, with each row a replicate measurement
and each column a time point.
t : array (optional)
An array of time points.
plotmean: boolean
If True, plot the mean correlation over replicates versus the lag
with the standard error.
If False, plot the median correlation and the interquartile range.
xlabel: string
Label for x-axis.
ylabel: string
Label for y-axis.
title: string
Title for plot.
grid: boolean
If True, draw grid on plot.
"""
# number of time points
n
=
data
.
shape
[
1
]
# number of replicates
nr
=
data
.
shape
[
0
]
if
not
np
.
any
(
t
):
t
=
np
.
arange
(
n
)
plt
.
figure
()
if
plotmean
:
# mean and standard error
plt
.
plot
(
t
,
np
.
nanmean
(
data
,
axis
=
0
),
"
b-
"
)
stderr
=
np
.
nanstd
(
data
,
axis
=
0
)
/
np
.
sqrt
(
nr
)
plt
.
fill_between
(
t
,
np
.
nanmean
(
data
,
axis
=
0
)
+
stderr
,
np
.
nanmean
(
data
,
axis
=
0
)
-
stderr
,
color
=
"
b
"
,
alpha
=
0.2
,
)
else
:
# median and interquartile range
plt
.
plot
(
t
,
np
.
nanmedian
(
data
,
axis
=
0
),
"
b-
"
)
plt
.
fill_between
(
t
,
np
.
nanquantile
(
data
,
0.25
,
axis
=
0
),
np
.
nanquantile
(
data
,
0.75
,
axis
=
0
),
color
=
"
b
"
,
alpha
=
0.2
,
)
if
xlabel
:
plt
.
xlabel
(
xlabel
)
if
ylabel
:
plt
.
ylabel
(
ylabel
)
if
title
:
plt
.
title
(
title
)
if
grid
:
plt
.
grid
()
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment